Exotic hadron spectroscopy results & perspectives in ATLAS & CMS

Alexis Pompili

(on behalf of

DI BARI "ALDO MORO" &

UNIVERSITÀ DEGLI STUDI

I.N.F.N. SEZIONE DI BARI

29th May 2018 / Exotic Hadrons & Flavor Physics / Simons Center workshop – Stony Brook (NY)

XYZ exotic hadrons

- Since the X(3872) observation (2003), many (~30) unexpectedly narrow states were observed [@ B-factories and/or at Hadron-colliders] to decay into charmonium in spite of being above the opencharm thresholds ($D^{(*)}\overline{D}^{(*)}$), where states are expected to be large resonances rapidly decaying mainly into charmed meson pairs. They are inconsistent (mass values, decay rates) with $c\overline{c}$ spectrum.
 - **>>** Few analogue states in the bottomonium sector have been found as well
 - Many of them even if established (confirmed by more than one experiment) remain a puzzle; sometimes quantum numbers are not experimentally determined yet.

Σ

XYZ exotic hadrons

Since the X(3872) observation (2003), many (~30) unexpectedly narrow states were observed [@ B-factories and/or at Hadron-colliders] to decay into charmonium in spite of being above the opencharm thresholds ($D^{(*)}\overline{D}^{(*)}$), where states are expected to be large resonances rapidly decaying mainly into charmed meson pairs. They are inconsistent (mass values, decay rates) with $c\overline{c}$ spectrum.

D Few analogue states in the bottomonium sector have been found as well

Many of them - even if established (confirmed by more than one experiment) - remain a puzzle; sometimes quantum numbers are not experimentally determined yet.

Two main production processes @ Hadron Colliders :Prompt (inclusive): $pp(p\overline{p}) \rightarrow (c\overline{c}) + X$ b-jets (exclusive B-decays): $B \rightarrow (c\overline{c}) + X$

Establishing their existence with both production mechanism would be ideal but inclusive searches more difficult experimentally: high backgrounds, too high trigger rates for prompt dimuons @ low p_T

 $\boldsymbol{\Sigma}$

XYZ exotic hadrons

Since the X(3872) observation (2003), many (~30) unexpectedly narrow states were observed [@ B-factories and/or at Hadron-colliders] to decay into charmonium in spite of being above the opencharm thresholds ($D^{(*)}\overline{D}^{(*)}$), where states are expected to be large resonances rapidly decaying mainly into charmed meson pairs. They are inconsistent (mass values, decay rates) with $c\overline{c}$ spectrum.

Few analogue states in the bottomonium sector have been found as well

Many of them - even if established (confirmed by more than one experiment) - remain a puzzle; sometimes quantum numbers are not experimentally determined yet.

Two main production processes @ Hadron Colliders :Prompt (inclusive): $pp(p\overline{p}) \rightarrow (c\overline{c}) + X$ b-jets (exclusive B-decays): $B \rightarrow (c\overline{c}) + X$

Establishing their existence with both production mechanism would be ideal but inclusive searches more difficult experimentally: high backgrounds, too high trigger rates for prompt dimuons @ low p_T

Typical decay processes:

- **D** Hadronic transition to a lighter $c\overline{c}$ meson through the emission of light hadrons $[\pi, \pi\pi, \rho, \phi]$
 - **s** suitable for triggering on dimuon objects (J/ψ , $\psi(2S)$, ...) but still difficult without hadronic PID (CMS)

Electromagnetic transition to a lighter $c\overline{c}$ meson through the emission of a γ

challenging because of the need of converted photon (low efficiency)

 $\boldsymbol{\Sigma}$

Outline

Besides LHCb which is a dedicated experiment, CMS & ATLAS are giving significant contributions to beauty and quarkonium sectors, mainly using final states containing muon pairs (trigger constraints). This is possibile thanks to :

- excellent tracking and muon identification performances, combined to
- a flexible trigger system essential to collect data @ increasing luminosity (and pile-up)
- the large production cross-sections for heavy flavoured particles in *pp* collisions
 (LHC is a "quarkonium factory"; prompt production + from B decays (charmonia only))

- > X(3872) production
- Σ $\chi_b(3P)$ and X_b search
- **>** *X*(5568) search

```
(in additional material)
Y resonances in J/\psi \phi system
```

CMS (similar for ATLAS) data samples:

Run-I/2011/ $\sqrt{s} = 7TeV : L_{int} \sim 5fb^{-1}$ Run-I/2012/ $\sqrt{s} = 8TeV : L_{int} \sim 20fb^{-1}$

```
Run-II / 2015 / \sqrt{s} = 13TeV : L_{int} \sim 4fb^{-1}
Run-II / 2016 / \sqrt{s} = 13TeV : L_{int} \sim 38fb^{-1}
Run-II / 2017 / \sqrt{s} = 13TeV : L_{int} \sim 45fb^{-1}
```

```
Expected : Run-II / 2018 / \sqrt{s} = 13TeV : L_{int} \sim 45 \div 60 fb^{-1}
```

X(3872) production features

X(3872) @ LHC

- First exotic state discovered by fin the decays $B^+ \rightarrow K^+X(3872) \rightarrow K^+(J/\psi \pi \pi)$ and confirmed by with inclusive $p\overline{p}$ collisions (mainly prompt production: only ~16% from *B* mesons).

