Dynamically-Generated Exotic Hadrons

from Superconformal Algebra and Light-Front Holography

Exotic Hadrons and Flavor Physics May 28, 2018

with Guy de Tèramond, Hans Günter Dosch, Marina Nielsen, F. Navarra, Liping Zou, S. Groote, S. Koshkarev, C. Lorcè, R. S. Sufian, A. Deur

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right)
$$

$$
P^{+}, \vec{P}_{\perp}
$$

Dirace Front Form

Measurements of hadron LF
wavefunction are at fixed LF time

Like a flash photograph
Fixed $\tau=t+z / c$

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Invariant under boosts! Independent of P^{μ}

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& P_{n}^{+}, \vec{P}_{\perp}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \\
& \text { Eixed } \tau=t+z / c \\
& \text { Eigenstate of LF Hamiltonian } \\
& H_{L F}^{Q C D}\left|\Psi_{h}^{n}>=\mathcal{M}_{\perp i}=\overrightarrow{0}\right| \\
& \sum_{h}^{2} \mid \Psi_{h}>
\end{aligned}
$$

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Invariant under boosts! Independent of $P^{\mu 1}$
Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t}
\end{gathered}
$$

$H_{L F}^{i n t}$: Matrix in Fock Space

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Spectrum and Light-Front wavefunctions
LFWFs: Off-shell in \mathbf{P} - and invariant mass
 $H_{L F}^{i n t}$

$H_{Q E D}$

QED atoms: positronium

 and muoniumCoupled Fock states

$$
\left(H_{0}+H_{i n t}\right)|\Psi>=E| \Psi>
$$

$$
\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})
$$

Effective two-particle equation

Includes Lamb Shift, quantum corrections

$\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)$

$$
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r}
$$

Semiclassical first approximation to QED

SphericalBasis $\quad r, \theta, \phi$ Coulomb potential

Bohr Spectrum

Schrödinger Eq.

Light-Front QCD

Fixed $\tau=t+z / c$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable ζ

Unique
Confinement Potential!
Conformal symmetry of the action

Confinement scale: $\quad \kappa \simeq 0.5 \mathrm{GeV}$

- de Alfaro, Fubini, Furlan:
- Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$

$$
\psi\left(x_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian

LF Wavefunction: off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

AdS $_{5}$

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

$$
A d S / C F T
$$

Dülaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement in z
- Introduces confinement scale к
- Uses AdS5 as template for conformal theory

Introduce "Dulaton" to simulate confinement analytically \downarrow

- Nonconformal metric dual to a confining gauge theory

$$
d s^{2}=\frac{R^{2}}{z^{2}} e^{\varphi(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

where $\varphi(z) \rightarrow 0$ at small z for geometries which are asymptotically AdS_{5}

- Gravitational potential energy for object of mass m

$$
V=m c^{2} \sqrt{g_{00}}=m c^{2} R \frac{e^{\varphi(z) / 2}}{z}
$$

- Consider warp factor $\exp \left(\pm \kappa^{2} z^{2}\right)$
- Plus solution: $V(z)$ increases exponentially confining any object in modified AdS metrics to distances $\langle z\rangle \sim 1 / \kappa$

Klebanov and Maldacena

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- de Teramond, sjb

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$ bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dülaton-Modified $A d S_{5}$
Identical to Single-Variable Light-Front Bound State Equation in ζ !

$$
z<\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Light-Front Holographbic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

$$
\vec{\zeta}^{2}=\vec{b}_{\perp}^{2} x(1-x)
$$

G. de Teramond, H. G. Dosch, sjb

- $J=L+S, I=1$ meson families $\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)$

$$
4 \kappa^{2} \text { for } \Delta L=1
$$

$$
m_{q}=0
$$

$$
2 \kappa^{2} \text { for } \Delta S=1
$$

Massless pion in Chiral Limit! Same slope in n and L!

