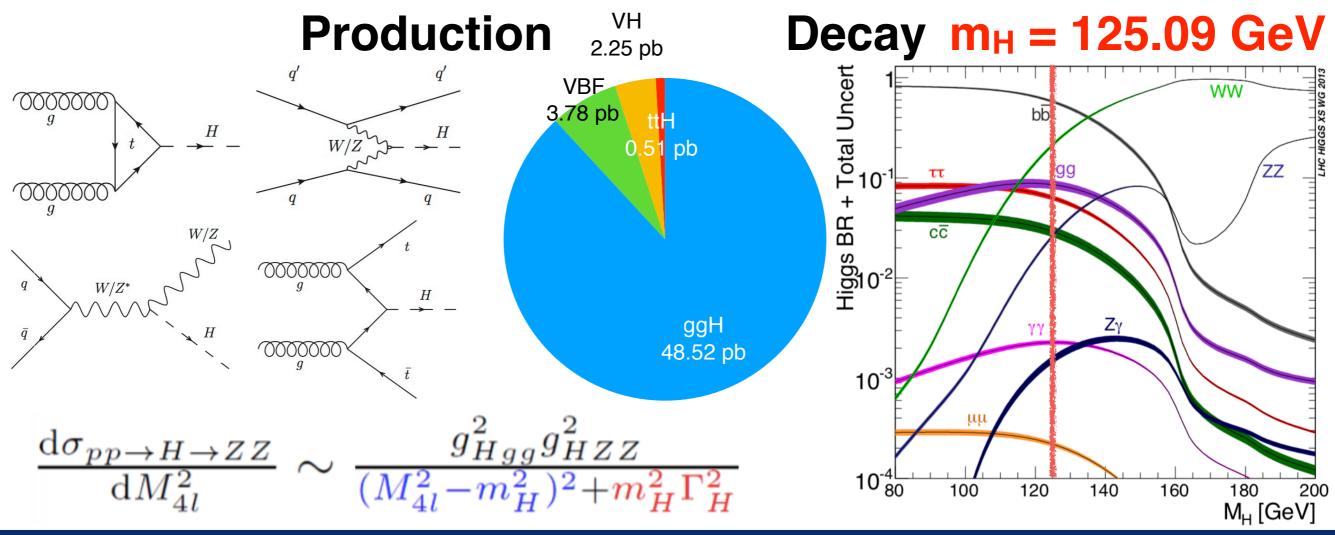
Measurement of Higgs production cross sections in the four lepton channel at 13 TeV with the ATLAS detector