X(3872) @ LHC

- First exotic state discovered by **2** in the decays $B^+ \rightarrow K^+ X(3872) \rightarrow K^+ (J/\psi \pi \pi)$ and confirmed by (0) with inclusive $p\overline{p}$ collisions (mainly prompt production: only \sim 16% from *B* mesons).
- As soon as LHC started, quickly confirmed by 🔀 & 🕮 , either inclusively and exclusively (B decays) and later by

inclusively reconstructed the X(3872) in the $J/\psi \pi \pi$ final state & studied (with 7 *TeV* data) :

- **Xsection ratio** w.r.t $\psi(2S)$
- non-prompt component vs p_T
- prompt X(3872) prod. xsection $\boldsymbol{\Sigma}$
- **>** inv. mass distrib. of the $\pi^+\pi^-$ system

performed similar studies most recently (with 8 TeV data)

next

<u>slides</u>

X(3872) @ 🞇 & 😭 : $\pi^+\pi^-$ mass spectrum

ig> Invariant mass distribution of the $\pi^+\pi^-$ system :

The data spectrum compared to simulations w/ & w/o an intermediate ρ^0 in the decay shows much better agreement when assuming it (as for \swarrow &)

> In the simulations $J_X^{PC} = 1^{++}$ is assumed.

X(3872) @ 💥 : Xsection x BF ratio [w.r.t. ψ(2S)]

A ratio of the cross sections has been measured to cancel out many systematic sources:

X(3872) @ **X**: Xsection x BF ratio [w.r.t. $\psi(2S)$]

A ratio of the cross sections has been measured to cancel out many systematic sources:

X(3872) @ \Re : Xsection x BF ratio [w.r.t. ψ (2S)]

provided the p_T -dependence of the same ratio **separately** for **prompt** & **non-prompt** contributions:

The short-lived contribution to non-prompt $\psi(2S)$ is found to be not significant.

X(3872) @ \Re : Xsection x BF ratio [w.r.t. ψ (2S)]

Production of B_c^{\pm} mesons in high-energy hadronic collisions - at low p_T - is expected to be dominated by non-fragmentation processes.

These processes are expected to have a p_T -dependence $\propto 1/p_T^2$ relative to the fragmentation contribution that instead dominates the production of long-lived *b*-hadrons.

By fitting the ratio of short-lived non-prompt X(3872) to non-prompt $\psi(2S)$ with a function a/p_T^2 it is possible to derive the value of a, that together with the measured non-prompt yields of X(3872) & $\psi(2S)$, are used to determine the fraction of non-prompt X(3872) from short-lived sources:

Since B_c^{\pm} production is only a small fraction of the inclusive beauty production, this result could indicate that the production of **X(3872)** in B_c^{\pm} decays is enhanced compared to its production in the decays of other **b**-hadrons.

X(3872) @ 🔀: non-prompt fraction

The X(3872) can be produced from B hadrons' decays into a secondary vertex : prompt & non-prompt components can be separated by pseudo-proper decay length

 Σ

X(3872) @ 🞇 : non-prompt fraction

The X(3872) can be produced from B hadrons' decays into a secondary vertex : prompt & non-prompt components can be separated by pseudo-proper decay length

X(3872) @ 🙀 : non-prompt fraction

> Indeed : **non-prompt for** $\psi(2S)$ non-prompt for X(3872) 0.6 Non-prompt w(2S) fraction Non-prompt X(3872) fraction ATLAS ATLAS 0.5 - √s=8 TeV, 11.4 fb⁻¹ vs=8 TeV, 11.4 fb⁻¹ 0.8 0.4E 0.6 0.3E 0.4 0.2 ATLAS, |y| < 0.75, 8 TeV, 11.4 fb⁻¹ ATLAS, |y| < 0.75, 8 TeV, 11.4 fb 0.2 0.1 CMS, |y| < 1.2, 7 TeV, 4.9 fb⁻¹ CMS, |y| < 1.2, 7 TeV, 4.8 fb⁻¹ 0 10 50 60 70 10 40 50 60 70 40 20 30 20 30 p_ [GeV] p_ [GeV] Σ increases with p_T $rac{}$ no sizable dependence on p_T 🍗 good agreement with 🞇 >> good agreement with [JHEP02 (2012) 011]

X(3872) @ 🞇 : prompt production cross section

X(3872) @ 🞇 : prompt production cross section

Solution Exploiting the previous measurements, the **prompt production xsection** for the X(3872) is measured as a function of $p_T @$ central rapidities (complementary to LHCb):

- Results are compared with a theoretical prediction based on NRQCD factorization @ LO approach by Artoisenet & Brateen [PhysRevD.81.114018] with calculations normalized using Tevatron results, modified by the authors to match CMS phase-space
- The shape is reasonably well described by the theory while the predicted cross section is overestimated by over 3σ! [the same happens with LHCb data @ low p_τ]
 - Integrating over p_{τ} (10-30*GeV*) [and /y/<1.2] get the integrated cross section times the branching fraction:

 $\boldsymbol{\sigma}_{X(3872)}^{prompt} \times \boldsymbol{B} \Big(X(3872) \rightarrow J/\psi \ \pi^{+}\pi^{-} \Big) \cong (1.06 \pm 0.11 \pm 0.15) nb$

X(3872) @ 🞇 : prompt production cross section

> Exploiting the previous measurements, the **prompt production xsection** for the X(3872) is measured as a function of p_{τ} @ central rapidities (complementary to LHCb):

Predictions by Artoisenet & Brateen assume, within an S-wave molecular model, the relative momentum of the mesons being bound by an upper limit of 400*MeV* which is quite high for a loosely bound molecule, but they assume it is possible as a result of rescattering effects.

On the other hand, one order of magnitude lower upper limit would imply lower prompt production rates of few orders of magnitude [Bignamini et al., PRL 103 (2009) 162001]

X(3872) : interpretation & prospects ? - I

One crucial aspect in the study of exotics is the possibility to discriminate experimentally between compact multiquark configuration ($c\overline{c}u\overline{u}$) & loosely bound hadronic molecule (suggested for X(3872) by proximity to the $D\overline{D}^{0^*}$ threshold).

