Machine Learning with Topological Augmentation for boosting di-Higgs searches at the LHC

W. S. Cho (Seoul National University)

in collaboration with

Ka Young Ban, Dongsub Lee, Chan Beom Park, Jae-hyeon Park & Seong Chan Park

Higgs Couplings 2018 in Tokyo

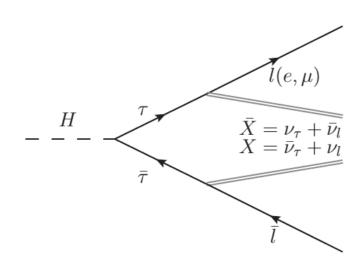
Elusive di-Higgs production and decays

with multiple invisible particles

$$\sigma(gg \rightarrow hh) = 39.64^{+4.4} (PDF)^{+-2.1} (GSCale) + -2.2 (GSC$$

@ [14TeV,

- $^{\prime}$ HH \rightarrow bbWW & HH \rightarrow bbττ channels
 - sizable branching ratios
 - huge ttbar backgrounds
 - large MET from multiple neutrinos



channel	BR (%)
bbbb	~33
bbWW	~25
bbττ	~7.3
WWWW	~4.3
bbrr	~0.27

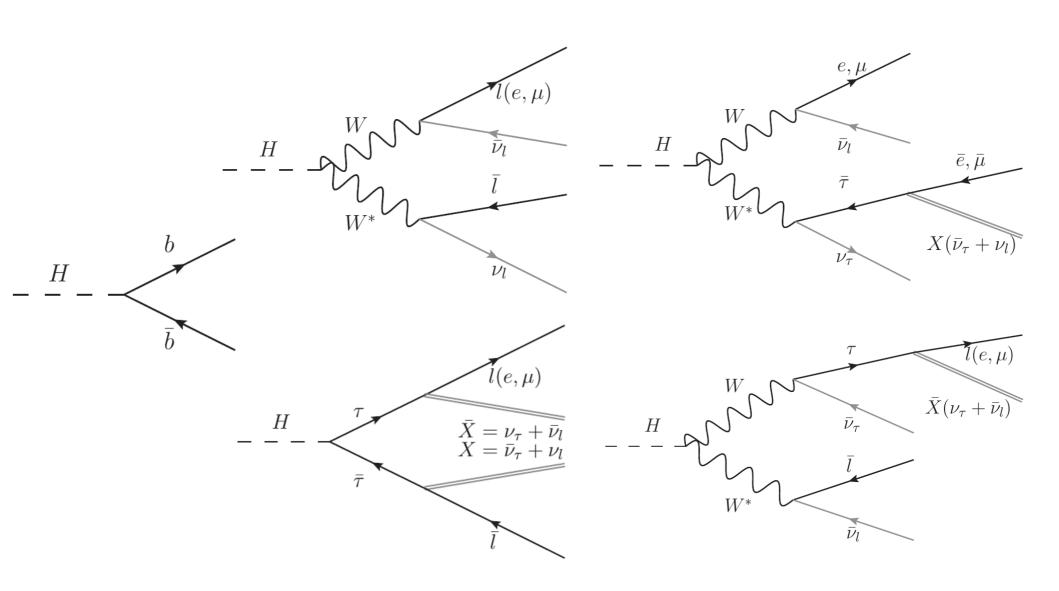
ex) $H \rightarrow \tau \tau \rightarrow 2\ell + MET$ with 4 neutrinos

HH \rightarrow bbWW & bbtt on ttbar BG in 3 categorical signatures for 2b + 2L ($n_{\ell=e,\mu}$ + $n_{\tau(h)}$ =2) + MET categorized further by tau decay kinematics