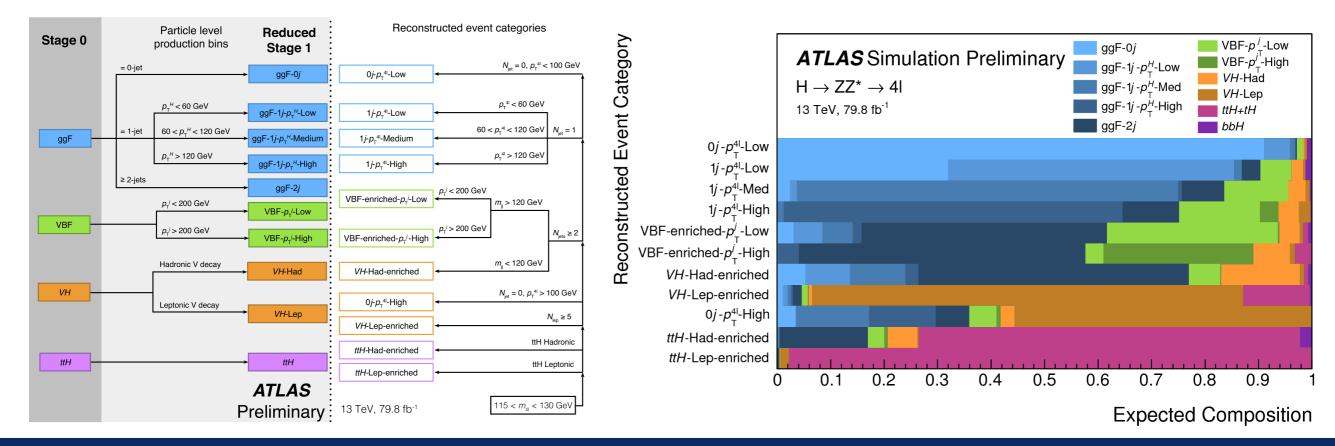
ATLAS-CONF-2018-018

Rongkun Wang On Behalf of the ATLAS Collaboration

Presented at Higgs Coupling 2018, Tokyo Nov. 26-30 2018



Introduction and Motivation

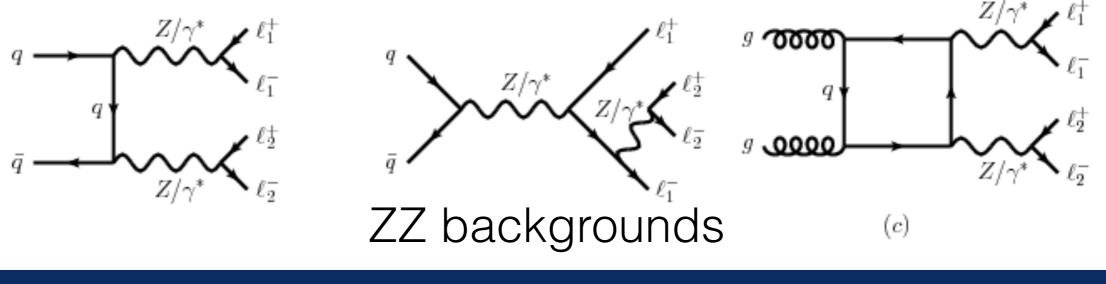

- Important to measure properties of Higgs to study any deviation from standard model theory
- H—>ZZ—>4I (e, μ), Br(H—>ZZ) * Br(ZZ—>4I), low rate, small background make this channel have a clean signature
- Cross section measurement can be used to constrain Higgs coupling g_{Hgg} , g_{HZZ} , and some EFT parameters

Rongkun Wang

STXS Categorization

- Simplified template cross section(STXS) framework.
 - Simultaneously measure production cross sections.
- Fiducial truth categories granularity vs sensitivity:
 - Stage 0: 4 production modes
 - Reduced Stage 1, njets, decay modes, kinematic cuts: 10 categories
- Reconstruction-level categories: mimic truth categories, with additional split and Boosted Decision Tree (BDT) to increase sensitivity

$\mathcal{L}(\text{data} \mid \vec{\sigma}, \vec{\theta}) = \prod_{j}^{N_{\text{categories.}}} \prod_{i}^{N_{\text{bins}}} P(N_{i,j} \mid \vec{\sigma}_{j} \cdot S_{i,j}(\vec{\theta}) + B_{i,j}(\vec{\theta})) \times \mathcal{A}_{i,j}(\vec{\theta})$


Rongkun Wang

Event Selection

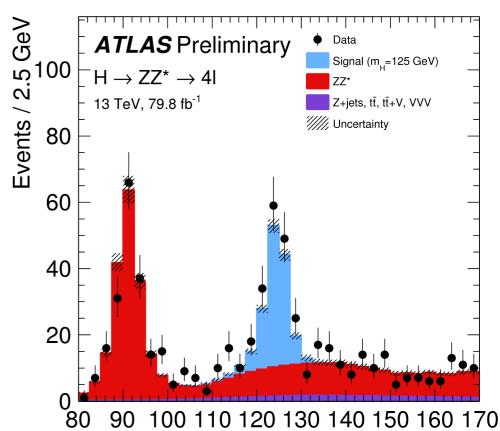
- Object definition and selection:
 - Electrons: $E_T > 7$ GeV, $|\eta| < 2.47$, d0/z0 cut, isolated
 - Muons: $p_T > 5$ GeV, $|\eta| < 2.7$, d0/z0 cut, isolated
 - Jets: anti-kT jets, $p_T > 30$ GeV, $|\eta| < 4.5$
- Two pairs of same-flavor opposite sign leptons
- p_T^{lepton1,2,3} > 20, 15, 10 GeV
- $dR_{\parallel} > 0.1$ for same flavor leptons, 0.2 for different
- Z masses cut:
 - $50 < m_{12} < 106 \text{ GeV}, 12 < m_{34} < 115 \text{ GeV}$
- Higgs mass window:
 - $115 < m_{4l} < 130 \text{ GeV}$

Dataset, Signal and Background

- Dataset: 13 TeV 2015-17 data, 79.8 fb⁻¹
- Signal:
 - Major: ggF, VBF, VH, ttH
 - Minor: bbH, ggZH, merged with other productions due to similar acceptance
- Irreducible background modelled by MC, validated in the sideband CR:
 - qq/gg—>ZZ, major background
 - VVV and ttV
- Reducible fake background from hadron/hadron decay products
 - Z+jets, ttbar
 - Estimated from data in control region (CR) and extrapolated to signal region (SR). Transfer factors and shape derived from MC.