 $\sum X(3872) \text{ would be a large and fragile molecule with a miniscule binding energy (~100 KeV)} \\ E_{binding}^{X(3872)} \cong m(D^0D^{*0}) - m(X) = 2m(D^0) + \Delta m(D^{*0} - D^0) - m(X) = (0.09 \pm 0.28) MeV$

... that leads to a radius of $\sim 14 fm$ (3 times as large as the deuteron) !

> The previous 🞇 measurement is **not** supporting an S-wave molecular interpretation

Pure molecular model (Swanson *et al.***) not supported by the** $X(3872) \rightarrow \psi(2S)\gamma$ sub-decay in the $B^+ \rightarrow X(3872)K^+$ decays

Significant *L* would hint a molecular structure; however *D*-wave fraction in $X(3872) \rightarrow J/\psi \rho^0$ for $J^{PC}=1^{++}$ results to be consistent with 0 [

Alternatively to the compact tetraquark option, a possible accepted interpretation for the X(3872) is a **mixture of a charmonium state** $\chi_{c1}(2^{3}P_{1})$ **& an S-wave molecule** $\overline{D}^{0}D^{*0}$.

X(3872) : interpretation & prospects ? - I

Comparison of 🙀 with 🞇 results provided as paper's additional material:

- ATLAS points positioned @ the mean p_{τ} of the weighted signal events
- CMS points positioned @ the mean p_{τ} of the theoretical predictions

Measured prompt production xsection (times BFs), as a function of $p_{T_{t}}$ is compared to NLO NRQCD predictions assuming the X(3872) modelled as a mixture of $\chi_{cl}(2P)$ & a $\overline{D}^{0}D^{*0}$ molecular state by Meng *et al.* [PRD96 (2017) 074014].

The first would play crucial role in the short-distance production, while the second would be mainly in charge of the hadronic decays of *X*(3872) into $DD\pi$, $DD\gamma$ as well as $J/\psi\rho$, $J/\psi\omega$.

Exotic hadrons / 2018 May 29th

X(3872) : interpretation & prospects ? - III

Prospects for new measurements at CMS & ATLAS concerning the X(3872) ?

- > Precision measurements using non-prompt X(3872) from B decays may use displaced J/ψ triggers also for Run-II data. However it is uncertain if this could add info to the LHCb measurements.
- > Production measurements of prompt X(3872) can use inclusive J/ψ triggers having much higher p_{τ} threshold especially in Run-II and increasing along it. Uncertain how crucial would be the impact increasing the p_{τ} range. Studying radiative decays with Run-II data might be interesting.
- Studying radiative decays with Run-II data could be interesting (beware: converted photons are needed)

Search for X_b, the bottomonium partner of X(3872)

 $\sqrt{s} = 8TeV (\text{Run-I} / 2012)$

PLB 740 (2015) 199

Heavy Quark symmetry suggests an X_b as 'bottomonium counterpart' of X(3872). Molecular model suggests to search close to $B\overline{B}^{(*)}$ threshold ($m \approx 10.562(604)GeV$); [model dependent prediction for a $B\overline{B}^{(*)}$ molecule by Swanson (2004)].

>> More recently Karliner [Acta Phys. Pol. B vol.47 (2016)] proposed two I=0 narrow resonances X_b in the bottomonium system, about 20 *MeV* below the corresponding \overline{BB}^* , \overline{B}^*B^* thresholds.

> (&) looked for $X_b \to \Upsilon(1S) \pi^+ \pi^-$ decay seemingly analogous to $X(3872) \to J/\psi \pi^+ \pi^-$

<u>Analysis strategy</u>: search for a peak - other than known $\Upsilon(2S), \Upsilon(3S)$ - in the $\Upsilon(1S) \pi^+\pi^-$ spectrum within $10 \div 11 GeV$ range [expecting **narrow width** & possibly **sizable BF** similarly to X(3872)]

Search for X_b - II

 X_b cands are reconstructed by associating two oppositely selected charged tracks to the $\gamma_{(1S)}$ cand.; the $\gamma_{(1S)} \pi^+ \pi^-$ spectrum is studied in the kinematic region $p_T > 13.5 GeV$, |y| < 2.0:

Selection criteria optimized by using a genetic algorithm that maximized the expected significance of the signal in the mass region near the $\Upsilon(2S)$.

The statistical significance of the signal is expected to be $> 5\sigma$ if the following ratio that represents the X_b BF times the production Xsection relative to the $\Upsilon(2S)$...

$$R = \frac{\sigma(pp \to X_b)}{\sigma(pp \to \Upsilon(2S))} \cdot \frac{BF(X_b \to \Upsilon(1S)\pi^+\pi^-)}{BF(\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-)}$$

... is > 6.56% [analogous to that of X(3872) relative to the $\Upsilon(2S)$].

Search for X_b - III

Search for X_b - III

Search for X_b - III

Similar results from (next slide) : slightly more stringent limits

Search for X_b - IV

>> Very similar search was later performed by 😪:

- **Fit done in 2x2x2 bins of (**|y|, p_T , $\cos \vartheta^*$ **)** where ϑ^* is the angle between the dipion momentum & the parent momentum in the lab-frame.
- The split of the analysis into these bins take advantage of varying bin sensitivity, thus allowing for more restrictive limits than

> No significant eccess found

Observed UL range on R: 0.8% to 4.0%

According to Karliner&Rosner [PRD91 (2015) 014014], the analogy with $X \rightarrow J/\psi \pi^+\pi^-$ is misguided for this particular decay channel: $X_b \rightarrow \Upsilon(1S) \pi^+ \pi^-$ should be forbidden by G-parity conservation :

Solution For the X(3872) the *I*-conserving decay $X \to J/\psi \omega$ was kinematically suppressed, thus equally likely than the *I*-violating $X \to J/\psi \rho^0$: $\frac{B(X \to J/\psi \pi^+ \pi^- \pi^0)}{B(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \pm 0.3$

In the beauty sector Isospin should be well conserved & $X_h \rightarrow \Upsilon(1S)\omega$ allowed (preferred if it exists) !