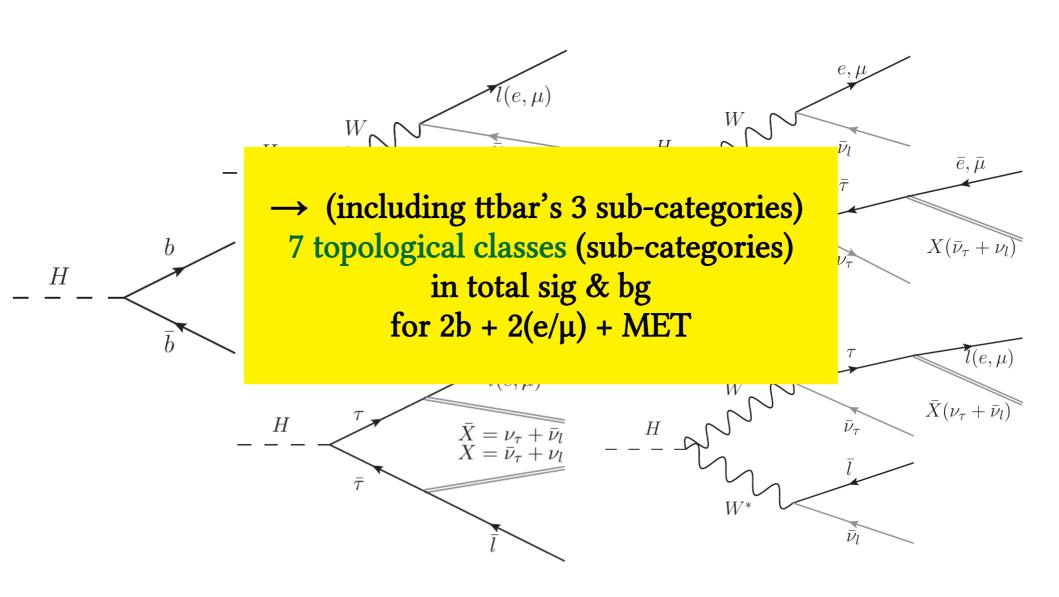
Channel	Leptons	X section	Topology * $l = e \ or \ \mu$
HH2Tau	0	~1.2	$hh \rightarrow b \ b \ \tau \ \tau \rightarrow b \ b \ \tau_h \ \tau_h + met$
TT2Tau	0	~5097.2	$\bar{t}t \rightarrow b w b w \rightarrow b b \tau \tau + met \rightarrow b b \tau_h \tau_h + met$
HH2Tau	1	~1.3	$hh \rightarrow b \ b \ \tau \ \tau \rightarrow b \ b \ \tau_h \ l \ + met$
HH2W*W	1	~0.15	$hh \rightarrow b\ b\ w\ w^* \rightarrow b\ b\ \tau\ l + met \rightarrow b\ b\ \tau_h\ l\ + met$
HH2WW*	1	~0.15	$hh \rightarrow b\ b\ w\ w^* \rightarrow b\ b\ l\ \tau + met \rightarrow b\ b\ l\ \tau_h\ + met$
TT2Tau	1	~5546.3	$\bar{t}t \rightarrow b \ w \ b \ w \rightarrow b \ b \ \tau \ \tau + met \rightarrow b \ b \ \tau_h \ l \ + met$
TT1Tau	1	~29700.2	$\bar{t}t \rightarrow b \ w \ b \ w \rightarrow b \ b \ \tau \ l + met \rightarrow b \ b \ \tau_h \ l + met$
HH2Tau	2	~0.36	$hh \rightarrow b \ b \ \tau \ \tau \rightarrow b \ b \ l \ l \ + met$
HH2W*W1Tau	2	~0.08	$hh \rightarrow b \ b \ w \ w^* \rightarrow b \ b \ \tau \ l + met \rightarrow b \ b \ l \ l \ + met$
HH2WW*1Tau	2	~0.08	$hh \rightarrow b \ b \ w \ w^* \rightarrow b \ b \ l \ \tau + met \rightarrow b \ b \ l \ l \ + met$
HH2WW0Tau	2	~0.47	$hh \rightarrow b \ b \ w \ w^* \rightarrow b \ b \ l \ l \ + met$
TT2Tau	2	~1508.7	$\bar{t}t \rightarrow b \ w \ b \ w \rightarrow b \ b \ \tau \ \tau + met \rightarrow b \ b \ l \ l \ + met$
TT1Tau	2	~16158.3	$\bar{t}t \rightarrow b \ w \ b \ w \rightarrow b \ b \ \tau \ l + met \rightarrow b \ b \ l \ l + met$
TT0Tau	2	~43263.9	$\bar{t}t \rightarrow b w b w \rightarrow b b l l + met$

from K.Y.Ban's talk at KEK next week

ex) 3^{rd} cartegory : HH \rightarrow 2b + 2(e/ μ) + MET (4 sub-categories) from bbWW & bbtautau production



ex) 3^{rd} cartegory : HH \rightarrow 2b + 2(e/ μ) + MET (4 sub-categories) from bbWW & bbtautau production