Rongkun Wang

Systematics

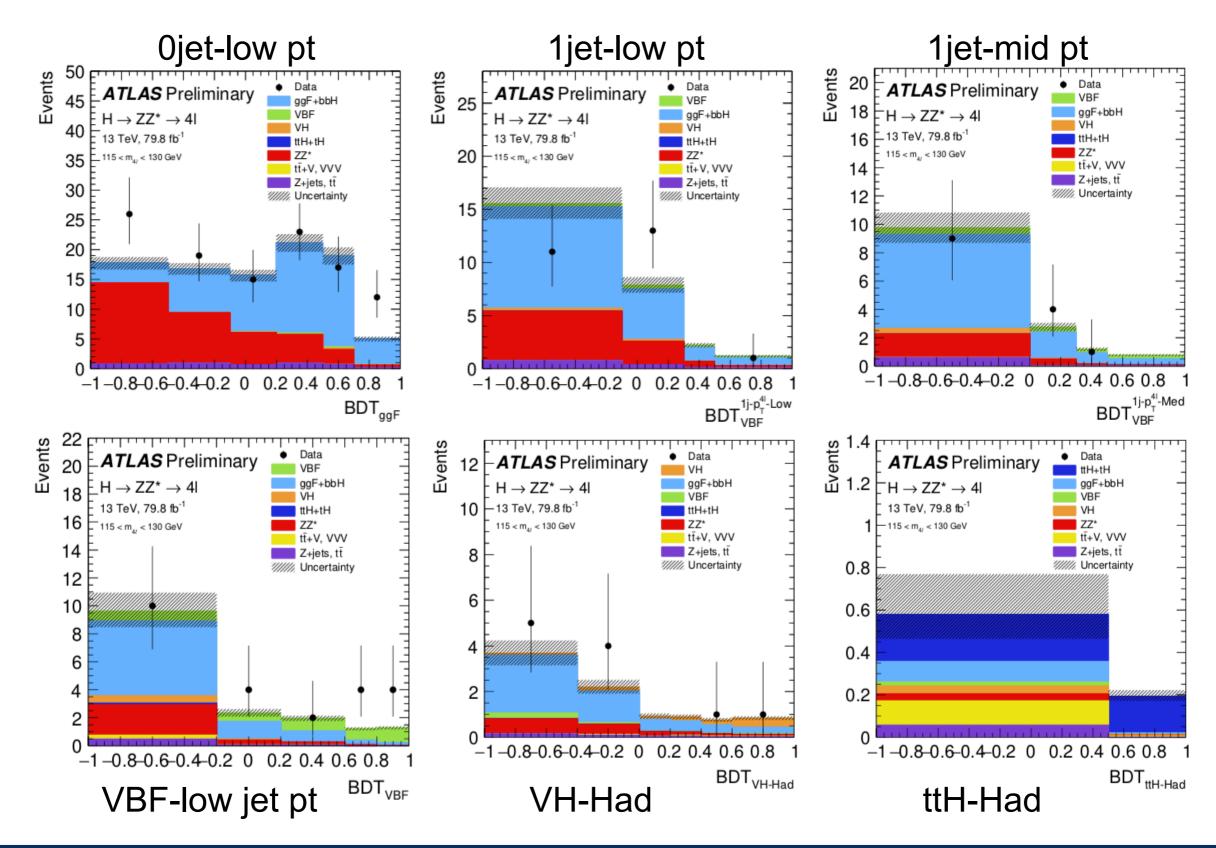

- Experimental
 - Luminosity, Pileup Reweighting
 - Lepton related: Reconstruction, Identification, Isolation, Scale & Resolution
 - Jet related: Jet Energy Scale, Flavor tagging, Jet Energy Resolution
 - Data-driven background uncertainty
- BDT modeling systematics.
- Theory: pdf, QCD scale(k-factor), parton showering

