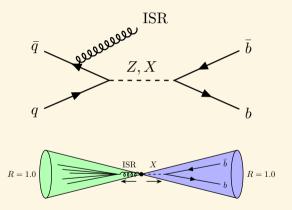
Searches for boosted low mass resonances decaying to *b*-quarks with the ATLAS detector

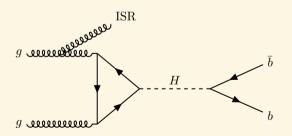
Matthew Feickert¹ (on behalf of the ATLAS Collaboration)

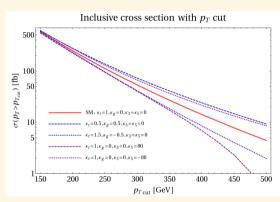
¹Southern Methodist University

Higgs Couplings Tokyo, Japan November 29th, 2018



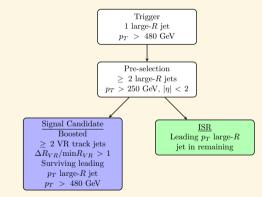
Introduction: Exotics search

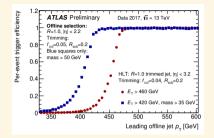

Search for low-mass resonances in 2015 - 2017 data


- Search for dark matter (DM) mediator, X, with 100 GeV $< m_X < 200$ GeV [CERN-PH-TH-2015-139] through boosted decays to $b\bar{b}$ + ISR jet
 - Complements other low-mass DM mediator dijet searches [ATLAS-CONF-2016-070]
- More sensitive to new mediators with Higgs-like couplings through preferential decays $X \rightarrow b\bar{b}$ $(g \propto m)$
 - QCD background suppression improves sensitivity
 - Benchmark leptophobic Z' model considered has democratic couplings
- Measuring the Z validates our results
- Analysis signature: Two large-R jets, 1 boosted and double b-tagged

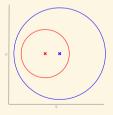
Introduction: Boosted Higgs

- Search for boosted $H
 ightarrow b ar{b}$
 - ▶ Production is dominated by gluon-gluon fusion $(\sigma_{P_T}>400 \text{ GeV}=29 \text{ fb})$
 - High-p_T production cross-section could be enhanced by couplings to new heavy resonances running in the ggF loop [Eur.Phys.J. C74 (2014) no.10, 3120]
 - Review from earlier: Jonas Lindert, Higgs Couplings 2018



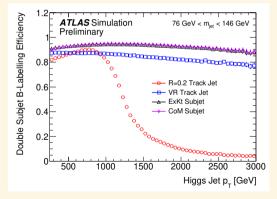


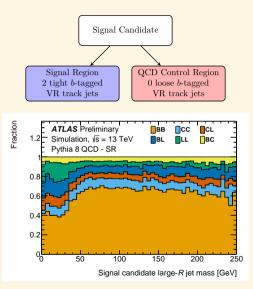
BSM model with sizeable deviations from SM cross-section in high p_T tail [Phys.Rev. D91 (2015) 074012]


Analysis

Event Selection

Trimming ($\rm f_{cut}=0.05, \textit{R}_{sub=0.2})$ suppresses gluon radiation and pile-up


 $\left(\Delta R_{\rm lead,sub}/R_{\rm lead} \right) \, < 1 \mbox{ implies both VR jet axes are inside both VR cones.} \\ \mbox{ Typical of } g \, \rightarrow \, b \bar{b} \mbox{ splitting.}$


Analysis

Event Classification

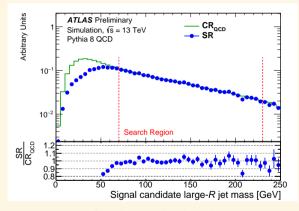
b-tagging operating points for MV2c10 (corresponding to fixed efficiencies for *b*-quarks in $t\bar{t}$ events)

- ▶ Loose: *b*-tagging cut at 85% efficient operating point
- Tight: b-tagging cut at 77% efficient operating point

VR track jets give flat high $H \rightarrow b\bar{b}$ tagging efficiency [ATL-PHYS-PUB-2017-010]

Light-flavour component of dijet background in Signal Region small after tagging

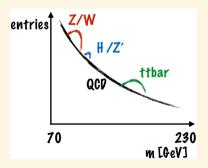
Matthew Feickert (SMU)