$\mathrm{I}=1$ orbital and radial excitations for the $\pi(\kappa=0.59 \mathrm{GeV})$ and the ρ-meson families $(\kappa=0.54 \mathrm{GeV})$

- Triplet splitting for the $I=1, L=1, J=0,1,2$, vector meson a-states

$$
\mathcal{M}_{a_{2}(1320)}>\mathcal{M}_{a_{1}(1260)}>\mathcal{M}_{a_{0}(980)}
$$

Mass ratio of the ρ and the a_{1} mesons: coincides with Weinberg sum rules

> G. de Teramond, H. G. Dosch, sjb

Uniqueness of Dilaton

$$
\varphi_{p}(z)=\kappa^{p} z^{p}
$$

- Dosch, de Tèramond, sjb

$M^{2}(n, L, S)=4 \kappa^{2}(n+L+S / 2)$

Equal Slope in n and L

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.
Same slope in n and L !

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

De Tèramond, Dosch, sib

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{q}^{2}}{1-x}|X\rangle$
 from LF Higgs mechanism

Effective mass from $m\left(p^{2}\right)$

Prediction from AdS/QCD: Meson LFWF

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

x

$$
\psi_{M}\left(x, k_{\perp}^{2}\right)^{0}
$$

Note coupling

$$
k_{\perp}^{2}, x
$$

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{2 \kappa^{2} x(1-x)}} \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! }
$$

C. D. Roberts et al.

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form $V(r)=C r$ for heavy quarks

Harmonic Oscillator $U(\zeta)=\kappa^{4} \zeta^{2}$ LF Potential for relativistic light quarks

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Remarkable Features of Light-Front Schrödinger Equation

- Relativistic, frame-independent

Dynamics + Spectroscopy!

- QCD scale appears - unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
-Zero-mass pion for zero mass quarks!
- Regge slope same for n and L-- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
\bullet Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Pion Form Factor from AdS/QCD and Light-Front Holography

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \operatorname{I}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?
QCD does not know what MeV units mean! Only Ratios of Masses Determined

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

- de Alfaro, Fubini, Furlan ($(A A F F)$

$$
\begin{gathered}
G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
G=u H+v D+w K \\
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
\end{gathered}
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identicalto LF Hamiltonian with unique potential and dilaton!

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

dAFF: New Time Variable
$\tau=\frac{2}{\sqrt{4 u w-v^{2}}} \arctan \left(\frac{2 t w+v}{\sqrt{4 u w-v^{2}}}\right)$,

- Identify with difference of LF time $\Delta \mathbf{x}^{+} / \mathbf{P}^{+}$ between constituents
- Finite range
- Measure in Double-Parton Processes

Retains conformal invariance of action despite mass scale!

Superconformal Quantum Mechanics

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \\
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K \\
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D \\
{[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{~K}]=2 \text { i D, }[\mathrm{K}, \mathrm{D}]=-\mathrm{i} \mathrm{~K}} \\
Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}
\end{gathered}
$$

Superconformal Quantum Mechanics

Baryon Equation $Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}$

Consider $R_{w}=Q+w S ; \quad w$: dimensions of mass squared

$$
G=\left\{R_{w}, R_{w}^{+}\right\}=2 H+2 w^{2} K+2 w f I-2 w B \quad 2 B=\sigma_{3}
$$

New Extended Hamiltonian G is diagonal:

$$
\begin{aligned}
G_{11}= & \left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f-w+\frac{4\left(f+\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
G_{22}= & \left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f+w+\frac{4\left(f-\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
& \quad \text { Identify } f-\frac{1}{2}=L_{B}, \quad w=\kappa^{2} \quad \lambda=\kappa^{2}
\end{aligned}
$$

Eigenvalue of $G: M^{2}(n, L)=4 \kappa^{2}\left(n+L_{B}+1\right)$

LF Holography

$$
\begin{aligned}
& \left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
& \left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
& M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \mathrm{s}=\mathrm{I} / 2, \mathrm{P}=+ \\
& \lambda=\kappa^{2} \\
& \left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J} \\
& M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \quad \text { Same } \kappa! \\
& S=0 \text {, I= | Meson is superpartner of } S=\mid / 2 \text {, I=| Baryon } \\
& \text { Meson-Baryon Degeneracy for } L_{M}=L_{B}+1
\end{aligned}
$$

Superconformal Quantum Mechanics Light-Front Holography

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

de Tèramond, Bosch, Lorcè, sjb
$M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N_{-}^{7-}$

