Five quarks coupled with open channels — Compact exotic or extended molecule? —

Atsushi Hosaka RCNP Osaka University With Emiko Hiyama, Jean-Marc Richard, Makoto Oka SCGP Workshop on Exotic Hadrons at Stony Brook May 28 - June 1, 2018

- 1. Prologue; Θ^+
- 2. qqqcc for Pc, hard to exist as a compact 5q's
- 3. KN interaction for molecule

Prologue, could have been the main: Θ^+ uudds

E. Hiyama, M. Kamimura, A. Hosaka, H. Toki, M. Yahiro Phys.Lett. B633 (2006) 237-244, e-Print: hep-ph/0507105 | PDF

Two slides from "Pentaquark05", J-Lab Oct 20-22, 2005 Hadronic (color-singlet) or colored correlations?

SU(3) qqq or qqbar are enough to make color singlets

K⁺N Phase shift

Quark model estimate of hidden-charm pentaquark resonances Emiko Hiyama , Atsushi Hosaka, Makoto Oka, Jean-March Richard arXiv:1803.11369 [nucl-th] | PDF

For Pc(4380, 4450), PRL 115, 072001 (2015)

Full five-body calculation with the confined + scattering

Closed-multiquark + Fallapart

Hamiltonian

$$H = \sum_{i} (m_{i} + \frac{p_{i}^{2}}{2m_{i}}) - T_{G} - \frac{3}{16} \sum_{i < j} \lambda_{i} \cdot \lambda_{j} V_{ij}(r_{ij})$$
$$V_{ij}(r) = -\frac{\kappa}{r} + \lambda r^{p} - \Lambda + \frac{2\pi\kappa'}{3m_{i}m_{j}} \frac{\exp(-r^{2}/r_{0}^{2})}{\pi^{3/2} r_{0}^{3}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}$$
$$r_{0}(m_{i}, m_{j}) = A(\frac{2m_{i}m_{j}}{m_{i} + m_{j}})^{-B}$$

Parameters B. Silvestre-Brac and C. Semay, Z. Phys. C61 (1994) 271

	p	$m_{u,d}(\text{GeV})$	$m_s(\text{GeV})$	$\Lambda(\text{GeV})$	_
AP1	3/2	0.277	0.553	1.851	
AL1	1	0.315	0.577	1.836	
	В	$A(\text{GeV}^{B-1})$	κ	κ'	$\lambda({ m GeV}^{5/3})$
	0.3263	$q^{-1.5296}$	0.5871	$\frac{1}{c}.8025$	0.3898
9	$q \left(\frac{\partial}{\partial 2} 204 \right) $	$(\overline{r^3})$ 1.6553 \overline{c}	$q \left(\begin{array}{c} 0250\\ \bullet \end{array} \right) 69$	4.8609 5	\overline{c} 0.1 $\overline{0532}$
	SCGP Work	shop on Exotic Hadrons a	t Stony Brook May	28 - June 1, 2018	(3)

 \overline{c}

5

Threshold masses

hadron	J^P	cal.	exp.
η_c	0^{-}	2984	2983
$J\!/\!\psi$	1-	3103	3096
D	0^{-}	1882	1869
D^*	1-	2033	2007
N	$1/2^{+}$	937	938
Λ_c	$1/2^{+}$	2290	2286
Σ_c	$1/2^{+}$	2472	2455
Σ_c^*	$3/2^{+}$	2545	2520

5q Wave function $q(1)q(2)q(3) c(4)\overline{c}(5)$

Four Jacobi configurations

Open/Scattering channels

Color: $\xi_1^{(1)} = [(123)_1(45)_1]_1$ $\to (3 \times 3 \times 3) \times (3 \times \overline{3}) \to 1 \times 1$

Spin Isospin: $\chi^{(1)}_{S(s\bar{s}\sigma)}(123,4,5) = [[(12)_s 3]_{\sigma}(45)_{\bar{s}}]_S$