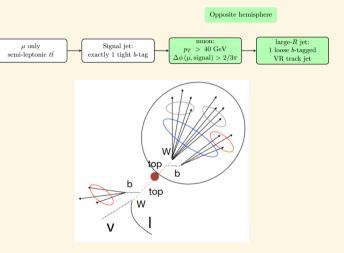

Analysis

Modeling the multijet background

 Multijet background modeled with exponential polynomial with 5 parameters of form

$$\begin{aligned} \hat{f}_n\left(x\left|\vec{\theta}\right.\right) &= \theta_0 \, \exp\left(\sum_{i=1}^n \theta_i x^i\right) \\ x &= \frac{m_J - 150 \, \text{GeV}}{80 \, \text{GeV}} \end{aligned}$$

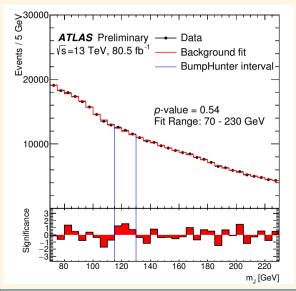

- ▶ parameterization maps fit range of m_J ∈ [70, 230] GeV to x ∈ [-1, 1]
- Model unbiased and not susceptible to fitting statistical fluctuations in data (signal injection and spurious signal tests done in CR_{QCD})

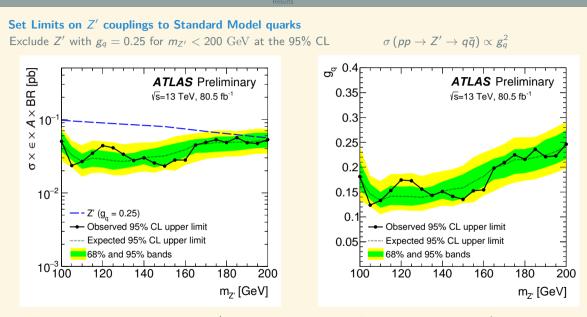


Multijet shapes in Signal Region and QCD Control Region very similar

Modeling the resonant backgrounds: V+jets, $t\bar{t}$

- V+jets modeled with Monte Carlo templates
- tt̄ modeled with Monte Carlo template but constrained
 - Fit template to $t\overline{t}$ Control Region
 - Resulting k-factor defines Gaussian prior in Signal Region





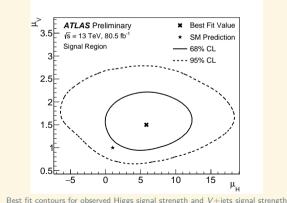
Results

BumpHunter Search for new Physics

- Perform fit with model of QCD, V + jets, tt to 80.5 fb⁻¹ of data with systematic uncertainties and extract best fit values for the nuisance parameters
 - \blacktriangleright Higgs template neglected as at $\mu_H=1$ is smaller than uncertainties
- With postfit shapes perform BUMPHUNTER scan [PHYSTAT2011, arXiv:1101.0390]
 - BUMPHUNTER: fit in varying width window to find region of data most discrepant with model and calculates global *p*-value (accounts for "look elsewhere effect")
- Observe no significant excess in data
 - Most significant deviation between data and model is interval of [115, 130] GeV (good sign for our Higgs search)
 - Though BUMPHUNTER global p-value = 0.54 (model is quite consistent with data)

95% CL upper limits on $\sigma \times \epsilon \times A \times BR$ from the Z' invariant mass

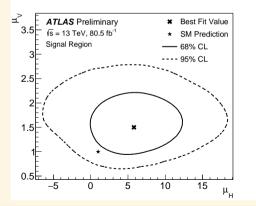
95% CL upper limits on g_a from the Z' invariant mass

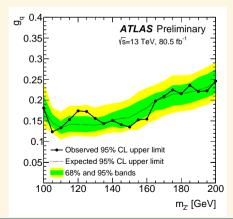

Results

Boosted Higgs Search

Model fit with Bayesian Analysis Toolkit results in $\mu_V = 1.5 \pm 0.22 \text{ (stat.)}_{-0.25}^{+0.29} \text{ (syst.)} \pm 0.18 \text{ (th.)}$ and $\mu_H = 5.8 \pm 3.1 \text{ (stat.)} \pm 1.9 \text{ (syst.)} \pm 0.17 \text{ (th.)}$

- μ_V consistent with Standard Model expectation given uncertainties. Significance: 5σ (Expected: 4.8σ) (Methodology validated!)
- μ_H consistent with background-only hypothesis given uncertainties at 1.6 σ (Expected: 0.28 σ) (A nice hint to improve on!)