Building Machine learning HEP event classifiers for the processes with large missing information

- ✓ Machines, greedy on (HEP) data, eating and digesting data @ any level
- → 'DNN(deep neural networks) show similar performances even when trained only with raw-level features' [P. Baldi, P. Sadowski, D. Whiteson]

✓ Not even with DNN, ML have accomplished great success in HEP, including the Higgs discovery and etc, using (conventional) visible feature variables.

....

- "Okay, then do we lose our jobs?"
- "No. Not yet."
- "Then, what should we do?"
- "Just do your best to feed more delicious data to the machines."
- "How can we feed better data to machines? (especially for better HEP event classifiers?)"
- "Look, machines must STILL suffer from serious feature deficiency for the process data with large missing information... so, just find out and feed the entire missing part."
- "It might not be possible..in many cases."
- "Then, just guess the most plausible missing data (on MET) under various hypothetical models & feed all of them to machines, they will be able to eat all of them and digest, though!
- "It sounds not so smart, but let's just try the `machine learning with augmentation', and let's see."

• • • •

(Topological) Augmentation of invisible missing momenta in under-constrained systems using OptiMass[ref]

OptiMASS provides...

1) Augmented invisible 4 momentum vectors (by given physical hypothesis, h)

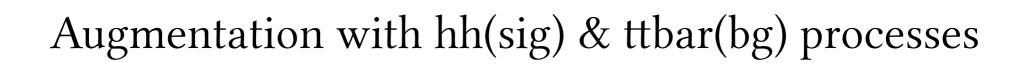
$$\tilde{q}^*$$

- 2) Minimized mass variable $\bar{M}(p, \tilde{q}^*)$
- 3) Compatibility Distance (D) of the event with respect to the hypothesis (h)

$$D^{l}(p) = \left(\sum_{i=1}^{n_c} \left| \vec{C}_i(p, \tilde{q}^*) \right|^2 \right)^{1/2}$$

via the optimization of Augmented Lagrangian :

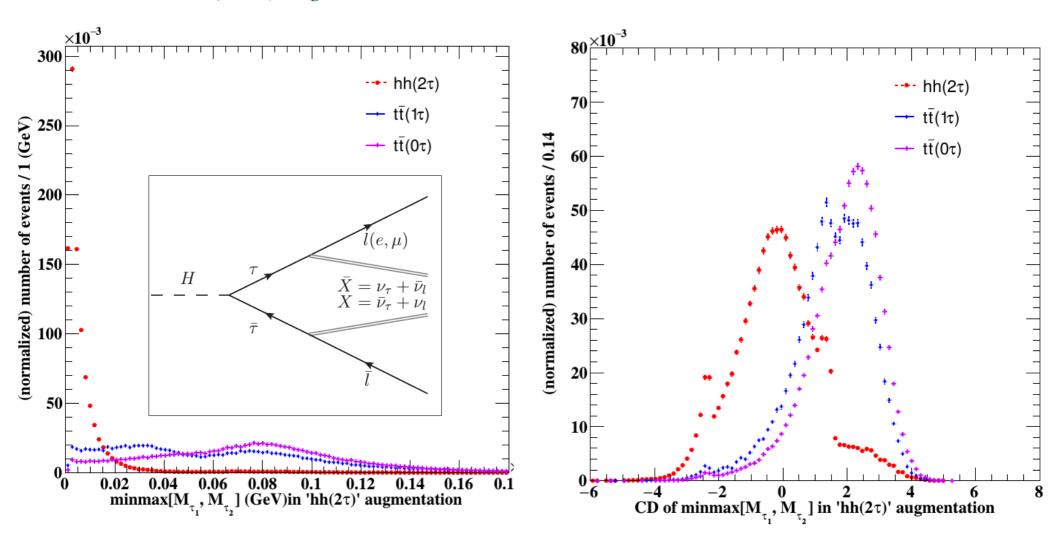
$$\tilde{\mathcal{L}}^{l}(p, \tilde{q}; \vec{\lambda}, \mu) = \tilde{M}^{l}(p, \tilde{q}) - \sum_{i=1}^{n_c} \vec{\lambda}_i \vec{C}_i^l + \frac{1}{\mu} \sum_{i=1}^{n_c} \left| \vec{C}_i^l \right|^2$$