Orbital $\Psi_{JM} =$

 $\sum_{\substack{C=1,...,4\\n \ l m, \ ...}} \mathcal{A}_{123} \, \xi_1^{(C)} \eta_T^{(C)} \Big[\chi_{S(s\bar{s}\sigma)}^{(C)} \times \Big[[[\phi_{nl}^{(C)}(r^{(C)}) \, \varphi_{\nu\lambda}^{(C)}(\rho^{(C)})]_\Lambda \psi_{NI}^{(C)}(\mathbf{R}^{(C)}) \Big]_{I'} \tilde{\psi}_{N'K}^{(C)}(s^{(C)}) \Big]_L \Big]_{J^P M}$ $\phi_{nlm}(\mathbf{r}) = N_{nl} \, r^l \, e^{-(r/r_n)^2} \, Y_{lm}(\hat{\mathbf{r}})$ $r_n = r_1 \, a^{n-1} \qquad (n = 1 \dots n_{\max})$ and similar for other parts $n_{\max} \sim 5 \text{ for confining and} \sim 10 \text{ for scattering}$

Coefficients are obtained by diagonalizing *H* By about 40,000 basis functions

Strategy:

Study s-wave dominant negative parity states

1st: Solutions only with confining channels included $c = 3, 4 \sim$ Corresponds to standard QM calc.

2nd: Couple the scattering channels c = 1, 2All possible open channels: $\eta_c N, J/\psi N, \Lambda_c D, \Lambda_c D^*, \Sigma_c D, \Sigma_c D^*, \eta_c N, \psi N, \Sigma_c^* D^*$

Scaling method

Confined states and their fate

4119 couples strongly with $\eta_c N \rightarrow$ Dominates it

Confined states and their fate

4119 couples strongly with $\eta_c N \rightarrow$ Dominates it

Confined states and their fate

4236 couples strongly with $J/\psi N \rightarrow$ Dominates it

All confined states

$J = 1/2^{-1}$			$J = 3/2^{-1}$		
4119	$\eta_c + N$	4221	$J/\psi + N$		
4236	$J/\psi + N, \Lambda_c + D$	4577	$\Lambda_c + D^*, \Sigma_c * D^*, \Sigma_c^* + D^*, J/\psi$	+N	
4497	$\eta_c + N, \Lambda_c + D^*, \ \Sigma_c + D$	4617	$\Sigma_c^* + D, \Sigma_c^* + D^*$		
4581	$J/\psi + N$	4700	$\Sigma_c^* + D, \Sigma_c^* + D^*$		
4593	$\Lambda_c + D$	4711	$\Sigma_c + D^*$		
4629	$\psi' + N$	4748	$\Sigma_c^* + D$		
4679	$\Sigma_c + D^*$	4836	$\Sigma_c^* + D^*$ or $\Sigma_c^* + D$		
4708	-	4840	$\Sigma_c^* + D^* \text{ or } \Sigma_c^* + D$		
		4896	-		

All states fade away after coupling to scattering states Except for **4708** and **4896**; No strong coupling to any They show at **4690** and **4920 as resonances**

Structure of 1/2- (4690)

qq and $c\overline{c}$ distributions

- qqqcc system does not support states in the Pc region in the quark model
- Color singlet hadrons are formed to fall apart in the absence of inter-hadron interactions

• Coupling to scattering states is important

Interaction between the color singlet hadrons

The key issue for molecular states It took 70 years after Yukawa for NN from QCD

Necessity of a good and practical framework

An example of K(K)N interaction in the Skyrme model sq qqq ~ qqq requires lattice calc. huge sources

$$U_K = \exp\left[i\frac{\pi}{F_{\pi}}\lambda_a \Lambda_a\right], \quad a = 4, 5, 0, 7$$

$$\lambda_a K_a = \sqrt{2} \begin{pmatrix} 0_{2 \times 2} & K \\ K^{\dagger} & 0 \end{pmatrix} \quad K = \begin{pmatrix} K^+ \\ K^0 \end{pmatrix} \tag{4.8}$$

Skyrme Lagrangián supplemented by the WZ term イソスピナー

$$L = \frac{F_{\pi}^{2}}{K^{1}} \operatorname{tr} \left(\mathcal{A}_{\mu} U \partial^{\mu} U^{\dagger} \right) + \frac{1}{32e^{2}} \operatorname{tr} \left[(\partial_{\mu} U) U^{\dagger}, (\partial_{\nu} U) U^{\dagger} \right]^{2}$$

$$+ \overline{L}_{S} \mathcal{A}_{K}^{\mu} \mathcal{L}_{WZ}$$

$$(4.9)$$

4.4) 式を代Respects chiral appretry and large Nc • Nucleons as solitons

- Strong spin isospin force forms the hedgehog
- Nucleons as rotating hedgehogs

Kaonskaround the nucleon

Around the hedgehogna Bredyetized frameon Callan-Klebanov, Nucl. Phys. B262 (1985)

