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1. Amplitude analyticity  
2. Where do cusps come from  
3. Examples

Triangle Singularities and Cusps
Adam Szczepaniak, Indiana University/Jefferson Lab
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Amplitude singularities 

Al(s) =
1

2

Z 1

�1
dzsA(s, t(s, z), u(s, z))

Partial waves inherit singularities of cross-

A(s,t,u)

M-decay

t sM

s-
channel 

t
s

M

Crossing

t/u channel singularities 

s channel singularities

• However, X-sections are given by A(s,t,u) and not by partial waves. In general 
“bumps” in partial waves are “washed out” and require partial wave analysis. 

• A(s,t,u) has simple singularity structure. Its 
connection to particles arises through (complicated) 
partial waves

• Singularities of partial waves are 
complicated but have a more direct 
physical interpretation
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 Well known examples of cusps

3S1 (deuteron) bound 
state : pole on the 

physical energy plane 

II(-)

Deuteron:  n-p molecule bound by 
meson exchange forces 

 1S1 virtual state : pole on “unphysical 
sheet” close the physical region 

Q0 ⇠ 100 MeV < 2m⇡ << 2mN

Wave function effect 
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s-channel band originating from a non-s-channel pole (naive)

s

t

⇤b ! K�pJ/ 

m2
pJ 

m2
Kp

⇤(1520)

Example:

bl(s) =
1

2

Z 1

�1
dzs

Pl(zs)

m2
⇤ � t(s, z)

t = t(s,zs) kinematical relation

Only one band will survive 
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Suppose coherence is (somehow) broken

s

t

I(s)

s

signal in the Dalitz plot 
but no change in the  

projection I(s) ! 

|A(t)|2 ! |
X

l>0

· · · |2 + |b(s)|2 = |A(s, t)|2

I(s) =
X

l>0

|bl(s)|2 + |b(s)|2

e.g. S-wave splits out

|A(t)|2 = |b(s) +
X

l>0

· · · |2

(C.Schmidt) 
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(2l + 1)bl(s)Pl(zs)

t
Z

dzs s
t(s)

⇢(s0)

+t(s)


1

⇡

Z

str

ds0⇢(s0)
b(s0)

s0 � s

�

b(s) ! b0(s) = b(s) + t(s)


1

⇡

Z

str

ds0⇢(s0)
b(s0)

s0 � s

�
• The effect is to replace b(s) by b’(s) given by

Coherence is broken by final state interactions
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Coherence is broken by final state interactions

A(t)t

• Determined from unitarity fixing the 
discontinuity across the s-channel 
threshold 
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The net effect is 
A(t) ! A(s, t) = [A(t)� b(s)] + b0(s)

I(s) =

Z

P.S.(s)
dt|A(t)|2 =

X

l>0

|bl(s)|2 + |b(s)|2

!
X

l>0

|bl(s)|2 + |b0(s)|2

=
X

l>0

(2l + 1)bl(s)Pl(zs) + b0(s)

Dalitz plot distribution changes

Projection changes if  |b0(s)|2 6= |b(s)|2
I(s, t) = |A(t)|2 6= |A(s, t)|2

e.g. inelastic scattering  
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t = b(s) +
X

l>0

(2l + 1)bl(s)Pl(zs)Λ* exchange A(t) =
1

m2
⇤ � t

Λ* mass

• Λ* Region of interest   

str

s+ i✏s+

s�

• One of the singularities of 
b(s), (s-) is close to the 
physical region and pinches 
the integration contour 

1

⇡

Z

str

ds0⇢(s0)
b(s0)

s0 � s

S-S+

t ! t+ i✏
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Λ* mass

t-channel resonance can produce s-
channel “band” if:

μ(K)

m2 (p) 

λ (hyperon)

t
m1 (cc)

_

M (Λb)

all particles on-shell

m2 and m1 collinear

v(m2) > v(m1)

Coleman-Norton 

Classical picture 
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Example : Pc Kinematics 

s± = �m2
e + p22 + p23 +

(m2
e + p21 � p23)(m

2
e + p24 � p22)

2m2
e

± �1/2(m2
e, p

2
1, p

2
3)�

1//2(m2
e, p

2
2, p

2
4)

2m2
e

s+

s�

m2
e

Ims� > 0Ims� < 0

bl(s) =
1

2

Z 1

�1
dzs

Pl(zs)

m2
⇤ � t(s, z)

• Singularities of b(s) are at s=s±

Z

str

ds0⇢(s0)
b(s0)

s0 � s+ i✏

m1

m2

m3

m4 m1 : ⇤b m2 : K

m3 : 3.4 GeV

m4 : p

mc : 4.449 GeV

m3 + m1 threshold
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A.Pilloni 
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Possible tests in photo production  

Potential for cusps in 

�p ! Xp ! !⇡⇡p

�p ! Xp ! �⇡⇡p

�p ! Xp ! �KK̄p

Etc.
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If not triangle (exchange) singularity then what?

