Challenges and plans in search for Higgs decays to Invisible particles via VBF production with the ATLAS detector in Run II

Higgs Couplings 2018

Rui Zou

University of Chicago

ATLAS-CONF-2018-031

Higgs to Invisible

- Total Higgs decay width not precisely constrained yet
 - ~26% allowed for BSM decays
- Higgs to Invisible final state predicted κ_w by lots of BSM theories κ_t
- Very rare decay in SM:
 - ~0.1% (H \rightarrow ZZ^{*} \rightarrow 4v)
- VBF H→ Invisible is the strongest constraint

Vector Boson Fusion

H

Vector Boson Fusion (VBF):

- No color flow
- Clear signature, easy to reject QCD
- Large MET:
 - Trigger on MET
- Upper limit on Br(H \rightarrow Invisible) Run 1: 0.28 (0.31)
 - Dominated by theory systematics and data statistics

fraction of cross section at 13 TeV

q

VH(5%)

JHEP01(2016)172

Analysis Strategy

- Use Control Regions with same kinematic selections but different lepton requirement to constrain background in Signal Region
 - $W \rightarrow lv$ (found lepton) $\Rightarrow W \rightarrow lv$ (lost lepton)
 - $Z \rightarrow ll \Rightarrow Z \rightarrow vv$

Analysis Selection

Variable	Value	
j1 (j2) pT	> 80 (50) GeV	
jз рт	< 25 GeV	
Δη(jj)	> 4.8	VBF
$\Delta \phi(jj)$	< 1.8	
m _{jj}	> 1 TeV	/
e (µ) p _T	< 7 (10) GeV	
MET	> 180 GeV 🔨	1
MHT	> 150 GeV	MET
$\Delta \phi(j, MET)$	> 1.0	/

- Cuts tightened since Run 1 as a result of background changes in 13 TeV
- 3 bins in m_{jj} :
 - 1-1.5 TeV, 1.5-2 TeV, > 2 TeV
 - Most sensitive bin: $m_{jj} > 2 \text{ TeV}$
 - Less dependent on MC modeling of m_{jj} shape
- Control Regions:
 - Same cuts with lepton requirements
 - Lepton selection tightened due to trigger
 - $W \rightarrow ev, W \rightarrow \mu v, Z \rightarrow \mu \mu, Z \rightarrow ee$
- MET cut raised due to offline pileup constraints

Paper with 36.1 fb⁻¹ data

- Upper limit assuming SM cross section:
 - $Br(H \rightarrow inv) < 0.37 \text{ obs } (0.28 \text{ exp}) \text{ at } 95\% \text{ CL}$

Overall Uncertainties

• MC statistics is big limitation	Source	$\Delta B/B$ [%]
 Actively looking for a solution to generate enough MC events in our phase space 	All Exp	17
• NLO Sherpa is currently too slow	JES	10
 Jet systematics: UES: set of 20 multicomes momentum (cosh) 	JER	2
• JES: set of 29 hursance parameters (each 1-4% on the ratio). Are inflated by MC stats.	All Theory	10
• Should cancel in SR/CR ratio	CKKW	4
Z Z SR/CR ATLAS 15 13 TeV, 36 fb ⁻¹	Resum	1
— MC sample stat.	Renorm	2
<pre> 1 neory 1 renorm., fact., 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	MC statistics	12
 Jet energy scale Jet energy res. 	Data statistics	21
0 [1, 1.5] [1.5, 2] [2, -] <i>m</i> _{ii} range [TeV]	<u>18</u>	809.06682

SR/CR[%]

Theory Systematics

- Signal:
 - 3rd jet veto dominates (7%)
 - Plan to try central jet veto to increase signal acceptance and reduce this
- Background:
 - Resummation scale, renormalization+factorization cancels well in SR/CR
 - CKKW dominates
 - Calculated from smaller MC samples
 - Might be inflated by MC stats

	Yields			SR/CR	Br	
Source	S S	B _{SR} Z	$ B_{CR} Z$	αz	ΔB/B	
Resum	-	2	3	0	1	
Renorm, fact	-	20	19	1	2	
CKKW	-	2	3	1	4	
PDF	1	1	2	1	0	
3rd jet veto	7	_	-	-	-	

Particle Flow Jets

- Target improvement for 3rd jet veto
- More efficient reconstruction gives bigger background rejection
- Fake jet reduction improves signal acceptance
- Improvement in JER at low p_T

Extend phase space

- New VBF trigger added in 2018 (40.1 fb⁻¹!)
 - L1: $m_{jj} > 0.5 \text{ TeV}$
 - HLT: $pT > 70 (50) \text{ GeV}, m_{jj} > 1.1 \text{ TeV}$
 - Gain additional signal in lower MET with more strict VBF cuts

ATL-COM-DAQ-2018-173

Improve Z CR stats

- Z→ ee: dielectric trigger allows us to move WP from tight to loose for 15% gain in ZCR statistics
- $Z \rightarrow \mu\mu$: moving to loose extend efficiency in wider η range ~ 5%
- $Z \rightarrow \tau \tau$: can add lep+had channel for ~12 % gain in ZCR statistics
- 30% gain in total in ZCR stats! \rightarrow 13% reduction in stats uncertainty in ZCR!

