Ordinary and Extraordinary Hadrons (Mesons)

R L Jaffe

RLJ, AIP Conf. Proc. **964**, 1 (2007) [hep-ph/0701038];

J. R. Pelaez, PRL **92**, 102001 (2004) [hep-ph/0309272], etc.; C. Hanhart, J. R. Pelaez, G. Rios, PL **739**, 375 (2014) [1407.7452]; J. R. Pelaez, Phys. Rept. **658**, 1 (2015) [1510.00653]

Other references: S. Weinberg, PRL **110**, 261601 (2013); T. D. Cohen & R. F. Lebed, Phys. Rev. **D89**, 054018 (2014), etc.

Ordinary: $(Q\overline{Q})$ "quark model" mesons Extraordinary: "tetraquarks", "meson-molecules",

threshold enhancements, ...

- I. A useful qualitative distinction motivated by large N_c
- II. Supported by unitarized chiral dynamics applied to light scalar and vector mesons
- III. Ordinary mesons Feshbach Resonances Decouple as $N_c \rightarrow \infty$
- IV. Extraordinary mesons Open channel enhancements Subside into the continuum as $N_c \rightarrow \infty$
- V. Follow the poles
- VI. The S wave is special

Expectations at large N_c

Meson source properly normalized

Standard meson results as $N_c \rightarrow \infty$

Planar gluon interactions O(1)

Quark loops
$$\mathcal{O}(1/N_c)$$

$$\mathcal{$$

Classic results:

Hadron 2015 JLab

R. L. Jaffe

- Meson widths vanish $\Gamma \sim \mathcal{O}(1/N_c)$ as $N_c \to \infty$
- Quark content becomes pure $Q\bar{Q}$
- Meson-meson scattering vanishes as $\mathcal{O}(1/N_c)$; ordinary mesons appear as narrow s-channel resonances dual to t-channel exchanges.

Closer look at meson-meson interactions as $N_c \rightarrow \infty$

Generic normalized two meson source

$$D(x) \equiv \frac{1}{N_c} \bar{q} \bar{q} q q(x)$$

- Large N_c counting and qualitative dynamics do not depend on the internal coupling of quark fields in the source.
- Any such source can always be Fierz transformed to a sum of products of color singlet meson sources...

$$D(x) = \cos\theta \ M_{12}(x)M_{34}(x) + \sin\theta \ M_{14}(x)M_{23}(x)$$

$$M_{ij}(x) = [\bar{q}_i(x)q_j(x)]^{\mathbf{1}}$$

$$\langle 0|D(x)D(0)|0\rangle \sim 1$$
 as $N_c \to \infty$ $D(x) \sim 1/N_c$

Meson-meson interactions vanish as $N_c \rightarrow \infty$, but what processes are least suppressed?

• The best known residual meson-meson interaction at large N_c is t-channel meson exchange, which is down by $1/N_c$

 $\left[\frac{1}{N_c}\right]^2 \left[\frac{1}{\sqrt{N_c}}\right]^4 \longrightarrow \frac{1}{N_c}$

• However this interaction is dual to the resonances (with widths of order $1/N_c$). So it would be _____

narrow resonances and t-channel meson exchange.

Meson-meson interactions vanish as $N_c \rightarrow \infty$, but what processes are least suppressed?

• The best known residual meson-meson interaction at large $N_{\rm c}$ is t-channel meson exchange, which is down by $1/N_c$

• However this interaction is dual to the resonances (with widths of order $1/N_c$). So it would be _____ narrow resonances and t-channel meson exchange.

Meson-meson interactions vanish as $N_c \rightarrow \infty$, but what processes are least suppressed?

• The best known residual meson-meson interaction at large $N_{\rm c}$ is t-channel meson exchange, which is down by $1/N_c$

• However this interaction is dual to the resonances (with widths of order $1/N_c$). So it would be _____ narrow resonances and t-channel meson exchange.

Another residual interaction at large N_c – and the only one away from the narrow resonances – is quark exchange

Another residual interaction at large N_c – and the only one away from the narrow resonances – is quark exchange

No coupling to $Q\bar{Q}$ mesons

Another residual interaction at large N_c – and the only one away from the narrow resonances – is quark exchange

No coupling to $Q\bar{Q}$ mesons

Quark exchange "forces"

Scattering state projects entirely onto meson-meson continuum.

Further contributions to meson-meson scattering are down by high powers of N_c (exchange of vacuum quantum numbers shown).

Summary of expectations for meson-meson scattering at large N_c

• Overall scattering amplitude is $\mathcal{O}(1/N_c)$

Ordinary mesons

- s-channel resonances $\longleftrightarrow \bar{Q}Q$ mesons with widths that vanish like $1/N_c$.
- Bound states in the meson-meson continuum.
- Do not lie within the space of mesonmeson scattering states.

Potentially extraordinary mesons

• In any fixed basis, eg. $M_{12}M_{34}$ quark exchange mixes color octet components into the wavefunction, so the force is fundamentally chromodynamic.