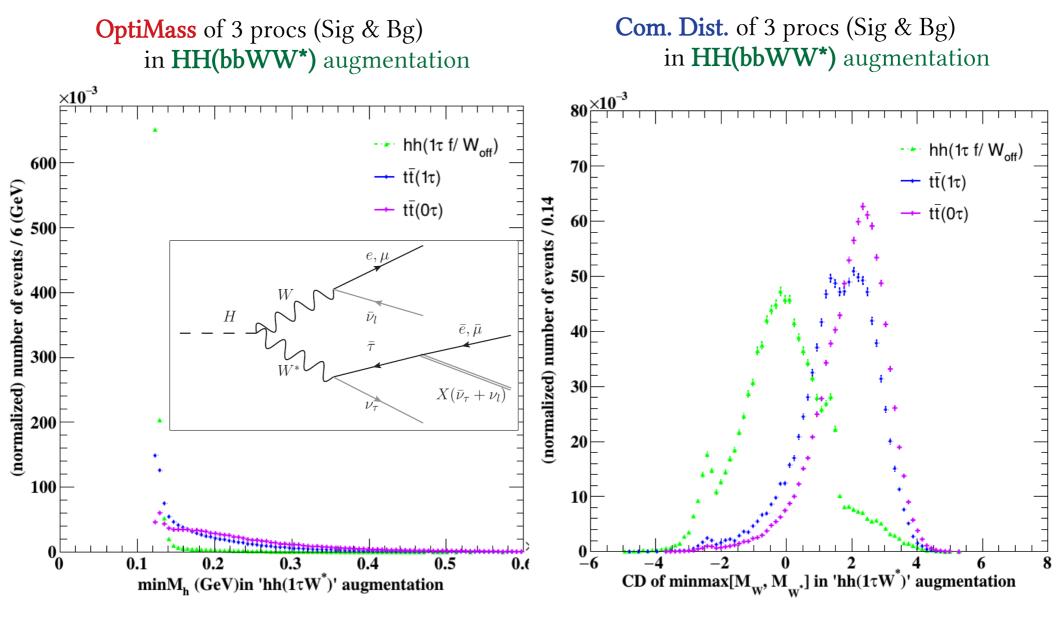
Augmented features 1: HL (optimass + compatibility distance) [ex1]

OptiMass of 3 procs (Sig & Bg) in HH(bbττ) augmentation

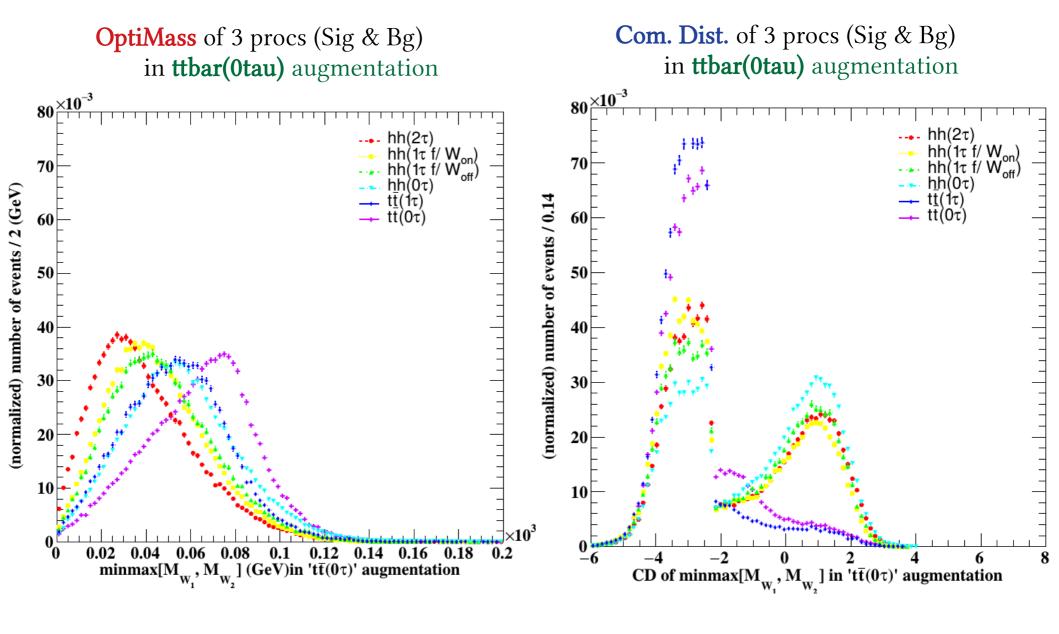
Com. Dist. of 3 procs (Sig & Bg) in **HH(bbττ)** augmentation



