Search for pairs of highly collimated groupings of photons with the ATLAS detector

https://arxiv.org/abs/1808.10515

Yuya Kano Univ. of Tokyo on behalf of the ATLAS Collaboration

Higgs Couplings 2018, 29 Nov. 2018

Introduction to photon-jets

"Photon-jet": Grouping of collimated photons

Photon-jet

- Boosted particle decaying into photons leads to a photon-jet
- Cascade decay: heavy resonance (X) --> light resonances (a) --> photons

For $m_X > 200$ GeV and $m_a \sim$ a few GeV, a photon-jet leads to one EM cluster

New experimental signature possibly arising from new physics!

Signal models

- Model-independent search for heavy scalar $\rightarrow aa \rightarrow$ photons
 - Extended Higgs sector (heavy scalar + light pseudoscalar)
 - Diaxion resonance

Photon-jet with 2 photons

Photon-jet with 6 photons

Experimental signature

Spread of photons in photon-jet \sim roughly proportional to $\frac{m_a}{m_X}$

E.g. for
$$X \to aa \to 4\gamma$$
,
$$\Delta R_{\gamma\gamma} \sim 4 \cdot \frac{m_a}{m_X}$$
 (: $\Delta R_{\gamma\gamma} \sim \frac{2}{\gamma_a}$, where γ_a : Lorentz factor of a)

- A photon-jet may be reconstructed as one photon
- Fine information of shower shape in 1st layer is utilized in the analysis

Analysis overview

- 2015-2016 ATLAS 37 fb^{-1} dataset
- Select events containing two reconstructed photon clusters with high-E_T
 → Search for resonance decaying to pair of photon-jets
- Two event categories based on EM shower shape
- Resonance search in the reconstructed diphoton mass $m_{\gamma_R \gamma_R}$ (" γ_R ": symbol for reconstructed photon)
 - S + B fit to mass spectrum
 - Background: $\gamma \gamma$, γj , and jj (j: hadronic jet)

First result!

Event selection

- Select events with two high- $E_{\rm T}$ reconstructed photons from diphoton trigger
- Photon ID
 - Very loose selection compared to the standard ATLAS photon selection
 - Increase selection efficiency by factor $\lesssim 10$
- E_{T} cut $(E_{\mathrm{T,1}} > 0.4 m_{\gamma_R \gamma_R}, E_{\mathrm{T,2}} > 0.3 m_{\gamma_R \gamma_R})$
- Isolation cut (track & calorimeter)

Event categorization

- Use shower shape variable
- " ΔE ": relative size of the 2nd peak

- 2 leading reconstructed photons with low ΔE Threshold: 100-500 MeV (η dependent)
- Sensitive to $\frac{m_a}{m_X} \lesssim 0.002$ (i.e. smaller photon spread)

"high- ΔE category"

- At least 1 leading reconstructed photon with high ΔE
- Sensitive to $0.002 \lesssim \frac{m_a}{m_X} < 0.01$ (i.e. larger photon spread)

Smaller background yield ($\sim 1/8$ of the other)

- Background $\gamma\gamma$ rejected by ΔE cut
- γj and jj rejected by isolation and photon ID

Signal and background modelling

Signal modelling

- Assume narrow-width resonance
- Use double-sided Crystal-Ball function (i.e. Gaussian core + exponential tails)

Background modelling

Function fit with free parameters (Inclusive for all background components)

$$f(x; a, b, c) = (1 - \sqrt{x})^a \cdot x^{b + c \log x}$$

 Validation performed using background templates ("Spurious Signal" method)

Templates: $\gamma\gamma$ LO MC (Sherpa)

 γj and jj Data control region (defined by inverting isolation)

$$\left(x = \frac{m_{\gamma_R \gamma_R}}{\sqrt{s}}\right)$$

Results

No significant excess observed (Largest local significance = 2.7σ)

Results

For $m_X > 600~{\rm GeV}$ and $m_a < 2~{\rm GeV}$, upper limits in the range 0.2-2 fb

Model-independent limit

- Limit on visible cross-section as a function of m_X and category fraction
- Using data in HEPData (in preparation), this can be used for reinterpretation

Summary

- Search for heavy resonance decaying into pair of photon-jets
- New experimental signature!
- Motivated from several models e.g. extended Higgs sector

- No significant excess observed
- Upper limits on cross-section times branching ratios are set for wide range of mass parameters
- Model-independent limit on visible cross-section

First result for this search

Backup

Selection efficiency and category fraction

Background composition measurement

Matrix method is used:

 Data events are divided into 4 regions based on calorimeter isolation cuts

• Composition of $\gamma\gamma$, γj , $j\gamma$, jj is evaluated from following equation

$$\begin{pmatrix} F_{\text{Pass,Pass}} \\ F_{\text{Pass,Fail}} \\ F_{\text{Fail,Pass}} \\ F_{\text{Fail,Fail}} \end{pmatrix} = \begin{pmatrix} \varepsilon_1 \varepsilon_2 & \varepsilon_1 f_2 & f_1 \varepsilon_2 & f_1 f_2 \\ \varepsilon_1 (1 - \varepsilon_2) & \varepsilon_1 (1 - f_2) & f_1 (1 - \varepsilon_2) & f_1 (1 - f_2) \\ (1 - \varepsilon_1) \varepsilon_2 & (1 - \varepsilon_1) f_2 & (1 - f_1) \varepsilon_2 & (1 - f_1) f_2 \\ (1 - \varepsilon_1) (1 - \varepsilon_2) & (1 - \varepsilon_1) (1 - f_2) & (1 - f_1) (1 - \varepsilon_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \begin{pmatrix} F_{\gamma \gamma} \\ F_{\gamma j} \\ F_{j \gamma} \\ F_{j j} \end{pmatrix}$$

Evaluation of calorimeter isolation cut efficiency:

- Efficiency of photons (ε) evaluated using LO $\gamma\gamma$ MC (Sherpa)
- Efficiency of hadronic jets (f) evaluated using data CR inverting photon ID

Background composition results

	Low- ΔE category	High- ΔE category
$\gamma\gamma$	$0.930^{+0.027}_{-0.031}$	0.48 ± 0.16
$ \gamma j $	$0.051^{+0.021}_{-0.018}$	$0.32^{+0.08}_{-0.09}$
$\mid j\gamma \mid$	$0.014^{+0.004}_{-0.005}$	$0.108^{+0.001}_{-0.016}$
jj	$0.005^{+0.006}_{-0.003}$	$0.09^{+0.09}_{-0.05}$

Validation plot:

- Shows the agreement of γ and j isolation templates and data
- Components are added with composition in the table

p_0 scan result

Upper limits as a function of m_a/m_X