Conclusion

- Run 2 brought new challenges in various aspects
- Lots of room for improvement for full Run 2 analysis:
 - Improvements for jets, MET and lepton identification
 - MC generations
 - Systematics reduction
 - Fit Models
- Combination of $H \rightarrow$ Invisible with 36.1 fb⁻¹ and Run 1 coming out

Backup

WIMP interpretations

- Reinterpret with different scalar masses
- Convert to WIMP-nucleon cross section assuming the Higgs portal model
 - Updated nuclear form factor reduces error bands
- Complements direct detection experiments through sensitivity to small WIMP masses
 1809.06682

MC stats issues

- Very challenging phase space:
 - ~2 mins/event in Sherpa (total EVNT \rightarrow AOD)
 - To get 500M events: 7 days on 100k cores
 - May still not be enough to cover the phase space
- Three possible solutions:
 - Implement an effective filter for Sherpa NLO
 - Has proven to be very challenging
 - Use Madgraph LO (much faster, CMS method)
 - Much bigger mismodelling
 - Find extra resources to generate MC samples

• Statistics limited to constrain $Z \rightarrow \nu\nu$ (1111) with $Z \rightarrow ll$ (181) only

Q

- W \rightarrow lv (1400) would be a much stronger constrain for Z $\rightarrow vv$
- Need higher order corrections to the ratio of W/Z

W

- Difference in W/Z mass
- PDFs due to flavor differences
- Z CR will have data stats uncertainty of $\sim 4\%$ with 150 fb⁻¹
 - Need uncertainties on the corrections to be smaller than that

1(found)

16

V

• This was done for the monoJet analysis, more challenging in this phase space

1(2018)126

 $\overline{1}$

Use W to Constrain Z

December 3, 2018

Jet Systematics

- Jet systematics:
 - Increased greatly overall due to increase in pileup
 - Mainly due to 3rd jet veto at 25 GeV (30 GeV in Run 1)
 - JES uncertainty increased: $0.012 \rightarrow 0.052$

Kinematic Distribution

• S/B increases with m_{jj}, flat with MET

S/B from Run I to Run 2

W.J. Stirling

- Most signal events are qq while background events are qg
- Background increased more than signal from Run 1 to Run 2 (8 TeV \rightarrow 13 TeV)
- Change in background motivates more rigorous kinematic requirements in Run 2

	S	В	S/B	S/√B	σ=S/((0.04B)²+√B)	limit ~ 1/σ
Run 1	306	577	0.53	13	9.2	0.109
Scaled	1652	4154	0.40	26	9.3	0.108

Improve Z CR stats

- $Z \rightarrow ee$
 - Dielectric trigger allows us to move WP from tight to loose for 20% gain in statistic
- $Z \rightarrow \mu \mu$
 - Moving to loose increases efficiency in $|\eta| < 0.1$ for 4% gain in statistics
 - Moving to loose will extend η acceptance to 2.7 for ~3%
- $Z \rightarrow \tau \tau$
 - Can add lep+had channel for ~12 % gain in statistics
- 40-50% gain in total in ZCR stats! 17% reduction in stats uncertainty in ZCR!

Improve S/B

- Lepton WP for veto:
 - 36.1 paper: electron WP: Tight, muon WP: Medium
 - Veto on loose leptons should reduce $W \rightarrow l\nu$ background

Particle Flow Jets

December 3, 2018

R. Zou (UChicago)

Vector Boson Fusion

Candidate in signal region of $H \rightarrow \chi \bar{\chi}$ with two VBF jets ($m_{jj} = 5.0 \text{ TeV}$) Longitudinal view Perspective x-y view

December 3, 2018

ATLAS-CONF-2018-038

R. Zou (UChicago)

• Object based MET significance

- Improved background rejection
- Less pileup background

Limiting Factor

Source	\mathcal{B}_{inv} improve. [%] using all m_{ii} bins		Yields, α changes (%) in $1 < m_{ii} < 1.5$ TeV				
	Δ	visual	S	$B_{\rm SR}^Z$	$B_{\rm CR}^Z$	α_Z	$\alpha_{\scriptscriptstyle W}$
Experimental (†)							
Jet energy scale	10		12	7	8	8	6
Jet energy resol.	2	+	2	0	1	1	4
$E_{\rm T}^{\rm miss}$ soft term	1	ŧ	2	2	2	2	2
Lepton id., veto	2	+	-	-	-	-	4
Pileup distrib.	1	÷.	3	1	2	3	1
Luminosity	0		2	2	2	-	-
Theoretical (‡)							
Resum. scale	1	÷.	-	2	3	0	2
Renorm., fact.	2	+	-	20	19	1	2
сккw matching	4	+	-	2	3	1	5
PDF	0	l.	1	1	2	1	1
3 rd jet veto	2	+	7	-	-	-	-
Statistical							
MC sample (\star)	12		4	5	9	10	9
Data sample	21		6	5	12	12	6
Combined							
All † sources	17						
All ‡ sources	10	+					
Combine †, ‡	28						
Combine \dagger, \ddagger, \star	42	1					

- MC Statistics
- Jet systematics
- Theory systematics

R. Zou (UChicago)

Trigger Challenge

- mht: vector sum of jet p⊤
- pufit: new algorithm developed in 2016

Kinematic argument

Plots made for qq → H, works for qq → VV → H in limit of Mx > MH