	Experimental uncertainties [%]				Theory uncertainties [%]				
Measurement	Lum.	$e, \mu,$ Jets, flavour		Reducible	ZZ^*			Signal	
		pile-up	tagging	backgr.	backgr.	PDF	QCD scale	Parton Shower	
ggF	2.9	3.9	1.3	0.7	2.3	0.4	2.1	0.7	
VBF	1.7	1.5	10.5	0.5	2.3	2.3	9.5	5.1	
VH	2.0	1.7	7.8	1.8	5.6	2.1	14.9	3.1	
ttH	2.5	1.9	3.9	1.5	1.9	0.3	8.8	9.6	

Rongkun Wang

Results - yields

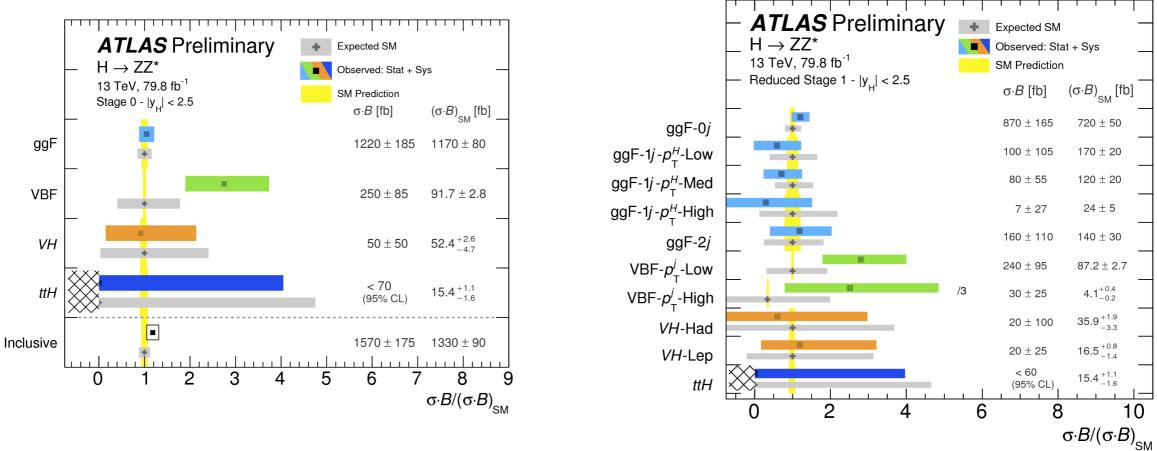
- New in 2017 data compared to 2015-16 data
 - 1 event in VH-leptonic, 2 event in VH-Hadronic category high BDT region
- 0 events observed in ttH category



_ m₄₁[GeV]