I nus the search strategy for X_b should include the reconstruction of these decays with 1 or 2 photons: (*) No significant signal found by \mathbb{B} in Y(5S) decays [PRL113, 142001 (2014)] $\begin{cases} X_b \rightarrow \Upsilon(1S) \omega(\rightarrow \pi^+ \pi^- \pi^0) \\ X_b \rightarrow \chi_b(1P) \pi^+ \pi^- \chi_b(1P) \pi^+ \pi^- \chi_b(1P) \chi_b(1P) \pi^+ \pi^- \chi_b(1P) \chi_b(1P)$

According to Karliner&Rosner [PRD91 (2015) 014014], the analogy with $X \rightarrow J/\psi \pi^+\pi^-$ is misguided for this particular decay channel: $X_h \rightarrow \Upsilon(1S) \pi^+\pi^-$ should be forbidden by G-parity conservation :

Solution For the X(3872) the *I*-conserving decay $X \rightarrow J/\psi\omega$ was kinematically suppressed, thus equally likely than the *I*-violating $X \rightarrow J/\psi\rho^0$:

 $\frac{B(X \to J/\psi \pi^{+} \pi^{-} \pi^{0})}{B(X \to J/\psi \pi^{+} \pi^{-})} = 1.0 \pm 0.4 \pm 0.3$

In the beauty sector Isospin should be well conserved & $X_b \rightarrow \Upsilon(1S)\omega$ allowed (preferred if it exists) !

Search for X_b : prospects - II

In Run-II data taking we have a low enough dimuon p_T -threshold (at expense of a reduced $|\eta|$ muon range)

Interest in radiative decays to $\Upsilon(nS)\gamma$ [n = 1, 2, 3]

- With the X_b far below the $B\overline{B}^{(*)}$ threshold and the *I*-violating decay mode $X_b \rightarrow \Upsilon(1S) \pi^*\pi^-$ highly suppressed, the relevance of radiative decays increases
 - According to Li & Wang [PLB733 (2014) 100], within a loosely bound hadronic molecule model, the partial widths for the $X_b \rightarrow \Upsilon(nS)\gamma$ are $\sim 1keV$ and thus the **BFs may be sizeable**, considering the fact that the total width may also be smaller than a few MeV like for the X(3872).
- Solution According to Karliner & Rosner [PRD91 (2015) 014014] the X_b may be close to the $\chi_{b1}(3P)$, mixing with it and sharing decay modes [like the X(3872) might be a mixture of $\chi_{c1}(2P)$ & $D^0\overline{D}^{*0}$ molecule].

Interest in radiative decays to $\Upsilon(nS)\gamma$ [n = 1, 2, 3]

- With the X_b far below the $B\overline{B}^{(*)}$ threshold and the *I*-violating decay mode $X_b \rightarrow \Upsilon(1S) \pi^*\pi^-$ highly suppressed, the relevance of radiative decays increases
 - According to Li & Wang [PLB733 (2014) 100], within a loosely bound hadronic molecule model, the partial widths for the $X_b \rightarrow \Upsilon(nS)\gamma$ are $\sim 1keV$ and thus the **BFs may be sizeable**, considering the fact that the total width may also be smaller than a few MeV like for the X(3872).
- > According to Karliner & Rosner [PRD91 (2015) 014014] the X_b may be close to the $\chi_{b1}(3P)$, mixing with it and sharing decay modes [like the $\chi(3872)$ might be a mixture of $\chi_{c1}(2P)$ & $D^0\overline{D}^{*0}$ molecule].

First observation of resolved $\chi_{b1}(3P)$ & $\chi_{b2}(3P)$ states @

Observed through their radiative decays to $Y(3S)\gamma$ using $\mathcal{L}\sim 80 fb^{-1}$ of 2015-2017 Run-II (13TeV)

This is a preview. Paper has been submitted to PRL & going to appear on arXiv this afternoon

 \gg Y(3S) $\rightarrow \mu^+ \mu^-$

> Low-energy photons detected after converting to e^+e^- pairs in the silicon tracker leading to a $\chi_b(3P)$ mass resolution of 2.2MeV. [selection: $p_T > 500$ MeV, $|\eta| < 1.2$]

 \gg Photon energy scale calibrated (using $\chi_{c1} \to J/\psi \, \gamma$ decays) to allow accurate mass measurement

Exotic hadrons / 2018 May 29th

Alexis Pompili (Bari University & INFN)

> First time that the J=1,2 states are well resolved (J=0 : exp. negligible radiative decay BF)

> The two individual masses are measured and the $\varDelta m$ as well :

 $10\,513.42\pm0.41$ (stat) $\pm\,0.18$ (syst) and $10\,524.02\pm0.57$ (stat) $\pm\,0.18$ (syst) MeV

Search for the X(5568)

X(5568) : claim & issues

Recently \mathcal{M} claimed [PRL117 (2016) 022003] the observation of a narrow structure, called X(5568) [$\Gamma \sim 22MeV$], inclusively produced, in the decay sequence ...