Augmented features 1: HL (optimass + compatibility distance) [ex2]

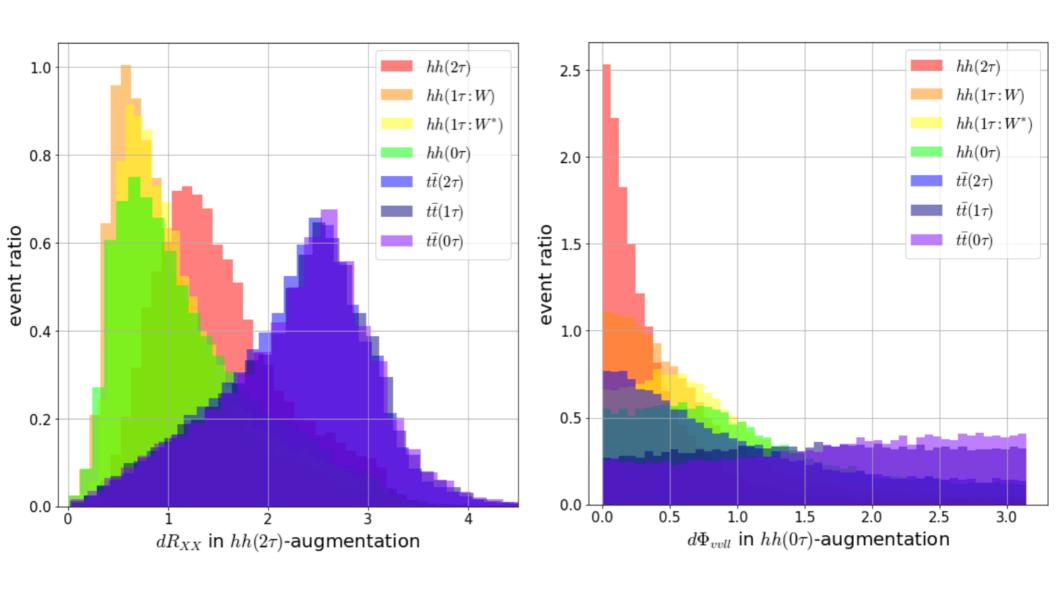


Augmented features 1: HL (optimass + compatibility distance) [ex3]



Augmented Features 2 : raw level variables

(raw momenta, angular variables) → Ndim ~ (100-200)



Many augmented features (@HL, @RL) for a given event entry

from

(subsystem optimass) x (constraint profile)

