Triangle Singularities and Cusps

Adam Szczepaniak, Indiana University/Jefferson Lab

1. Amplitude analyticity

2. Where do cusps come from
3. Examples

Amplitude singularities

- Singularities of partial waves are complicated but have a more direct physical interpretation \qquad
- $\mathrm{A}(\mathrm{s}, \mathrm{t}, \mathrm{u})$ has simple singularity structure. Its connection to particles arises through (complicated) partial waves

$$
A_{l}(s)=\frac{1}{2} \int_{-1}^{1} d z_{s} A(s, t(s, z), u(s, z))
$$

Well known examples of cusps

$Q_{0} \sim 100 \mathrm{MeV}<2 m_{\pi} \ll 2 m_{N}$

Wave function effect

${ }^{3} \mathrm{~S}_{1}$ (deuteron) bound state: pole on the physical energy plane
${ }^{1} S_{1}$ virtual state : pole on "unphysical sheet" close the physical region

s-channel band originating from a non-s-channel pole (naive)

凹

Suppose coherence is (somehow) broken

Coherence is broken by final state interactions

$$
A(t)=b(s)+\sum_{l>0}(2 l+1) b_{l}(s) P_{l}\left(z_{s}\right)
$$

$$
+t(s)\left[\frac{1}{\pi} \int_{s_{t r}} d s^{\prime} \rho\left(s^{\prime}\right) \frac{b\left(s^{\prime}\right)}{s^{\prime}-s}\right]
$$

- Determined from unitarity fixing the discontinuity across the s-channel threshold
- The effect is to replace $b(s)$ by $b^{\prime}(s)$ given by

$$
b(s) \rightarrow b^{\prime}(s)=b(s)+t(s)\left[\frac{1}{\pi} \int_{s_{t r}} d s^{\prime} \rho\left(s^{\prime}\right) \frac{b\left(s^{\prime}\right)}{s^{\prime}-s}\right]
$$

The net effect is

$$
\begin{aligned}
A(t) \rightarrow A(s, t) & =[A(t)-b(s)]+b^{\prime}(s) \\
& =\sum_{l>0}(2 l+1) b_{l}(s) P_{l}\left(z_{s}\right)+b^{\prime}(s)
\end{aligned}
$$

Dalitz plot distribution changes

$$
I(s, t)=|A(t)|^{2} \neq|A(s, t)|^{2}
$$

- Projection changes if $\left|b^{\prime}(s)\right|^{2} \neq|b(s)|^{2}$

$$
\begin{aligned}
& \text { e.g. inelastic scattering } \\
& I(s)=\int_{P . S .(s)} d t|A(t)|^{2}=\sum_{l>0}\left|b_{l}(s)\right|^{2}+|b(s)|^{2} \\
& \rightarrow \sum_{l>0}\left|b_{l}(s)\right|^{2}+\left|b^{\prime}(s)\right|^{2}
\end{aligned}
$$

$$
\begin{array}{l|l}
\wedge & \text { exchange } \\
\hline \mathbf{t} & A \\
\hline
\end{array}(t)=\frac{1}{m_{\Lambda}^{2}-t}=b(s)+\sum_{l>0}(2 l+1) b_{l}(s) P_{l}\left(z_{s}\right)
$$

$$
\frac{1}{\pi} \int_{s_{t r}} d s^{\prime} \rho\left(s^{\prime}\right) \frac{b\left(s^{\prime}\right)}{s^{\prime}-s}
$$

- One of the singularities of $\mathrm{b}(\mathrm{s})$, (s.) is close to the physical region and pinches the integration contour

Classical picture

Coleman-Norton

Example : Pc Kinematics

m_{1}	m_{3}	
$s_{ \pm}=-m_{e}^{2}+p_{2}^{2}+p_{3}^{2}+\frac{\left(m_{e}^{2}+p_{1}^{2}-p_{3}^{2}\right)\left(m_{e}^{2}+p_{4}^{2}-p_{2}^{2}\right)}{2 m_{e}^{2}} \pm \frac{\lambda^{1 / 2}\left(m_{e}^{2}, p_{1}^{2}, p_{3}^{2}\right) \lambda^{1 / / 2}\left(m_{e}^{2}, p_{2}^{2}, p_{4}^{2}\right)}{2 m_{e}^{2}}$		
m_{2}	m_{4}	

- Singularities of $\mathrm{b}(\mathrm{s})$ are at $\mathrm{s}=\mathbf{S}_{ \pm} \quad b_{l}(s)=\frac{1}{2} \int_{-1}^{1} d z_{s} \frac{P_{l}\left(z_{s}\right)}{m_{\Lambda}^{2}-t(s, z)}$

Amplitude analysis for $Z_{c}(3900)$

One can test different parametrizations of the amplitude, which correspond to
different singularities \rightarrow different natures

Triangle rescattering, logarithmic branching point

Szczepaniak, PLB747, 410-416 Szczepaniak, PLB757, 61-64 Guo et al. PRD92, 071502
(anti)bound state, II/IV sheet pole («molecule»)
D^{*}

AP et al. (JPAC), arXiv:1612.06490

Resonance, III sheet pole («compact state»)

Tornqvist, Z.Phys. C61, 525
Swanson, Phys.Rept. 429
Hanhart et al. PRL111, 132003

Maiani et al., PRD71, 014028
Faccini et al., PRD87, 111102
Esposito et al., Phys.Rept. 668

Fit: III

Fit: III

Potential for cusps in

$$
\begin{aligned}
& \gamma p \rightarrow X p \rightarrow \omega \pi \pi p \\
& \gamma p \rightarrow X p \rightarrow \phi \pi \pi p \\
& \gamma p \rightarrow X p \rightarrow \phi K \bar{K} p
\end{aligned}
$$

Etc.