 $X(5568)^{\pm} \rightarrow B^0_S \pi^{\pm}, \ B^0_S \rightarrow J/\psi \phi, \ J/\psi \rightarrow \mu^+ \mu^-, \ \phi \rightarrow K^+ K^- \quad \text{(meaning implicitely: } B^0_S \pi^+, \ B^0_S \pi^-, \ \overline{B}^0_S \pi^+, \ \overline{B}^0_S \pi^-, \ \overline{B}^0_S \pi^$

The X(5568) should have a 4-quark content with all quarks of different flavour (b, s, u, d). It could be:

 \ge a tetraquark (tightly bound di-quark anti-diquark such as $[b \ u][\overline{d} \ \overline{s}], [b \ d][\overline{s} \ \overline{u}], [s \ u][\overline{b} \ \overline{d}], [s \ d][\overline{b} \ \overline{u}]$)

 \gg a loosely bound $B_d^0 K^{\pm}$ molecular state [disfavoured : binding energy would be ~200MeV]

>> It would have $J^{P}=0^{+}$ if produced in an S-wave or ...

 $J^{P} = l^{+}$ if decay proceeds via the chain $X(5568)^{\pm} \rightarrow B_{S}^{*0}\pi^{\pm} \rightarrow (B_{S}^{0}\gamma)\pi^{\pm}$ (unreconstructed γ)

≫

X(5568) : claim & issues

Recently Solution Control Control Control Control Control Control Control Contr

 $X(5568)^{\pm} \rightarrow B^0_S \pi^{\pm}, \ B^0_S \rightarrow J/\psi \phi, \ J/\psi \rightarrow \mu^+ \mu^-, \ \phi \rightarrow K^+ K^- \quad \text{(meaning implicitely: } B^0_S \pi^+, \ B^0_S \pi^-, \ \overline{B}^0_S \pi^+, \ \overline{B}^0_S \pi^-, \ \overline{B}^0_S \pi^$

The X(5568) should have a 4-quark content with all quarks of different flavour (b, s, u, d). It could be:

 \mathbf{Y} a tetraquark (tightly bound di-quark anti-diquark such as $[b \ u][\overline{d} \ \overline{s}], [b \ d][\overline{s} \ \overline{u}], [s \ u][\overline{b} \ \overline{d}], [s \ d][\overline{b} \ \overline{u}]$)

 \gg a loosely bound $B^0_d K^{\pm}$ molecular state [disfavoured : binding energy would be ~200MeV]

> It would have $J^P = 0^+$ if produced in an S-wave or ... $J^P = l^+$ if decay proceeds via the chain $X(5568)^{\pm} \rightarrow B_S^{*0}\pi^{\pm} \rightarrow (B_S^0\gamma)\pi^{\pm}$ (unreconstructed γ)

Surprising large relative production! The *fraction of* B_S^0 from X decay : $\rho_X^{D0} \approx (8.6 \pm 1.9 \pm 1.4)\%$

- This would mean another significant source of B_S^0 mesons production ! And - of course - it is very unlikely to imagine some sort of particular production mechanism enhanced at $p\bar{p}$ collisions and/or at lower center-of-mass energies (CDF is crucial to exclude this).
- Many processes might contribute to the bkg (and not described by MC), such as reflections (feed-down) from higher mass states decaying into a real B_s^0 + (undetected/unassociated) tracks [B_c^{\pm} , $B_c(2S)$, $B_s^{*(*)}$]
- >> Selection criteria include uncautious (potentially biasing) cut on a relevant angular variable

> The search from Kick reported quite soon a negative result [PRL 117 (2016) 152003].

can complement this search by probing a central kinematic region (similar to that of 📭 🔊)

>> Measure/constrain the relative production rate of X(5568), w.r.t. B_s^0 , times the unknown BF of the $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$ decay :

 $\rho_{\rm X} \equiv \frac{\sigma(\rm pp \to X(5568)^{\pm} + anything) \mathcal{B}(X(5568)^{\pm} \to \rm B_s^0 \pi^{\pm})}{\sigma(\rm pp \to \rm B_s^0 + anything)} = \frac{N_{\rm X}}{\epsilon_{\rm rel} N_{\rm B_s^0}}$

The search from kick reported quite soon a negative result [PRL 117 (2016) 152003].

can complement this search by probing a central kinematic region (similar to that of **I**SS)

Solution Measure/constrain the relative production rate of X(5568), w.r.t. B_s^0 , times the unknown BF of the $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$ decay :

The search from Kick reported quite soon a negative result [PRL 117 (2016) 152003].

can complement this search by probing a central kinematic region (similar to that of 📭 🔊)

Solution Measure/constrain the relative production rate of X(5568), w.r.t. B_s^0 , times the unknown BF of the $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$ decay :

The search from Kick reported quite soon a negative result [PRL 117 (2016) 152003].

can complement this search by probing a central kinematic region (similar to that of **I**SS)

>> Measure/constrain the relative production rate of X(5568), w.r.t. B_s^0 , times the unknown BF of the $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$ decay :

Reconstruction efficiencies derived from simulation of X (spin-0, mass & widths from \mathbb{N} , PHSP decay) and B_s^0 signals. Systematic uncertainty on ε_{rel} due to the finiteness of MC samples.

--- The model of the fit to the $M^{\Delta}(B_s^0\pi^{\pm})$ spectrum (for "baseline" selection) includes :

- for BKG : 3rd-order polynomial shape *multiplied* by a threshold function
- for SIGNAL : BW (Departmeters) convolved with a triple-Gaussian resolution function (MC)

≫

PHSP decay) and B_s^0 signals. Systematic uncertainty on ε_{rel} due to the finiteness of MC samples.