Same slope

Universal slopes in n, L
L

1	1	1	1	1	$\mathbf{1}$	
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$

Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

6. $M^{2}\left(\mathrm{GeV}^{2}\right)$
 $\rho-\Delta$ superpartner trajectories

 fermions
 BARYONS
 [qqq]
 $L_{M}=L_{B}+1$
 Dosch, de Teramond, sjb
 L (Orbital Angular Momentum)

- Superconformal spin-dependent Hamiltonian to describe mesons and baryons (chiral limit) [S. J. Brodsky, GdT, H. G. Dosch, C. Lorcé, PLB 759, 171 (2016)]

$$
G=\left\{R_{\lambda}^{\dagger}, R_{\lambda}\right\}+2 \lambda S \quad S=0,1
$$

Mesons : $M^{2}=4 \lambda\left(n+L_{M}\right)+2 \lambda S, \quad$ Baryons $: M^{2}=4 \lambda\left(n+L_{B}+1\right)+2 \lambda S$

Superconformal meson-nucleon partners: solid line corresponds to $\sqrt{\lambda}=0.53 \mathrm{GeV}$
$\lambda=\kappa^{2}$
de Tèramond, Dosch, Lorce', sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Fit to the slope of Regge trajectories, including radial excitations
Same Regge Slope for Meson, Baryons:
Supersymmetric feature of hadron physics

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int_{0}^{\infty} d \zeta \int_{0}^{1} d x \psi_{+}^{2}\left(\zeta^{2}, x\right)=\int_{0}^{\infty} d \zeta \int_{0}^{1} d x \psi_{-}^{2}\left(\zeta^{2}, x\right)=\frac{1}{2} \quad \begin{aligned}
& \text { Quark Chiral } \\
& \text { Symmetry of }
\end{aligned}
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Nucleon: Equal Probability for L=0, I

- Compute Dirac proton form factor using SU(6) flavor symmetry

$$
F_{1}^{p}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} V(Q, z) \Psi_{+}^{2}(z)
$$

- Nucleon AdS wave function

$$
\Psi_{+}(z)=\frac{\kappa^{2+L}}{R^{2}} \sqrt{\frac{2 n!}{(n+L)!}} z^{7 / 2+L} L_{n}^{L+1}\left(\kappa^{2} z^{2}\right) e^{-\kappa^{2} z^{2} / 2}
$$

- Normalization $\left(F_{1}{ }^{p}(0)=1, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{2}(z)=1
$$

- Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$
V(Q, z)=\kappa^{2} z^{2} \int_{0}^{1} \frac{d x}{(1-x)^{2}} x^{\frac{Q^{2}}{4 \kappa^{2}}} e^{-\kappa^{2} z^{2} x /(1-x)}
$$

- Find

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass! Meson

Baryon

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

$$
\begin{gathered}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{gathered}
$$

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

New Organization of the Hadron Spectrum

Superconformal Algebra 4 -Plet

$$
\begin{aligned}
& R_{\lambda}^{\dagger} \underset{(\bar{q} \rightarrow(q q) S}{ } \quad \begin{array}{l}
\text { Vector ()+ Scalar [] Diquarks } \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
\\
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