- The range of the force is determined by the distance at which hadrons overlap, of order 1 fermi.
- Attractive? repulsive? Capable of generating bound/virtual states and resonances.
- No coupling to confined channels, so the interactions are "potential-like".
 Non-relativistic analog would be simply the Schrödinger equation with an open channel potential.
- Extraordinary hadrons if they exist at all disappear as $N_c \to \infty$; they merely subside into the hadron-hadron continuum.

Corroboration of N_c dependence: unitarized chiral dynamics

Low energy $\pi\pi$ scattering can be computed in a power series in p^2/Λ_{ξ}^2 using chiral perturbation theory. In limit of exact $SU(2)_L \times SU(2)_R$ only parameter at order p^2 is f_{π} . At order p^4 , eight parameters enter: $L_1...L_8$ (Gasser, Leutwyler).

No finite expansion in powers of p^2 can uniquely locate a pole, however "unitarization" methods allow approximate analysis.

Inverse amplitude method $t_{IJ}^{-1}(p) = g_{IJ}(p^2) - \frac{ip}{\sqrt{p^2 + m_\pi^2}}$

Extrapolate to energies where interactions become strong.

Compute N_c dependence from underlying QCD; fit N_c = 3 to the data and then vary N_c

[†]I understand that there is model dependence here!

J. Pelaez & collaborators

J. R. Pelaez, PRL **92**, 102001 (2004) [hep-ph/0309272], etc.];
J. R. Pelaez, Phys. Rept. **658**, 1 (2015) [1510.00653]

Imaginary part from unitarity

Real part from chiral perturbation theory

$$t_{IJ}(p) = \frac{\sqrt{p^2 + m^2}}{p} f_{IJ}(p)$$

where $f_{IJ}(p) = \sin \delta_{IJ}(p)e^{i\delta_{IJ}(p)}$

Ordinary mesons – masses independent of N_c and widths \rightarrow o as $N_c \rightarrow \infty$

Ordinary mesons – masses independent of N_c and widths \rightarrow o as $N_c \rightarrow \infty$

Ordinary mesons – masses independent of N_c and widths \rightarrow o as $N_c \rightarrow \infty$

Extraordinary mesons subside into the continuum as $N_c \rightarrow \infty$

Ordinary hadrons as Feshbach resonances

General idea:

- Two channels, one open, the other closed.
- Closed channel has discrete spectrum that overlaps the continuum spectrum of the open channel.
- Turn on coupling between channels: The closed channel bound state appears as resonance in the open channel.

O. K. Rice, J. Chem. Phys. **1**, 375 (1933)
U. Fano, Nuovo Cimento **12**, 154 (1935)
Phys. Rev. **124**, 1866 (1961)
H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).

Open channel – meson-meson (eg. $\pi\pi$) Closed (in fact confined) channel – $\bar{Q}Q$ (eg. ρ)

$$\Psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \stackrel{\longleftarrow}{\longleftarrow} \pi \pi$$

Ordinary hadrons as Feshbach resonances

$$\Psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \stackrel{\longleftarrow}{\longleftarrow} \pi \pi$$

$$h_0|\psi_1\rangle + \frac{1}{\sqrt{N_c}}V|\psi_2\rangle = E|\psi_1\rangle$$
 No interaction in open channel except for transition to confine channel couples back to open channel allowing "bound state in the continuum" to decay back to open channel. Only a discrete spectrum

No interaction in open channel except for transition to confined allowing "bound state in the continuum" to decay back to open channel.

$$\mathcal{H} = \begin{pmatrix} h_0 & V/\sqrt{N_c} \\ V/\sqrt{N_c} & h \end{pmatrix}$$

$$\mathcal{H} = \begin{pmatrix} h_0 & V/\sqrt{N_c} \\ V/\sqrt{N_c} & h \end{pmatrix} \qquad \mathcal{G}(p) = \frac{\mathbb{I}}{k^2 - h} \approx \frac{|\phi\rangle\langle\phi|}{k^2 - k_0^2} \quad \text{for } k^2 \approx k_0^2$$

$$h|\phi\rangle = E_0|\phi\rangle = k_0^2|\phi\rangle$$

$$h|\phi\rangle = E_0|\phi\rangle = k_0^2|\phi\rangle \qquad h_\ell|u_\ell\rangle + \frac{V}{\sqrt{N_c}} \left(\frac{|\phi\rangle\langle\phi|}{k^2 - k_0^2}\right) \frac{V}{\sqrt{N_c}}|u_\ell\rangle = k^2|u_\ell\rangle$$

Confined channel "bound state" appears as a pole in the effective separable potential in the open channel. Easily solved using Greens function methods.