1 - 

1

→

N(s) ⇠ exp(�s/⇤2)=

• Thresholds are not responsible for 
cusps. They are windows to 2nd 
sheet singularities 

• Peaks come from either cross 
(cusps), or direct channel 
singularity (resonances)  

N(s) ⇠ exp(�s/⇤2)• The form factor model is neither one! 

E.Swanson, Phys.Rev.D91, 034009 (2015)
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Ampl /
Z

4
ds0

r
1� 4

s0
N(s0)

s0 � s

N(s) / exp(�s)

• The cusp is generated by singularity at infinity 
• Are such singularities physical ?
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Scattering through resonances 

∞ number of poles : confinement  

f(s) =
1

K�1(s)� i�(s)

f =

K-1(s) needs to have ∞ number of poles  (K(s) needs zeros)

K(s) =
1X

r=1

g2r
m2

r � s
!

X

r

1

r2 � s
⇠ cos(⇡

p
s)

sin(⇡
p
s)

Quadratically spaced radial trajectories 

Linearly spaced radial trajectories (Veneziano) 

K(s) ⇠ �(a�s)
�(b�s)

Exponential form factors related to infinite number  
of particles (confinement) !
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Veneziano model for Dalitz plot analysis  

• V → PPP (ω, J/ψ → 3π)

A =
X

n,m

cn,m


�(n� ↵(s))�(n� ↵(t))

�(n+m� ↵(s)� ↵(t))
+ (s, u) + (t, u)

�
M = ✏µ⌫↵�p

µ
1p

⌫
2p

↵
3 ✏

�A(s, t, u)

• In the past, fit c(n,m)’s to the data. Need various conspiracy relations.  (e.g. Lovelace, 
Phys. Lett. B28, 265 (1968), Altarelli, Rubinstein, Phys. Rev. 183, 1469 (1969)) 

• Allows for imaginary non-linear (and complex) trajectories without introducing 
“ancestors” 

n: number of Regge trajectories 
a(n,i): determine resonance couplings 
N: determines the onset of Regge behavior 
α(s), α(t) = Re α + i Im α:  with Im α related to resonance widths

A.S., M.R. Pennington, Phys .Lett. B737, 283 (2014). 
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Speaking of the Veneziano amplitude 

ψ’

J/ψ

BESIII, Phys.Lett. 
 B710 (2012) 594-599

“standard”  
(isobar) 

dual model

J/ψdual model

ψ’
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1. Cusps are possible, if kinematics 
cooperates. In principle systematic 
approach possible, but …  

   —  f.s.i amplitudes ? (lattice?)  
   —  multiple coupled channels ?  
   —  include in data fits. 

Summary



INDIANA UNIVERSITY

1

⇡

Z

str

ds0⇢(s0)
b(s0)

s0 � s

str

s+ i✏ s’ planes+

s�
Coleman-Norton theorem 

t-channel resonance can produce s-
channel “band” if:

μ(K)

m2 (p) 

λ (hyperon)

t
m1 (cc)

_

M (Λb)

all particles on-shell
m2 and m1 collinear
v(m2) > v(m1)

One of the singularities of b(s), 
(s-) is close to the physical 
region and pinches the 
integration contour 
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4

yield approximately 1% for this ratio. Our objective,
however, is not to discuss the origin of the discrepancy
with the predicted ⇢⇡ couplings but instead focus on the
analysis of the decay amplitude.

Both, the J/ and  0 decays show a clear signal of ⇢
production. In additional there is indication of resonance
being produced in the third and fifth resonance region,
i.e. ↵ ⇠ 3, 5. We will thus attempt to fit the di-pion mass
distribution with three amplitudes, A1, A3 and A5, re-
spectively. We take N = 20 which is above the available
phase space as as long as N > M2 we find very little
sensitivity to N In terms of the s-channel partial waves,
f
l

(s), the scalar amplitude in Eq. 1

F (s, t, u) ⌘
X

n=1,3,5

A
n

(s, t;N)+A
n

(s, u;N)+A
n

(t, u;N)

(16)
is given by

F (s, t, u) =
X

l=odd

f
l

(s)P 0
l

(z) (17)

where, ignoring the pion mass, z = (t � u)/(M2 � s) is
the cosine of s-channel scattering angle and P

l

are the
Legendre polynomial. As discussed in the preceding sec-
tion, the pole at ↵

s

= 1 contributes only to the l = 1
wave. From A1(s, t, ;N) and A1(s, u;N) in F (s, t, u) for
the pole contribution to f1(s), one finds, (A1(t, u;N) does
not contribute to the pole term ↵

s

)

f
(1)
1 (s) =

g
(1)
1 (M2)