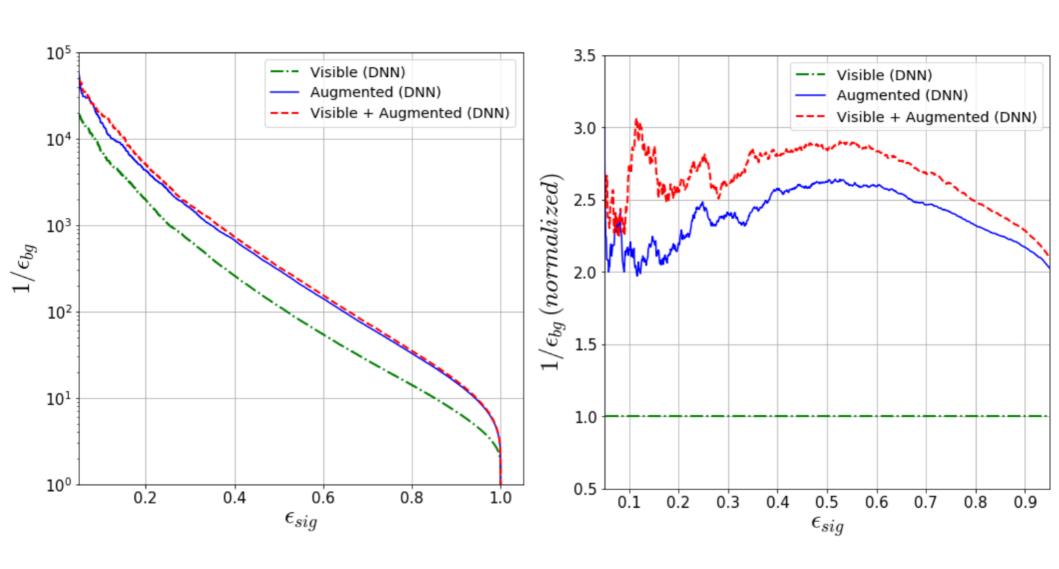
for (a given augmentation model)

Supervising DNN classifier with the augmented features (2L=2l case)

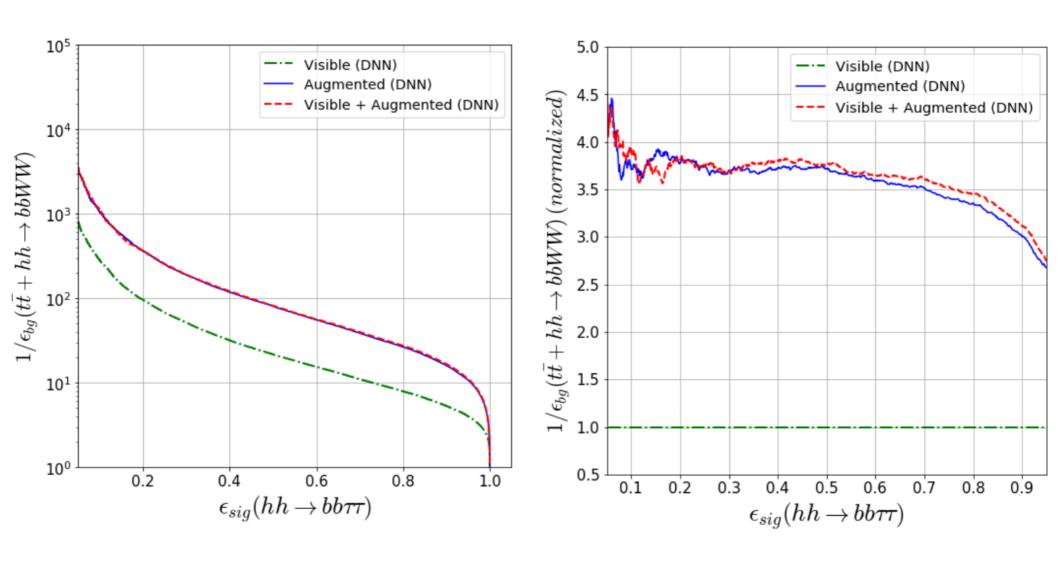
[Feature variable set definition]

'Visible': variable sets used in CMS PAS 17-006

'Augmented': augmented HL [Ndim~50] + RL [Ndim ~ 200]