--- The model of the fit to the $M^{\Delta}(B_s^0\pi^{\pm})$ spectrum (for "baseline" selection) includes :

- for BKG : 3rd-order polynomial shape *multiplied* by a threshold function
- for SIGNAL : BW (Departmeters) convolved with a triple-Gaussian resolution function (MC)

The absence of a peak is not only supported by direct comparison with the events in the B_s^0 sidebands, but also by several fits to the $M^{\Delta}(B_s^0\pi^{\pm})$ spectrum with a resonant component included, using different kinematic selection requirements (tighter than "baseline"), as well as variants of the BKG modelling, alternative fit regions and different quality criteria.

X(5568) search : upper limits by 🔀

Upper limits on ρ_X , the relative production rate of X(5568) & B_s^0 states, times the unknown BF of the $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$ decay, computed using the asymptotic CLs frequentist method :

 $\rho_X < 1.1 [1.0]\% @ 95\%CL \text{ for } p_T(B_s^0) > 10 [15]GeV$

- Solution Solution Solution Solution Solution Solution Solution The UL were verified to differ negligibly between either the spin-1 or spin-0 assumption.
- They are more stringent than ... previous best UL by MRL117 (2016) 152003 ... following UL by (next slide)
- > Within a kinematic range similar to that of \mathbf{M} , at $p\overline{p}$ collider, no confirmation from \mathbf{M} . (PRL 120 (2018) 202006] is able to set a not so stringent UL: $\rho_X < 6.7\% @ 95\% CL$

≫

X(5568) search : upper limits by

Upper limits on ρ_X , the relative production rate of X(5568) & B_s^0 states, times the unknown BF of the $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$ decay, computed using the asymptotic CLs frequentist method :

 $\rho_X < 1.1 [1.0]\% @ 95\%CL \text{ for } p_T(B_s^0) > 10 [15]GeV$

Solution Solution Solution Using MC of spin-1 state decaying to $B_s^{*0}\pi^{\pm}$, where the generated mass is shifted by $m(B_s^{*0}) - m(B_s^{0})$, the UL were verified to differ negligibly between either the spin-1 or spin-0 assumption.

They are more stringent than ... previous best UL by PRL117 (2016) 152003
In following UL by (next slide)

> Within a kinematic range similar to that of pg, at $p\overline{p}$ collider, no confirmation from m. (PRL 120 (2018) 202006] is able to set a not so stringent UL: $\rho_X < 6.7\% @ 95\% CL$

Upper limits are also obtained for different values of natural width (Γ =10 to 50*MeV*) & mass [from $m(B_s^0) + m(\pi^{\pm}) + \Gamma$ up to 5.9*GeV*-1.5 Γ] of a possible $B_s^0 \pi^{\pm}$ resonance, in order to consider an eventual exotic state with higher mass decaying to the $B_s^0 \pi^{\pm}$ final state.

Systematic uncertainty in the relative efficiency (up to 6%) for extrapolation to high-mass values from the low-mass simulation: not accounted in the plot

26/28

X(5568) search : upper limits by

$\rho_X < 1.5\% @ 95\% CL \text{ for } p_T > 10 GeV$

Upper limits on ρ_X at 95% C.L. (black squares connected by line) at different masses of a hypothetical resonant state *X* decaying to $B_s^0 \pi^{\pm}$, for events with $p_T(B_s^0) > 10$ GeV. A BW width of $21.9 \pm 6.4(\text{stat})^{+5.0}_{-2.5}(\text{syst})$ MeV is assumed, as reported by D0. The values include systematic uncertainties. The expected 95% C.L. upper limits (central black dot-dashed line) with $\pm 1\sigma$ (green) and $\pm 2\sigma$ (yellow) uncertainty bands on ρ_X are shown as a function of the assumed resonance mass.

$\rho_X \in [1.0 - 1.8]\%$ @ 95%*CL* for $p_T > 10GeV$

... does not exceed the $\pm 1\sigma$ error band from the expected limit

Alexis Pompili (Bari University & INFN)

Summary & Outlook

LHC experiments are greatly contributing to exotic hadron spectroscopy and will continue to do it with Run-II data facing new experimental challenges.

CMS & ATLAS try to deal with selected topics where their contribution can be important [*X*(3872), *Y*(4140)+buddies, the search for the bottomonium partner of *X*(3872), *X*(5568)].

Example: new findings in double quarkonia frontier [recent result for Y(1S)Y(1S)] can be the preliminary step for searches of heavy (tetra-)quark bound states with Run-II.

Additional material

Alexis Pompili (Bari University & INFN)

Peaking structures/resonances in the $J/\psi \phi$ mass spectrum

PLB 734 (2014) 261

 $\sqrt{s} = 7TeV (\text{Run-I} / 2011)$

 $B^+ \rightarrow J/\psi \phi K^+$ decays @

In 2009/2011 claims [PRL 102 (2009) 242002; arXiv:1101.6058 (2011)] to observe two intermediate resonances decaying into $J/\psi \phi$ while studying $B^+ \rightarrow J/\psi \phi K^+$ decays, denoted as Y(4140), Y(4274).

In 2012 [PRD 85 (2013) 091103R] do not confirm them and provided an upper limit.