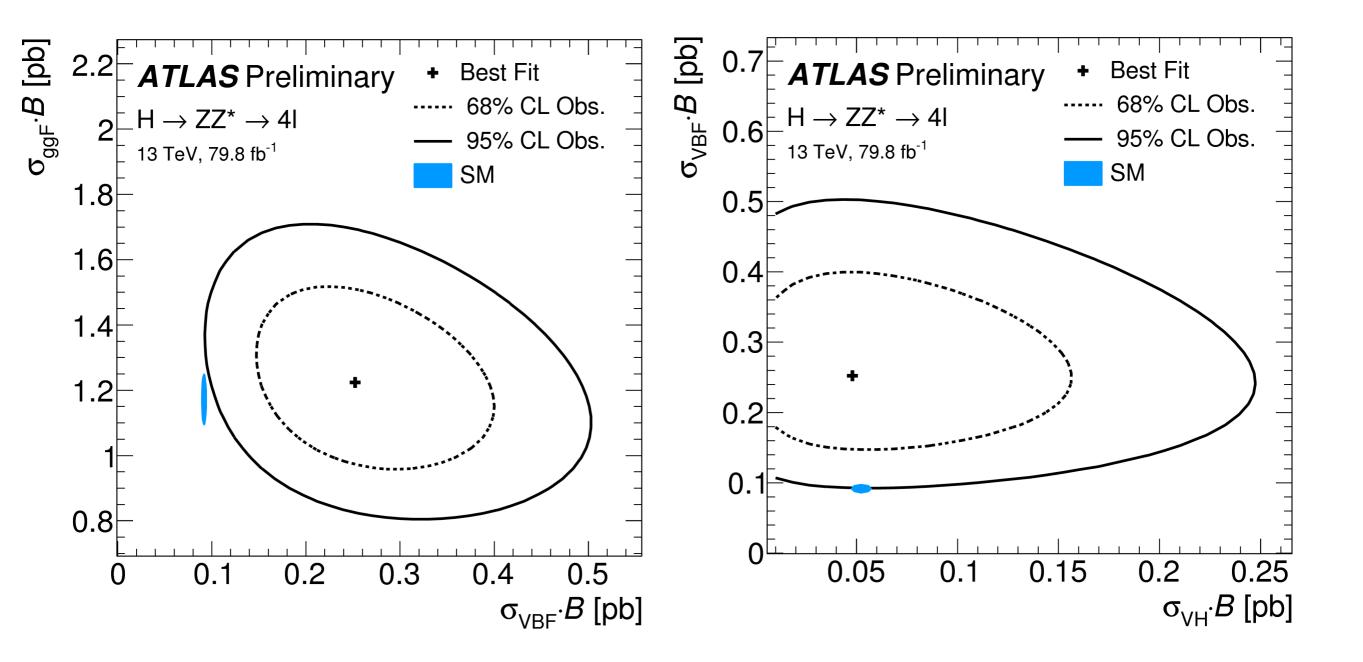
Reconstructed	Signal	ZZ^*	Other	Total	Observed
event category		background	backgrounds	expected	
$0j$ - $p_{\rm T}^{4\ell}$ -Low	56 ± 5	35.2 ± 2.5	4.1 ± 0.4	95 ± 6	112
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Low	17.9 ± 2.2	7.6 ± 1.1	1.36 ± 0.14	26.9 ± 2.5	25
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Med	11.5 ± 1.5	2.25 ± 0.32	0.72 ± 0.08	14.5 ± 1.5	14
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	3.3 ± 0.5	0.31 ± 0.05	0.198 ± 0.028	3.8 ± 0.5	4
VBF-enriched- $p_{\rm T}^j$ -Low	12.8 ± 1.6	2.8 ± 0.7	1.04 ± 0.10	16.6 ± 1.8	24
VBF-enriched- $p_{\rm T}^j$ -High	1.25 ± 0.20	0.28 ± 0.09	0.155 ± 0.025	1.68 ± 0.23	4
VH-Had-enriched	7.2 ± 1.1	1.6 ± 0.4	0.59 ± 0.07	9.4 ± 1.2	11
VH-Lep-enriched	0.70 ± 0.05	0.068 ± 0.013	0.035 ± 0.008	0.80 ± 0.05	1
$0j$ - $p_{\mathrm{T}}^{4\ell}$ -High	0.183 ± 0.025	0.0082 ± 0.0027	0.164 ± 0.023	0.355 ± 0.034	0
ttH-Had-enriched	0.60 ± 0.05	0.035 ± 0.016	0.194 ± 0.030	0.83 ± 0.06	0
<i>ttH</i> -Lep-enriched	0.238 ± 0.026	0.0005 ± 0.0005	0.0144 ± 0.0034	0.253 ± 0.026	0
Total	112 ± 5	50 ± 4	8.96 ± 0.12	171 ± 6	195

Rongkun Wang


Results - BDT distributions

Rongkun Wang

Fit results


- Use poisson profile likelihood to extract inclusive σ·Br(HZZ)
 - Expected: $1.33 \pm 0.09 \text{ pb}$
 - Observed: $1.57 \pm 0.18 \text{ pb}$ = $1.57 \pm 0.15(\text{stat.}) \pm 0.08(\text{exp.}) \pm 0.04(\text{th.}) \text{ pb}$
- Still statistically dominated

Rongkun Wang

Fit results - 2D

 Also do ggF vs VBF and VBF vs VH cross section measurements.

Rongkun Wang

Conclusions

- Very clean Higgs decay channel.
- Higgs boson production cross sections are measured with 79.8 fb⁻¹ data. Measured cross sections agree well with prediction.
- Analysis is statistically limited.
- With full Run 2 data, the analysis is going to be further improved.