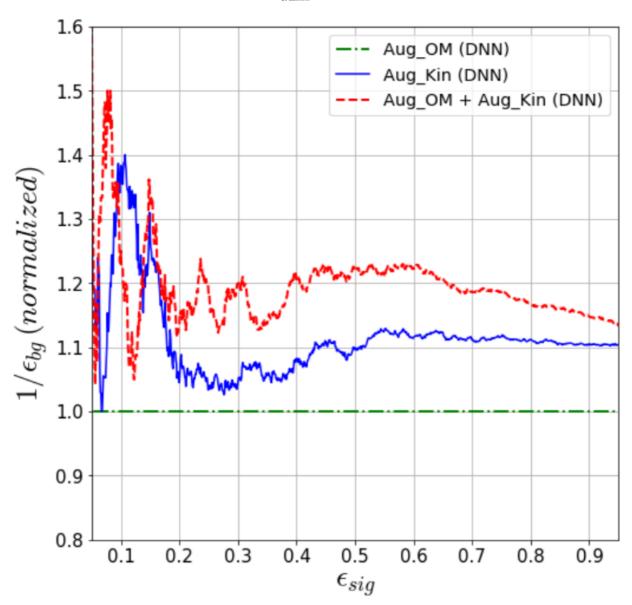


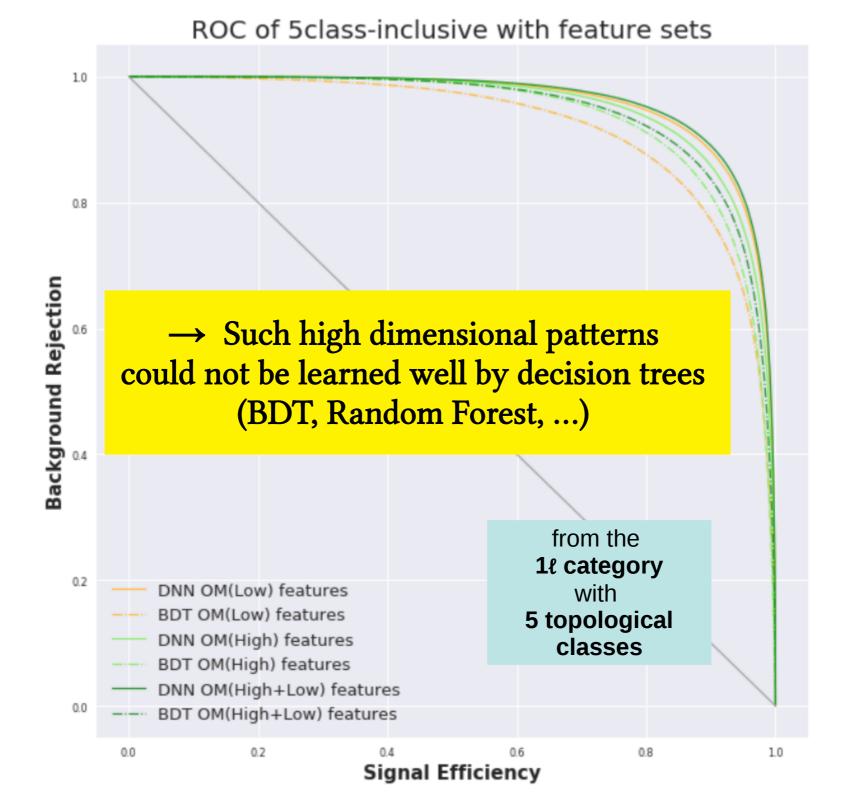
DNN classifier for $hh(bb_{\tau\tau})$ vs others(ttbar + hh(bbWW)) shows more enhanced significance



DNN classifiers can even be trained better using augmented raw-level(RL) features in n_{dim} (~200)

>> n_{dim}(HL: ~50)





Conclusion

- Di-Higgs searches in 2b+ 2L($n_{\ell=e,\mu}$ + $n_{\tau(h)}$ =2)+MET channels hh \to bbWW & bb $\tau_1\tau_1$ VS ttbar
- Kinematically distinctive processes in S & B

7/5/2 topological classes (for $2\ell / 1\ell + 1\tau_h / 2\tau_h$ categories) by the tau decay kinematics

• Augmented high-level & raw-level features for each topological classes

HL: OptiMasses & Compatibility Distances from it [Ndim~50]

RL: dR, dPhi, Mt, Pt, ... of missing d.o.f [Ndim~200]

Supervising DNN classifiers

can be trained quite well, even with raw-level augmented features in large dim. space (~200).

(augmented only) >> (visible only).

(augmented + visible) : the best.

 \rightarrow Bg efficiency can be reduced to ~ 1/3 for a wide range of sig efficiency (2L = 2ℓ case).

Thank you