Peaking structures in the $J/\psi \phi$ mass spectrum from $B^+ \rightarrow J/\psi \phi K^+$ decays @

Observation of one structure (& evidence for another) in the Δm spectrum by recostructing the $B^+ \rightarrow J/\psi \phi K^+$ decay (after background subtraction by 20*MeV*-sized bin-wise method)

> Fitting with:

- Signal PDF: S-wave relativistic Breit-Wigner (BW) convolved with mass resolution gaussian
- Background PDF: 3-body Phase Space Shape (PS)
- **1-D Fit**: Binned χ^2 fit to the extracted Δm spectrum using the BW and PS shape.
- **Global 2-D Fit**: simultaneous fit of *m*(*B*⁺) and *Δm* with implicit background subtraction

The $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$ spectrum Is considered up to 1.568 *GeV* to avoid reflections from $B_s \to \psi(2S)\phi \to J/\psi\pi^+\pi^-\phi$ (but whole spectrum also investigated)

Peaking structures in the $J/\psi \phi$ mass spectrum from $B^+ \rightarrow J/\psi \phi K^+$ decays @

Evidence of additional peak (mass-shifted w.r.t. \bigoplus that <u>may be affected</u> by possible ϕK^+ resonances [see next slide]

Peaking structures in the $J/\psi \phi$ mass spectrum from $B^+ \rightarrow J/\psi \phi K^+$ decays @

> For the Y(4140) decaying into $J/\psi\phi$ several **interpretations** have been proposed: $D_s^*\overline{D}_s^*$ molecule, $\csc \overline{c} \overline{s}$ tetraquark, threshold kinematic effect, hybrid charmonium, weak transition with $D_s \overline{D}_s$ rescattering

Y(4140)@ 🞇 : checking reflections

Y(4140) & "buddies" : status & prospects

► Later (2016) [PRL 118 (2017) 022003; PRD 95 (2017) 012002], by performing a full amplitude analysis, observed 4 structures in the $J/\psi \phi$ spectrum while studying the $B^+ \rightarrow J/\psi \phi K^+$ decay, the X(4140), X(4274), X(4500), X(4700) resonances.

Their quantum numbers were determined to be: $\int J^{PC} = 1^{++}$ for X(4140), X(4274)- $J^{PC} = 0^{++}$ for X(4500), X(4700)

Description observed inclusively the Y(4140) prompt production [PRL 115 (2015) 232001]: needs confirmation @ LHC It is important in the understanding of an exotic state to know if ... it is promptly produced and not only seen as an intermediate state in a decay.

Prospects for CMS & ATLAS ?

- Work with challenging amplitude analysis technique; because of the high backgrounds Run-II data may be necessary.
- Inclusive search to confirm or not the is result might be viable by exploting triggers for double charmonia. Because of high background it makes sense to use full Run-2 data !

Backup slides

Alexis Pompili (Bari University & INFN)

X(3872) : interpretation - III

> A few more details concerning Meng et al. [PRD96 (2017) 074014] :

 $d\sigma(pp \rightarrow X(J/\psi\pi^+\pi^-)) = d\sigma(pp \rightarrow \chi'_{c1}) \cdot k,$

where *p* is either a proton or an antiproton, and $k = Z_{c\bar{c}} \cdot Br_0$ with $Br_0 = Br(X \rightarrow J/\psi \pi^+ \pi^-)$. The feed-down contributions from higher charmonia [e.g., $\psi(3S)$] are negligible for the prompt production of $X(3872)/\chi'_{c1}$, so here "prompt" is almost equal to "direct," and the cross section of χ'_{c1} in Eq. (2) can be evaluated in NRQCD factorization, which is given by

$$d\sigma(pp \to \chi_{c1}')$$

$$= \sum_{n} d\hat{\sigma}((c\bar{c})_{n}) \frac{\langle \mathcal{O}_{n}^{\chi_{c1}'} \rangle}{m_{c}^{2L_{n}}}$$

$$= \sum_{i=1}^{n} \int dx_{1} dx_{2} G_{i/p} G_{j/p} d\hat{\sigma}(ij \to (c\bar{c})_{n}) \langle \mathcal{O}_{n}^{\chi_{c1}'} \rangle,$$

where $G_{i,j/p}$ are the parton distribution functions (PDFs) of p, and the indices i, j run over all the partonic species. The matrix element $\langle O_n^{\chi'_{c1}} \rangle$ is marked by "n," which denotes the color, spin and angular momentum of the intermediate $c\bar{c}$ pair. Here we will evaluate the cross section at NLO in α_s and at LO in v (the relative velocity of $c\bar{c}$ in the rest frame of χ'_{c1}); therefore, only $n = {}^{3} P_1^{[1]}$ and ${}^{3}S_1^{[8]}$ are present here.

The outcome of the fits at CMS p_{τ} distribution can well account for the recent ATLAS data, even at a larger range of p_{τ} , for the CDF total xsection, and are consistent with the value of k constrained by the B-meson decay data.

Non-prompt X(3872) production compared with FONNL

Measured differential Xsection for non-prompt $\psi(2S)$ compared with predictions from FONLL calculations :

FONLL calculation describe the data well over the whole range of p_{τ} .

Measured differential Xsection for non-prompt X(3872) compared with predictions from FONLL calculations :

This is compared to a calculation based on the FONLL model prediction for $\psi(2S)$, recalculated for X(3872) using the kinematic template for the non-prompt $X(3872)/\psi(2S)$ ratio shown in figure 3(b) and the effective value of the product of the branching fractions $\mathcal{B}(B \to X(3872))\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = (1.9 \pm 0.8) \times 10^{-4}$ estimated in ref. [11] based on the Tevatron data [33]. This calculation overestimates the data by a factor increasing with $p_{\rm T}$ from about four to about eight over the $p_{\rm T}$ range of this measurement. **b** has reconstructed $\chi_b P$ -wave quarkonium states [each being a closely spaced triplet spin states (χ_{bJ} , J = 0,1,2)] through the radiative decays $\chi_b(nP) \rightarrow Y(1S,2S)\gamma$

> The χ_b cands formed associating a reco $Y \rightarrow \mu^+ \mu^-$ cand with a reconstructed either unconverted or converted γ .