If not triangle (exchange) singularity then what?

- Thresholds are not responsible for cusps. They are windows to 2nd sheet singularities
- Peaks come from either cross (cusps), or direct channel singularity (resonances)

- The form factor model is neither one!
$=N(s) \sim \exp \left(-s / \Lambda^{2}\right)$
E.Swanson, Phys.Rev.D91, 034009 (2015)
$\mathrm{Ampl} \propto \int_{4} d s^{\prime} \sqrt{1-\frac{4}{s^{\prime}}} \frac{N\left(s^{\prime}\right)}{s^{\prime}-s}$

Scattering through resonances

$$
f(s)=\frac{1}{K^{-1}(s)-i \Gamma(s)}
$$

∞ number of poles : confinement
$\mathrm{K}^{-1}(\mathrm{~s})$ needs to have ∞ number of poles ($\mathrm{K}(\mathrm{s})$ needs zeros)
Quadratically spaced radial trajectories

$$
K(s)=\sum_{r=1}^{\infty} \frac{g_{r}^{2}}{m_{r}^{2}-s} \rightarrow \sum_{r} \frac{1}{r^{2}-s} \sim \frac{\cos (\pi \sqrt{s})}{\sin (\pi \sqrt{s})}
$$

Linearly spaced radial trajectories (Veneziano)
$K(s) \sim \frac{\Gamma(a-s)}{\Gamma(b-s)} \quad$ Exponential form factors related to infinite number of particles (confinement)!

Veneziano model for Dalitz plot analysis

$M=\epsilon_{\mu \nu \alpha \beta} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\alpha} \epsilon^{\beta} A(s, t, u) \quad A=\sum_{n, m} c_{n, m}\left[\frac{\Gamma(n-\alpha(s)) \Gamma(n-\alpha(t))}{\Gamma(n+m-\alpha(s)-\alpha(t))}+(s, u)+(t, u)\right]$

- $V \rightarrow \operatorname{PPP}(\omega, \mathrm{~J} / \psi \rightarrow 3 \pi)$
- In the past, fit c(n,m)'s to the data. Need various conspiracy relations. (e.g. Lovelace, Phys. Lett. B28, 265 (1968), Altarelli, Rubinstein, Phys. Rev. 183, 1469 (1969))

$$
\begin{aligned}
& \mathcal{A}_{n}(s, t ; N)=\frac{2 n-\alpha_{s}-\alpha_{t}}{\left(n-\alpha_{s}\right)\left(n-\alpha_{t}\right)} \sum_{i=1}^{n} a_{n, i}\left(-\alpha_{s}-\alpha_{t}\right)^{i-1} \\
& \times \frac{\Gamma\left(N+1-\alpha_{s}\right) \Gamma\left(N+1-\alpha_{t}\right)}{\Gamma(N+1-n) \Gamma\left(N+n+1-\alpha_{s}-\alpha_{t}\right)}
\end{aligned}
$$

- Allows for imaginary non-linear (and complex) trajectories without introducing "ancestors"
A.S., M.R. Pennington, Phys .Lett. B737, 283 (2014).
n : number of Regge trajectories $a(n, i)$: determine resonance couplings
N : determines the onset of Regge behavior
$\alpha(\mathrm{s}), \alpha(\mathrm{t})=\operatorname{Re} \alpha+\mathrm{i} \operatorname{Im} \alpha$: with Im a related to resonance widths

Speaking of the Veneziano amplitude

Summary

1. Cusps are possible, if kinematics cooperates. In principle systematic approach possible, but ...

- f.s.i amplitudes ? (lattice?)
- multiple coupled channels?
- include in data fits.

$$
\begin{array}{lll}
\frac{1}{\pi} \int_{s_{t r}} d s^{\prime} \rho\left(s^{\prime}\right) \frac{b\left(s^{\prime}\right)}{s^{\prime}-s} & s_{+} & s+i \epsilon \quad \mathbf{s}^{\prime} \text { plane } \\
\begin{array}{l}
\text { One of the singularities of b(s), } \\
\begin{array}{l}
\text { r.) is close to the physical } \\
\text { iegion and pinches the }
\end{array}
\end{array} & s_{t r} & s_{-}
\end{array}
$$

iteqreinacintpyrton theorem

t-channel resonance can produce schannel "band" if:
all particles on-shell m_{2} and m_{1} collinear
$v\left(m_{2}\right)>v\left(m_{1}\right)$

FIG. 2: Dalitz plot projection of the di-pion mass distribution from J / ψ decay. The solid is the result of the fit with three amplitudes and the dashed line with the amplitude \mathcal{A}_{1} alone. The insert shows the mass region of the ρ_{3} and its contribution from the fit with the full set of amplitudes (solid line) as compared. Absence of the structure at 1.7 GeV from the fit with the \mathcal{A}_{1} amplitude is indicated by the dashed line.

FIG. 3: Dalitz plot projection of the di-pion mass distribution from ψ^{\prime} decay. The solid is the result of the fit with three amplitudes and the dashed line is the fit with \mathcal{A}_{1} alone.

E.Eichten