1� ↵(s)
(18)

where g
(1)
1 (M2) = a1,0(M2) and a

n,i

are defined by
Eq. 15. At the ↵

s

= 3, 5 poles the amplitudes
A3(s, t;N), A5(s, u;N) contribute to l = 1, 3 and l =
1, 3, 5 partial waves, respectively

f
(3)
1,3 (s) =

g
(3)
1,3(M

2)

3� ↵(s)
, f

(5)
1,3,5(s) =

g
(5)
1,3,5(M

2)

5� ↵(s)
. (19)

The superscripts on f
(n)
l

denote the position of the poles
i.e. n = ↵

s

and the resonance couplings, g
n,l

are obtained
from,

g
n,l

=

Z 1

�1

dz

2
[P

l�1(z)�P
l+1(z)][ResAn

(n, t;N)+(t ! u)]

(20)
where Res refers to the residue of the amplitude of Eq. 15
at pole at ↵

s

= n.
For each, channel, J/ and  0 we fit nine real pa-

rameters, a1,0, a3,0, a3,1, a3,2, a5,0, · · · a5,4. In addition we
allow the trajectories to be imaginary when appearing in
the denominators of A

n

in order to be able to account
for the finite width of the resonances. The ⇢ trajectory
is expected to be approximately equal to

↵(s) = 1 + ↵0(s�m2
⇢

) + i↵0m
⇢

�
⇢

⇠ 0.47 + 0.9s+ 0.1i
p
s� 0.07 (21)
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FIG. 2: Dalitz plot projection of the di-pion mass distribution
from J/ decay. The solid is the result of the fit with three
amplitudes and the dashed line with the amplitude A1 alone.
The insert shows the mass region of the ⇢3 and its contribution
from the fit with the full set of amplitudes (solid line) as
compared. Absence of the structure at 1.7GeV from the fit
with the A1 amplitude is indicated by the dashed line.
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FIG. 3: Dalitz plot projection of the di-pion mass distribution
from  0 decay. The solid is the result of the fit with three
amplitudes and the dashed line is the fit with A1 alone.

where we also included the phase space factor,
p
s� 4m2

⇡

in the imaginary part. With ↵(s) = 1, 3, 5 the six res-
onances corresponding to the amplitudes in Eqs. 18,19
can be assigned to ⇢(770) (↵ = 1), ⇢0(1700), ⇢3(1690),
(↵ = 3) and ⇢00(2150) ⇢3(2250), ⇢5(2350) for ↵ = 5, re-
spectively.

The data and results of the fit are shown in Figs. ??.
The data is taken from for the resent measurement by the
BESIII collaboration. Unfortunately having no access to
the Dalitz plot distribution we were able to analyze the
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FIG. 2: Dalitz plot projection of the di-pion mass distribution
from J/ decay. The solid is the result of the fit with three
amplitudes and the dashed line with the amplitude A1 alone.
The insert shows the mass region of the ⇢3 and its contribution
from the fit with the full set of amplitudes (solid line) as
compared. Absence of the structure at 1.7GeV from the fit
with the A1 amplitude is indicated by the dashed line.
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Virtual One Particle Exchange  
(potential) 

Real One Partice Exchange  
(3 particle intermediate state) 

M. Mikhasenko,B. 
Ketzer,A.Sarantsev

Difficulties  with the OPE model

∑

j

= + +
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E.Eichten 

X(3872)
Zc(3900)

Several of the “non 
quark model” 
candidates seem 
appear near a 
“heavy” threshold 

Poles near threshold 
are a good thing   
“unitarity” can be 
saturated by one 
channel 
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Λ spectrum

1/2

3/2

5/2

7/2

6 5 4 3 2 1 0 1 2 3 4 5 6

J Natural parity

Λ(1116)

Λ(1520)

Λ(1600) Λ(1810)

Λ(1820) Λ(2110)

Λ(2100)

Λ(1690)

Unnatural parity

Λ(1405)
Λ(1670)

Λ(1830)

Λ(1890)

  

 Re[sp] (GeV2) 

 

⇤(1710)

C.Fernandez-Ramirez, et al. (JPAC)  Phys. Rev. D93 034029 (2016)
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? threshold  
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K̄N ! K̄N

K̄N ! ⇡̄⌃

C.Fernandez-Ramirez, et al. (JPAC)  Phys. Rev. D93 034029 (2016)
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