Scattering near a Feshbach resonance

$$h_{\ell}|u_{\ell}\rangle + \frac{V}{\sqrt{N_c}} \left(\frac{|\phi\rangle\langle\phi|}{k^2 - k_0^2}\right) \frac{V}{\sqrt{N_c}}|u_{\ell}\rangle = k^2|u_{\ell}\rangle$$

Special case of a separable potential $\mathcal{H} = h_0 - \lambda |\chi\rangle\langle\chi|$ with $|\chi\rangle = V|\phi\rangle$

$$\langle \chi | \chi \rangle = \langle \phi V | V \phi \rangle = 1$$
 and $\lambda = -\frac{1}{N_c} \frac{1}{k^2 - k_0^2}$

$$h_{\ell}|u_{\ell}(k)\rangle - \lambda|\chi\rangle\langle\chi|u_{\ell}(k)\rangle = k^{2}|u_{\ell}(k)\rangle$$

General solution for the Argand amplitude $f_{\ell}(k) = \sin \delta_{\ell}(k) e^{i\delta_{\ell}(k)}$

$$f_{\ell}(k) = \frac{1}{k} \frac{\lambda |\langle \chi | u_{\ell}^{0}(k) \rangle|^{2}}{1 - \frac{\lambda}{\pi} \int_{-\infty}^{\infty} dq \frac{|\langle \chi | u_{\ell}^{0}(q) \rangle|^{2}}{q^{2} - k^{2} - i\varepsilon}}$$

with $\langle r|u_{\ell}^{0}(k)\rangle = rj_{\ell}(kr)$

- For Feshbach resonance $\langle \chi | u_\ell^0 \rangle \Rightarrow \langle \phi | V | u_\ell^0 \rangle$ is overlap of open channel scattering state with confined state mediated by transition potential.
- And $\lambda \to -\frac{1}{N_c} \frac{1}{k^2 k_0^2}$ feeds confined channel state into open channel resonance.

Scattering near a Feshbach resonance

$$f_{\ell}(k) = \frac{1}{k} \frac{\frac{1}{N_c} \xi_{\ell}(k)^2}{k_0^2 - k^2 - \frac{1}{N_c \pi} \int_{-\infty}^{\infty} dq \frac{\xi_{\ell}(q)^2}{q^2 - k^2 - i\varepsilon}}$$

- Unitary
- Relativistic with $s \equiv E^2 = 4(m^2 + k^2)$
- In non-relativistic limit

$$\xi(k) = \langle \phi | V | u_{\ell}^{0}(k) \rangle = \int_{0}^{\infty} dr \phi(r) V(r) r j_{\ell}(kr)$$

Scattering amplitude

- Poles below Re *k* axis are resonances
- Ordinary hadrons decouple as $N_c \rightarrow \infty$. They become stable states in the meson-meson continuum
- Poles and associated resonances have no particular association with thresholds

Modelling extraordinary hadrons

- Effects generated by open channel (meson-meson) potentials
- Respect relativity and unitarity with partial wave N/D method.
- Equivalent to solving Schrödinger equation with separable potential in open channel

$$h_{\ell}|u_{\ell}(k)\rangle - \lambda|\chi\rangle\langle\chi|u_{\ell}(k)\rangle = k^{2}|u_{\ell}(k)\rangle$$

General solution for the Argand amplitude $f_{\ell}(k) = \sin \delta_{\ell}(k) e^{i\delta_{\ell}(k)}$

$$f_{\ell}(k) = \frac{1}{k} \frac{\frac{\lambda}{N_c} |\langle \chi | u_{\ell}^0(k) \rangle|^2}{1 - \frac{\lambda}{N_c \pi} \int_{-\infty}^{\infty} dq \frac{|\langle \chi | u_{\ell}^0(q) \rangle|^2}{q^2 - k^2 - i\varepsilon}}$$
$$= \frac{1}{k} \frac{\frac{\lambda}{N_c \pi} \xi_{\ell}(k)^2}{1 - \frac{\lambda}{N_c \pi} \int_{-\infty}^{\infty} dq \frac{\xi_{\ell}(q)^2}{q^2 - k^2 - i\varepsilon}}$$

- $\lambda > 0 \Rightarrow$ attraction; $\lambda < 0 \Rightarrow$ repulsion.
- Note N_c dependence as motivated earlier.
- Nature of possible enhancements depend on character of quark-exchange interaction. No guarantee of resonance, certainly not in s-wave.
- Examine N_c dependence.

Low energy scattering – extraordinary hadrons

Choose example of attractive single channel interaction giving rise to enhancement/ resonance when λ is large enough

- No resonance in the s-wave –there is no barrier and no confined channel state to drive resonance formation, only virtual or bound state as λ increases
- p-wave shows attractive enhancement, leading to resonance and bound state as λ increases. Angular momentum barrier is responsible for resonance.
- Enhancements in both s- and p-waves vanish as $N_c \rightarrow \infty$

Ordinary and extraordinary mesons could hardly be more different!

Ordinary and extraordinary mesons could hardly be more different!

Summary

- Large N_c distinguishes ordinary $(\bar{Q}Q)$ mesons from possible extraordinary $(\geq \bar{Q}\bar{Q}QQ)$ mesons.
- Unitarized chiral dynamics ⇒ vector mesons are ordinary and light scalar mesons are extraordinary
- Ordinary mesons = Feshbach resonances
- Extraordindary mesons = open-channel enhancements, resonances, bound or virtual states.
- Watch out for unique behavior of S-wave "states" near threshold.