Matthew Feickert (SMU)


Boosted $X \rightarrow b\bar{b} + ISR$ in ATLAS

Summary

Summary

- First ATLAS search for boosted $X \rightarrow b\bar{b}$ with an ISR jet in 80.5 fb⁻¹ of data [ATLAS-CONF-2018-052] (Looking forward to full Run2 dataset!)
- ▶ Dark Matter mediator search: Exclude leptophobic Z' with $g_q = 0.25$ for $m_{Z'} < 200$ GeV at 95% CL
- ► V+ jets: 5 σ observation with $\mu_V = 1.5 \pm 0.22 \,(\text{stat.})^{+0.29}_{-0.25} \,(\text{syst.}) \pm 0.18 \,(\text{th.})$ (Methodology validated!)
- ▶ Boosted Higgs: $\mu_H = 5.8 \pm 3.1 \text{ (stat.)} \pm 1.9 \text{ (syst.)} \pm 0.17 \text{ (th.)}$ (Look forward to analysis improvements!)

Event Selection

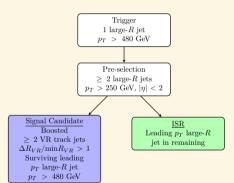
Trigger

• Leading large-R jet with $p_T > 480 \text{ GeV}$ (inclusive for 2015/16/17)

Analysis ntuples

EXOT8 derivation: at least 2 large-R jets with $p_T > 200 \text{ GeV}$

Pre-selection on large-R jets (calibrated jet cut [ATLAS-CONF-2016-035])


 $\blacktriangleright~$ At least 2 large- R jets with p_T $> 250~{\rm GeV}$ and $|\eta|$ < 2

Selection for the signal candidate jet

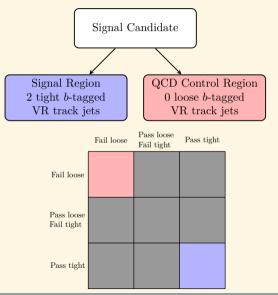
- Boosted: $(2m_J/p_T) < 1$
- At least 2 VR track jets with p_T > 10 GeV
- VR jets must not be collinear: $\frac{\Delta R (\text{lead VR, sub-lead VR})}{R (\text{lead VR})} > 1$
 - $\left(\Delta R_{\mathsf{lead},\mathsf{sub}}/R_{\mathsf{lead}}
 ight) < 1$ implies both VR jet axes are inside both VR cones
- Remaining leading p_T large-R jet selected as the signal candidate
- Further require large-R jet $p_T > 480 \text{ GeV}$ to ensure a smooth p_T distribution and $m_J > 40 \text{ GeV}$ to be above m_J turn-on curve

Selection for the ISR jet

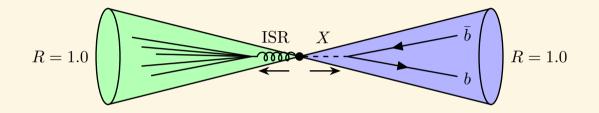
Leading p_T jet in the pre-selected jets that is not the signal candidate

Event Classification

b-tagging operating points for MV2c10 (corresponding to fixed efficiencies for *b*-quarks in $t\bar{t}$ events)


- ▶ Loose: *b*-tagging cut at 85% efficient operating point
- ▶ **Tight**: *b*-tagging cut at 77% efficient operating point

Signal Region (2-tag tight)


 Signal candidate jet has tight b-tagged leading and subleading p_T VR track jets

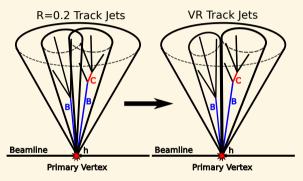
QCD Control Region (0-tag)

 Signal candidate jet has exactly 0 loose b-tagged VR track jets

Why is the ISR jet a large-*R* jet?

- Reduces issues with overlap removal
- ▶ Helps with $g \rightarrow b \bar{b}$ splitting
- ► Large-*R* jet triggers and resolved jet triggers have similar rate

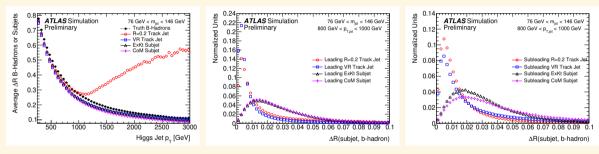
VR Track Jets [JHEP 06 (2009) 059]


 Algorithm modifies the conventional iterative recombination algorithm by making the radius parameter a function of the jet p_T as

$$R
ightarrow R_{
m eff}\left(p_{T}
ight) = rac{
ho}{p_{T}}$$

- Dimensionful constant ρ determines how fast the effective jet size decreases with the transverse momentum of the jet
 - $\rho \propto m_{\rm resonance}$ and should correctly reproduce the size of jets as long as $\rho \lesssim 2p_T$
- \blacktriangleright Additional parameters, $R_{\rm min}$ and $R_{\rm max},$ to impose lower and upper cut-offs on the jet size

$$R_{\mathrm{eff}}\left(p_{T}
ight) = \max\left[\min\left(rac{
ho}{p_{T}}, R_{\mathrm{max}}
ight), R_{\mathrm{min}}
ight]$$