Invariant mass difference $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-)$ calculated to minimize effect of $Y \rightarrow \mu^+\mu^-$ mass resolution:

Observation of $\chi_b(3P)$ system by \Im_b^2 - II

Figure 1 has reconstructed $\chi_b P$ -wave quarkonium states [each being a closely spaced triplet spin states (χ_{bJ} , J = 0,1,2)] through the radiative decays $\chi_b(nP) \rightarrow Y(1S,2S)\gamma$

Observed bottomonium radiative decays in ATLAS, $L = 4.4 \text{ fb}^{1}$

(*) by assuming $\Delta m \equiv 10.5 MeV$

(in agreement with our new measured value)

The X(5568) should have a 4-quark content with quarks of different flavours (b, s, u, d). It could be either:

- a compact tetraquark (tightly bound di-quark anti-diquark pair such as ... $[b \ u][\overline{d} \ \overline{s}],$

ड

molecular

- a loosely bound $B^0_d K^{\pm}$ molecular state [disfavoured: binding energy ~200*MeV*]
- If produced in an S-wave its spin-parity would be: $J^P = 0^+$
- However it cannot be excluded the following decay (with γ undetected):

$$X(5568)^{\pm} \longrightarrow B_S^{0*}\pi^{\pm} \longrightarrow B_S^0 \gamma \pi^{\pm}$$

In this case :

- $J^P = 1^+$
- the mass of the new state would be shifted towards lower values (thus increasing the energy difference from BK threshold : molecule even more unlike!)

 $[b d][\overline{s} \overline{u}],$

 $[s \ u][\overline{b} \ \overline{d}],$

X(5568) search : precaution in selection

Constraints on the angle ΔR (called "cone-cuts" in jargon) between the momenta of the $B_s^0 \& \pi^{\pm}$ candidates (*) are not imposed in CMS analysis, because such requirements sculpt the $B_s^0 \pi^{\pm}$ invariant mass in a nontrivial way (for instance producing a peaking shape) :

(*)
$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

X(5568) search : selection check

To verify the reconstruction procedure the requirement $m(K^+K^-) \in M_{PDG}(\phi) \pm 10 MeV$ is removed, thus allowing the $B^0 \rightarrow J/\psi K\pi$ decay to contribute to the B_s^0 signal & the higher sideband regions of the $m(J/\psi K^+K^-)$ spectrum (as checked by simulation) because of misreconstrution. Tighter selection criteria are imposed to reduce the BKG level.

The two excesses in $M^{\Delta}(B_s^0\pi^{\pm})$ for events only in the higher BKG region and B_s^0 signal region are consistent with contribution from the decays: $B_1(5721)^{\pm} \rightarrow B^{*0}\pi^{\pm} \rightarrow B^0/\pi^{\pm}$ $B_2^*(5747)^{\pm} \rightarrow B^{(*)0}\pi^{\pm} \rightarrow B^0/\pi^{\pm}$... where the photon is not reconstructed while $B^0 \rightarrow J/\psi K\pi$ is misrecontructed as $B_s^0 \rightarrow J/\psi KK!$

Note that the peaks are shifted by $m(B_s^0) - m(B^{(*)0})$ w.r.t. the nominal masses of the $B_{1,2}^{(*)}$ states.

Further search in the $B_s^0 \pi^{\pm}$ system

The extension of $M^{\Delta}(B_s^0 \pi^{\pm})$ investigated range (w.r.t. LHCb) is important, for instance, for the following reason:

PHYSICAL REVIEW D 94, 034036 (2016)

B_c^{\pm} decays into tetraquarks

A. Ali,¹ L. Maiani,^{2,3} A. D. Polosa,^{2,3,4} and V. Riquer^{2,3}

¹Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany ²Dipartimento di Fisica, "Sapienza" Università di Roma P.le Aldo Moro 5, I-00185 Roma, Italy ³INFN Sezione di Roma, P.le Aldo Moro 5, I-00185 Roma, Italy ⁴CERN, Theory Division, Geneva 23, Switzerland (Received 9 April 2016; published 23 August 2016)

The recent observation by the D0 collaboration of a narrow structure X(5568) consisting of four different quark flavors *bdus*, has not been confirmed by LHCb. In the tightly bound diquark model, we estimate the lightest *bdus*, 0⁺ tetraquark at a mass of about 5770 MeV, approximately 200 MeV above the reported X(5568), and just 7 MeV below the $B\bar{K}$ threshold. The charged tetraquark is accompanied by I = 1 and I = 0 neutral partners almost degenerate in mass. A *bdus*, *S*-wave, 1⁺ quartet at 5820 MeV is implied as well. In the charm sector, *cdus*, 0⁺ and 1⁺ tetraquarks are predicted at 2365 and 2501 MeV, about 40–50 MeV heavier than $D_{s0}(2317)$ and $D_{s1}(2460)$. The *bdus* tetraquarks can be searched in the hadronic debris of a jet initiated by a *b*. However, some of them may also be produced in B_c decays, $B_c \rightarrow X_{b0} + \pi$ with the subsequent decays $X_{b0} \rightarrow B_s + \pi$, giving rise to final states such as $B_s \pi^+ \pi^0$. We also emphasize the importance of B_c decays as a source of bound hidden charm tetraquarks, such as $B_c \rightarrow X(3872) + \pi$.

To be seen as resonant $B_s\pi$ states, their masses should lie below the *BK* threshold. A good part of the $B_s\pi$ invariant mass spectrum is excluded by the LHCb, but still there is a window of opportunity left unexplored so far.