Double-Strange Baryon

Supersymmetry across the light and heavy-light spectrum

Superpartners for states with one c quark

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name
$\bar{q} c$	0^{-}	D(1870)					-	
$\bar{q} c$	1^{+}	$D_{1}(2420)$	$[u d] c$	(1/2)+	$\Lambda_{c}(2290)$	[ud][$\bar{c} \bar{q}]$	0^{+}	$\bar{D}_{0}^{*}(2400)$
$\bar{q} c$	2^{-}	$D_{J}(2600)$	$[u d] c$	(3/2) ${ }^{-}$	$\Lambda_{c}(2625)$	[ud][$\bar{c} \bar{q}]$	1^{-}	
$\bar{c} q$	0^{-}	$\bar{D}(1870)$						
$\bar{c} q$	1^{+}	$\square_{1}(2420)$	$[c q] q$	(1/2) ${ }^{+}$	$\Sigma_{c}(2455)$	[cq] $[\bar{u} \bar{d}]$	0^{+}	$D_{0}^{*}(2400)$
$\bar{q} c$	1^{-}	D^{*} (2010)						
$\bar{q} c$	2^{+}	$D_{2}^{*}(2460)$	(qq) c	$(3 / 2)^{+}$	$\Sigma_{c}^{*}(2520)$	(qq) $[\bar{q} \bar{q}]$	1^{+}	$D(2550)$
$\bar{q} c$	3^{-}	$D_{3}^{*}(2750)$	(qq)c	(3/2) ${ }^{-}$	$\Sigma_{c}(2800)$	(q q) $[\bar{q} \bar{q}]$	-	-
$\bar{s} c$	0^{-}	$D_{s}(1968)$	-	-	-		-	-
$\bar{s} c$	1^{+}	$D_{s 1}(2460)$	$[q s] c$	(1/2) ${ }^{+}$	$\Xi_{c}(2470)$	[$q s$][$\bar{c} \bar{q}]$	0^{+}	$\bar{D}_{s 0}^{*}(2317)$
$\bar{s} c$	2^{-}	$\mathbb{C}_{s 2}(\sim 2860) ?$	$[q s] c$	(3/2) ${ }^{-}$	$\Xi_{c}(2815)$	\sq] [ç $\bar{q}]$	1^{-}	-
$\bar{s} c$	1^{-}	$D_{s}^{*}(2110)$	-		-	-	-	-
$\bar{s} c$	2^{+}	$D_{s 2}^{*}(2573)$	(sy) c	(3/2) ${ }^{+}$	$\Xi_{c}^{*}(2645)$	(sq) [$[\bar{q}]$	1^{+}	$D_{s 1}(2536)$
$\bar{c} s$	1^{+}	$\widehat{W}_{\text {s1 }}(\sim 2700) ?$	$[c s] s$	(1/2) ${ }^{+}$	$\Omega_{c}(2695)$	[cs][$[\bar{q}]$	0^{+}	??
$\bar{s} c$	2^{+}	$\widehat{1}_{s 2}^{*}(\sim 2750) ?$	(3s)c	(3/2) ${ }^{+}$	$\Omega_{c}(2770)$	(ss)[ct ${ }^{\text {c }}$	1^{+}	??
M.	iels	n, sib		${ }_{\sim}^{*}$	ictions	beautif	ul agre	ment!

Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Nielsen, Navarra, Dosch, de Teramond, Zou, sjb

FIG. 1. Double charm mesons (shown as green squares) baryons (shown as blue triangles) and tetraquarks (shown as red circles). The solid lines are the trajectories fit from (13). Hadron masses are taken from PDG [27]. In the left hand side figure we show states with $S_{M}=S_{D}=S_{T}=0$. In the right hand side figure we show states with $S_{M}=S_{D}=S_{T}=1$.

FIG. 2. Same as in Fig. 1 for double beauty hadrons.

$$
\begin{aligned}
& R^{\dagger} \begin{array}{c}
S=0 \\
\bar{q} \rightarrow[q]
\end{array} \text { Double-Charm Baryon (SELEX) } \\
& h_{c}(3525) \quad \Xi_{C C}^{+}(3520)
\end{aligned}
$$

SELEX $(3520 \pm 1 \mathrm{MeV}) \quad J^{P}=\frac{1}{2}^{-} \|[c d] c>$
Two decay channels: $\Xi_{c c}^{+} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}, p D^{+} K^{-}$

SELEX Collaboration / Physics Letters B 628 (2005) 18-24

Fig. 3. $\Xi_{c c}^{+} \rightarrow p D^{+} K^{-}$mass distribution from Fig. 2(a) with high-statistics measurement of random combinatoric background computed from event-mixing.

Fig. 4. Gaussian fits for $\Xi_{c c}^{+} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}$and $\Xi_{c c}^{+} \rightarrow p D^{+} K^{-}$ (shaded data) on same plot.