This analysis [ATLAS-CONF-2018-052] uses ρ = 30 GeV, R_{min} = 0.02, R_{max} = 0.4

Subjet reconstruction using variable radius track jets [ATL-PHYS-PUB-2017-010]

$X \rightarrow b \bar{b}$ tagging with VR track jets [ATL-PHYS-PUB-2017-010]

VR track jets accurately describe the topology of $H ightarrow b ar{b}$ events

The ΔR between the two leading truth *b*-hadrons or subjets associated to Higgs jets as a function of Higgs jet p_{T} . The error bars include statistical uncertainties only.

Distributions of the ΔR between leading subjets and matched truth *b*-hadrons for Higgs jet p_T between [80, 200] GeV. The error bars include statistical uncertainties only. Distributions of the ΔR between subleading subjets and matched truth *b*-hadrons for Higgs jet p_T between [80, 200] GeV. The error bars include statistical uncertainties only.

Higgs production cross-section at high p_T

- ► Use HJ-MiNLO generator approach [JHEP 1505 (2015) 140] that agrees very well with fixed order given uncertainties for p_T^{cut} = 400 GeV
 - ▶ Inclusive cross-section of $29^{+24\%}_{-21\%}$ fb for matrix-element level Higgs bosons with $p_T > 400 \text{ GeV}$
- Higgs + 1 jet implemented with finite top-mass correction
- NLO done with MiNLO [JHEP 1305 (2013) 082]

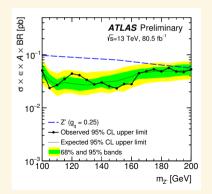
Monte-Carlo generators vs. Fixed Order [B. Mistlberger, 14th Workshop of LHCHXSWG]

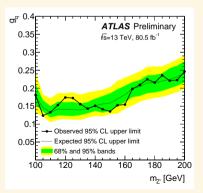
p_T^{cut}	$NNLO_{quad.unc.}^{approximate}$ [[fb] HJ-MiNLO [fb) MG5_MC@NNLO [fb]
400 GeV	$35.3^{+4.2\%}_{-9\%}$ $24.3^{+4\%}_{-8.9\%}$ $19.1^{+4\%}_{-8.9\%}$	29 ^{+24%}	$\begin{array}{c} 31.5^{+31\%}_{-25\%} \\ 21.8^{+31\%}_{-25\%} \\ 17.1^{+31\%}_{-25\%} \end{array}$
$430{\rm GeV}$	$24.3^{+4\%}_{-8.9\%}$	-	$21.8^{+31\%}_{-25\%}$
$450{\rm GeV}$	$19.1^{+4\%}_{-8.9\%}$	$16.1^{+22\%}_{-21\%}$	$17.1^{+31\%}_{-25\%}$

cross-checked our samples against these values

Systematic Uncertainties

	Impact on Signals $(\sqrt{\Delta\sigma^2}/\mu)$				
Source	Туре	V+jets	Higgs	Z' (100 GeV)	Z' (175 GeV)
Jet energy and mass scale	Norm. & Shape	15%	14%	23%	18%
Jet mass resolution	Norm. & Shape	20%	17%	30%	20%
$V + ext{jets} modeling$	Shape	9%	4%	4%	< 1%
$t\overline{t}$ modeling	Shape	< 1%	1%	< 1%	11%
b-tagging (b)	Normalisation	11%	12%	11%	15%
b-tagging (c)	Normalisation	3%	1%	3%	5%
b-tagging (1)	Normalisation	4%	1%	4%	7%
$t\bar{t}$ scale factor	Normalisation	2%	3%	2%	58%
Luminosity	Normalisation	2%	2%	2%	3%
Alternative QCD function	Norm. & Shape	4%	4%	3%	17%
W/Z and QCD (Theory)	Normalisation	14%	—	—	_
Higgs (Theory)	Normalisation	_	30%	_	_


Summary of the impact of the main systematic uncertainties on the uncertainty σ on the measurement of the signal strength μ for the V + jets, Higgs boson and Z' signals.


Limits: $\sigma \times \epsilon \times A \times BR$ vs. g_q As

$$\sigma\left(pp
ightarrow Z^{\prime}
ightarrow qar{q}
ight) \propto g_{q}^{2}$$

and signal events simulated with $g_q = 0.25$, then for a limit of σ set a corresponding limit of

$$g_q = 0.25 \sqrt{rac{\sigma}{\sigma_{g_q=0.25}}}$$