Around the rotating hedgehog ~ Lab frame geneg Ezoe-Hosaka, Phys Rev D94, 034022 (2016); D96, 054002 (2017) iton

$$U_{CK} = A(t) \sqrt{U_{\pi}} U_{K} \sqrt{U_{\pi}} A^{\dagger}(t) \qquad \qquad U_{\pi} = \exp(i\vec{\tau} \cdot \hat{r}F(r))$$

$$U_{EH} = A\left(t\right)\sqrt{U_{\pi}}A^{\dagger}\left(t\right)U_{K}A\left(t\right)\sqrt{U_{\pi}}A^{\dagger}\left(t\right) \ln \left(t\right) \left(t\right) + \frac{1}{2}\left(t\right) \left(t\right) \left($$

og **Body-fixed frame** the kaon around He "**rotating**" hedgehog oliton $V_{EH} = \mathbf{K} \mathbf{H}$ interaction $U_{KA}(t) \sqrt{U_{\pi}} A^{\dagger}$ (**tKN interaction** SCGP Workshop on Exotic Hadron's at Stony Brook, May 28 - June 1, 2018

Kaon around the **rotating hedgehog** $L(U \to A\sqrt{U_{\pi}}A^{\dagger}U_{K}A\sqrt{U_{\pi}}A^{\dagger})$ $L = L_{SU(2)} + L_{KN}$ $L_{SU(2)} = \frac{1}{16} F_{\pi}^{2} \operatorname{tr} \left[\partial_{\mu} \tilde{U}^{\dagger} \partial^{\mu} \tilde{U} \right] + \frac{1}{32e^{2}} \operatorname{tr} \left[\partial_{\mu} \tilde{U} \tilde{U}^{\dagger}, \partial_{\nu} \tilde{U} \tilde{U}^{\dagger} \right]^{2}$ $L_{KN} = (D_{\mu}K)^{\dagger} D^{\mu}K - K^{\dagger}a^{\dagger}_{\mu}a^{\mu}K - m_{K}^{2}K^{\dagger}K$ $+\frac{1}{(eF_{\pi})^{2}}\left\{-K^{\dagger}K\mathrm{tr}\left[\partial_{\mu}\tilde{U}\tilde{U}^{\dagger},\partial_{\nu}\tilde{U}\tilde{U}^{\dagger}\right]^{2}-2\left(D_{\mu}K\right)^{\dagger}D_{\nu}K\mathrm{tr}\left(a^{\mu}a^{\nu}\right)\right\}$ $-\frac{1}{2}\left(D_{\mu}\boldsymbol{K}\right)^{\dagger}D^{\mu}\boldsymbol{K}\mathrm{tr}\left(\partial_{\nu}\tilde{U}^{\dagger}\partial^{\nu}\tilde{U}\right)+6\left(D_{\nu}\boldsymbol{K}\right)^{\dagger}\left[a^{\nu},a^{\mu}\right]D_{\mu}\boldsymbol{K}\right\}$ $+\frac{3\imath}{F^2}B^{\mu}\left[\left(D_{\mu}\boldsymbol{K}\right)^{\dagger}\boldsymbol{K}-\boldsymbol{K}^{\dagger}\left(D_{\mu}\boldsymbol{K}\right)\right]$

 $\tilde{U} = A(t)U_H A^{\dagger}(t), \quad \tilde{\xi} = A(t)\sqrt{U_H}A^{\dagger}(t) \qquad D_{\mu}K = \partial_{\mu}K + v_{\mu}K$ $v_{\mu} = \frac{1}{2} \left(\tilde{\xi}^{\dagger} \partial_{\mu}\tilde{\xi} + \tilde{\xi} \partial_{\mu}\tilde{\xi}^{\dagger}_{P} \psi_{\text{orkshop on Exotic Hadrons at Stony Brock, May 28 - June 1, 2018} - \tilde{U} \right) \left(\tilde{U}^{\dagger}_{L} \partial_{\mu}\tilde{\xi}^{\dagger}_{P} / 27 + \tilde{\xi} \partial_{\mu}\tilde{\xi}^{\dagger}_{P} \right)$