Double-Charm Baryon (LHCb)

$$
\begin{aligned}
& R_{\lambda}^{\dagger} \underset{(q)}{\bar{q} \rightarrow(q q)} \quad S=1 \\
& \overline{3}_{C} \rightarrow \overline{\overline{3}}_{C}
\end{aligned}
$$

$$
\Xi^{++}(3621)
$$

$M_{T} \sim 3621 ~$
$J^{P}=1^{+}$
T_{c}
$\bar{c} q \bar{q}$

SELEX $\left.(3520 \pm 1 \mathrm{MeV}) J^{P}=\frac{1}{2}^{-} \quad \right\rvert\,[c d] c>$

$$
\begin{aligned}
& \text { Two decay channels: } \Xi_{c c}^{+} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}, p D^{+} K^{-} \\
& \left.\begin{array}{c}
\text { LHCb }(3621 \pm 1 \mathrm{MeV}) J^{P}=\frac{1}{2}^{-} \text {or } \frac{3}{2}
\end{array} \right\rvert\,(c u) c> \\
& \Xi_{c c}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}
\end{aligned}
$$

Groote, Koshkarev, sjb: SELEX\& LHCb could both be correct!

Very different production kinematics:

LHCb (central region)

SELEX (Forward, High x_{F}) where Λ_{c}, Λ_{b} were discovered
NA3: Double J/ Ψ Hadroproduction measured at High XF
Radiative Decay:
$\operatorname{LHCb}(3621) \rightarrow \operatorname{SELEX}(3520)+\gamma$
strongly suppressed: $\left[\frac{100 \mathrm{MeV}}{M_{c}}\right]^{7}$
Also: Different diquark structure possible for LHCb: $(c c) u$
Karliner and Rosner

New World of Tetraquarks

$$
3_{C} \times 3_{C}=\overline{3}_{C}+6_{C}
$$

Complete Regge spectrum in n, L

Bound!

- Diquark Color-Confined Constituents: Color $\overline{3}_{C}$
- Diquark-Antidiquark bound states
- Confinement Force Similar to quark-antiquark $\overline{3}_{C} \times 3_{C}=1_{C}$ mesons
- Isospin $I=0, \pm 1, \pm 2$ Charge $Q=0, \pm 1, \pm 2$

$$
\sigma\left(e^{+} e^{-} \rightarrow M T\right) \propto \frac{1}{s^{N-1}} \quad N=6
$$

Use counting rules to identify composite structure
Lebed, sjb

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$
$e^{\phi(z)}=e^{+\kappa^{2} z^{2}}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \text { or } g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Bjorken sum rule defines effective charge $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any $p Q C D$ scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb
$m_{\rho}=\sqrt{2} \kappa$ $m_{p}=2 \kappa$

All-Scale QCD Coupling

Deur, de Tèramond, sjb Fit to $\mathrm{Bj}+\mathrm{DHG}$ Sum Rules:

Underlying Principles

- Polncarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \mathbf{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: $\mathrm{AdS}_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduce Mass Scale \mathbf{K} while retaining the Conformal Invariance of the Action (dAFF)
- Unique Dilaton in $\mathrm{AdS}_{5}: e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

$$
\text { Meson } q \bar{q} \leftrightarrow \text { Baryon } q[q q] \leftrightarrow \text { Tetraquark }[q q][\bar{q} \bar{q}]
$$

- Color Confinement, Analytic form of confinement potential
- Massless pion bound state in chiral limit
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincare' Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- Constituent Counting Rules
- Hadronization at the Amplitude Level

Many phenomenological tests

- Analytic First Approximation to QCD
- Systematically improvable: Basis LF Quantization (BLFQ)

Ansatz:

- Gluons subsumed in the LF confining potential
- Glueballs and glue-quark hybrids absent
- pentaquarks: bound by QCD van der Waals interaction
- Nuclear-Bound Quarkonium allowed
- Krisch Effect:

Anomalous $R_{N N}$ observed in $\frac{d \sigma}{d t}(p p \rightarrow \overline{p p})$
large- $\theta_{C M}$ elastic scattering at $\sqrt{s}=5 \mathrm{GeV}$ due to "octoquark" |uuduudc $\bar{c}>$ production

Dynamically-Generated Exotic Hadrons

from Superconformal Algebra and Light-Front Holography

Exotic Hadrons and Flavor Pbysics May 28, 2018

with Guy de Tèramond, Hans Guinter Dosch, Marina Nielsen, F. Navarra, Liping Zou, S. Groote, S. Koshkarev, C. Lorcè, R. S. Suffan, A. Deur