S-wave KN interaction

Lennard-Jones like potential

Produces a loosely bound state for $\Lambda(1405)$

Phase shifts for $\overline{K}N$ and KN

Summary

- qqqcc system does not support states in the Pc region in the quark model
- Color singlet hadrons are formed to fall apart in the absence of inter-hadron interactions

As an example of interaction for color singlet hadrons

- K and \overline{K} N interaction may have a structure of the Lennard-Jones type shape \rightarrow weakly bound $\Lambda(1405)$
 - Coupling to scattering states is crucial for resonances.
 - We need good description for interaction for hadronic molecule to answer/predict when and how nearthreshold molecules are developed

Exotic triple-charm deuteron-like hexaquarks e-Print: <u>arXiv:1804.02961</u>

 $\Xi_{cc}\Lambda_c/\Xi_{cc}\Sigma_c/\Xi_{cc}\Sigma_c^* \text{ coupled-channel } I(J^P) = 1/2(0^+, 1^+)$ $\Xi_{cc}\Xi_c/\Xi_{cc}\Xi_c'/\Xi_{cc}\Xi_c^* I(J^P) = 1(0^+, 1^+)$

Prediction of triple-charm molecular pentaquarks; <u>arXiv:1711.09579</u> Phys.Rev. D96 (2017) no.11, 114030

 $\Xi_{cc}D$ state with $I(J^P) = O(1/2^-)$ and a $\Xi_{cc}D^*$ state with $I(J^P) = O(3/2^-)$

Ωc-like molecular states from meson-baryon interaction; <u>arXiv:1711.07650</u> Phys.Rev. D97 (2018) no.3, 036016

 $\Xi_c^* \bar{K} / \Omega_c \eta / \Omega_c^* \eta / \Xi_c \bar{K}^* / \Xi_c' \bar{K}^* / \Omega_c \omega \text{ with } I(J^P) = 0(3/2^-)$ mainly composed of the $\Xi_c^* \bar{K}$

Heavy molecules and one- σ/ω -exchange model $\Lambda_c D(\bar{D})$, and $\Lambda_c \Lambda_c(\bar{\Lambda}_c)$ Phys.Rev. D96 (2017) no.11, 116012; <u>arXiv:1707</u> 08306

By including one- π -exchange force attraction when coupled channels a we expect many molecular states i SCGP Workshop on Exotic Hadrons at Sto

charmed	anti-charmed
meson	meson

anti-cha meso

uudds

Gaussian expansion method

Quark model estimate of hidden-charm pentaquark resonances

Emiko Hiyama (Kyushu U. & Nishina Ctr., RIKEN & JAERI, Tokai & RCNP), JAEA Atsushi Hosaka (RCNP & JAERI, Tokai), Makoto Oka (Tokyo Inst. Tech. & JAERI, Tokai), Jean-March Richard (Lyon, IPN). Mar 30, 2018. 9 pp. e-Print: arXiv:1803.11369 [nucl-th] | PDF

A quark model, which reproduces the ground-state mesons and baryons, i.e., the threshold energies, is applied to the $qqqc\bar{c}$ configurations, where q is a light quark and c the charmed quark. In the calculation, several open channels are explicitly included such as $J/\psi + N$, $\eta_c + N$, $\Lambda_c + D$, etc. To distinguish genuine resonances and estimate their width, we employ Gaussian Expansion Method supplemented by the real scaling method (stabilization). <u>No resonance is found at the energies of</u> the $P_c(4380)$ and $P_c(4450)$ pentaquarks. On the other hand, there is a sharp resonant state at 4690 MeV with $J = 1/2^{-}$ state and another one at 4920 MeV with $J = 3/2^{-}$ state, which have a compact structure.

		State	Mass (MeV)	Width (MeV)	Fit fraction (%)	Significance
	С	P _c (4380)+	4380±8±29	205±18±86	8.4±0.7±4.2	9σ
<u> </u>		P _c (4450)⁺	4449.8±1.7±2.5	39± 5±19	4.1±0.5±1.1	12σ

Ean Da DDI 115 072001 (2015)