STATUS OF STANDARD MODEL PREDICTIONS FOR RD(*) Michele Papucci (LBNL & CERN) in collab. with F.Bernlochner, Z.Ligeti, D.Robinson # LEPTON UNIVERSALITY VIOLATION? - ➤ Deviations in B→ D^(*)τν decays found in multiple measurements over the last years, almost 4σ disagreements with SM prediction - Other hints of lepton universality violations in other decay modes $$R(J/\psi)|_{exp} = \frac{BR(B_c \to J/\psi \tau \nu)}{BR(B_c \to J/\psi \ell \nu)} = 0.71 \pm 0.17 \pm 0.18$$ vs $R(J/\psi)|_{th} = 0.25 - 0.28$ $$R(K)|_{exp} = \frac{BR(B \to K \mu \mu)}{BR(B \to K e e)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$ vs $R(K)|_{exp} = 1.00 \pm 0.01$ Is it New Physics? Interesting BSM interpretations \rightarrow see talks in later sessions # R(D), $R(D^*)$, V_{CB} , ... - ➤ To assess discrepancy one need up-to-date predictions for the SM, with careful assessment of theoretical uncertainties - ➤ Uncertainties come from form factors - > FFs determined by combination of - ➤ data - ➤ lattice QCD - theoretical modeling - ➤ subset of FFs affect also V_{cb} exclusive determination and long standing discrepancy there between exclusive and inclusive determinations #### $B \rightarrow D$, D^* DECAYS: NOTATION $$\frac{\mathrm{d}\Gamma(\overline{B} \to D l \nu)}{\mathrm{d}w} = \frac{G_F^2 |V_{cb}|^2 \eta_{\mathrm{EW}}^2 m_B^5}{48\pi^3} (w^2 - 1)^{3/2} r_D^3 (1 + r_D)^2 \mathcal{G}(w)^2, \frac{\mathrm{d}\Gamma(\overline{B} \to D^* l \nu)}{\mathrm{d}w} = \frac{G_F^2 |V_{cb}|^2 \eta_{\mathrm{EW}}^2 m_B^5}{48\pi^3} (w^2 - 1)^{1/2} (w + 1)^2 r_{D^*}^3 (1 - r_{D^*})^2 \times \left[1 + \frac{4w}{w + 1} \frac{1 - 2w r_{D^*} + r_{D^*}^2}{(1 - r_{D^*})^2} \right] \mathcal{F}(w)^2,$$ with $$r_{D^{(*)}} = m_{D^{(*)}}/m_B$$ and $w = v \cdot v' = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}}$ $$\mathcal{G}(w) = h_{+} - \frac{1 - r_{D}}{1 + r_{D}} h_{-},$$ $$\mathcal{F}(w)^{2} = h_{A_{1}}^{2} \left\{ 2(1 - 2wr_{D^{*}} + r_{D^{*}}^{2}) \left(1 + \frac{w - 1}{w + 1} \right) + \left[(1 - r_{D^{*}}) + (w - 1) (1 - \frac{R_{2}}{2}) \right]^{2} \right\}$$ $$\times \left[(1 - r_{D^{*}})^{2} + \frac{4w}{w + 1} \left(1 - 2wr_{D^{*}} + r_{D^{*}}^{2} \right) \right]^{-1},$$ $$R_1(w) = \frac{h_V}{h_{A_1}}, \qquad R_2(w) = \frac{h_{A_3} + r_{D^*} h_{A_2}}{h_{A_1}}.$$ R_i are angular distributions \rightarrow can be accessed experimentally #### $B \rightarrow D$, D^* DECAYS: NOTATION in case of τ decays one extra form factor in SM (more with NP) → *define other ratios:* $$R_3(w) = \frac{h_{A_3} - r_{D^*} h_{A_2}}{h_{A_1}}, \qquad R_0(w) = \frac{h_{A_1}(w+1) - h_{A_3}(w - r_{D^*}) - h_{A_2}(1 - wr_{D^*})}{(1 + r_{D^*}) h_{A_1}}$$ enter in rate suppressed by factors of m_{τ}^2/m_B^2 Determination of Form Factors? # THEORY INPUTS ## **BGL: UNITARITY CONSTRAINTS** ➤ Boyd, Grinstein, Lebed ('95) (BGL): relate FFs to two point functions via dispersion relations, crossing symmetry, quark-hadron duality: ightharpoonup unitarity ightharpoonup constraints on a_n , e.g. for single channel: $$\sum_{n=0}^{\infty} |a_n|^2 \le 1.$$ Can be used directly to fit spectra # **HQET (+ UNITARITY)** - > FFs are related by heavy quark symmetry (HQS) - ► HQET → organize expansion in powers of a_s , Λ/m_b , Λ/m_c - relations among form factors - > can be used to relate form factors measurements in e,μ to additional ffs in τ - \triangleright At LO: everything proportional to Isgur-Wise function ξ or 0 - ► At O(Λ/m_b , Λ/m_c): subleading IW functions: χ_2 , χ_3 , η - ➤ HQET + z-parameterization from unitarity: - ➤ Compute FF at $O(\alpha_s, \Lambda/m_b, \Lambda/m_c)$ - Taylor expand IW functions $\frac{\mathcal{G}(w)}{\mathcal{G}(w_0)} \simeq 1 8a^2 \rho_*^2 z_* + (V_{21} \rho_*^2 V_{20}) z_*^2.$ $$\hat{\chi}_2(w) \simeq \hat{\chi}_2(1) + \hat{\chi}'_2(1)(w-1), \qquad \hat{\chi}_3(w) \simeq \hat{\chi}'_3(1)(w-1), \qquad \eta(w) \simeq \eta(1) + \eta'(1)(w-1),$$ Fit input shapes to 6 parameters (3 slopes, 2 intercepts + ρ_*) # CLN: UNITARITY + HQET + QCD SUM RULES - ➤ Caprini Lellouch Neubert (CLN '98): Use NLO HQET and further constraints from QCD sum rules: - subleading IW functions determined - Only two parameters: normalization and ρ* - ➤ Uncertainties small: <2% (?) → mostly neglected in experimental analyses (e.g. fix slopes to CLN prediction and float intercepts, ...) # **EXPERIMENTAL & LATTICE INPUTS** # **EXPERIMENTAL & LATTICE ACCESS TO SPECTRA** ➤ B→Dlv: Belle, Lattice: 1510.03657 Lattice: good at small recoil, Exp: good at large recoil # EXPERIMENTAL ACCESS TO SPECTRA ➤ B→D*lv (2017, Belle): No lattice results yet for spectra (only preliminary info for finite lattice spacing) # NORMALIZATION AT ZERO RECOIL ➤ Lattice measurements at zero recoil: $$\mathcal{G}(1)_{LQCD} = 1.054(8), \qquad \mathcal{F}(1)_{LQCD} = 0.906(13),$$ 1403.0635, 1503.07237 # FIT RESULTS #### BGL FIT IN B \rightarrow D* USING BELLE SPECTRA - ► HQET predict $R_{1,2} = 1 + O(\Lambda/m_{b,c}, \alpha_s)$, slopes small - ➤ BGL seem to suggest large HQS violations, not seen from lattice - ► Using lattice to extract V_{cb} : $|V_{cb}|_{CLN} = (38.2 \pm 1.5) \times 10^{-3}$, [1], $|V_{cb}|_{BGL} = (41.7^{+2.0}_{-2.1}) \times 10^{-3}$, [3], $|V_{cb}|_{BGL} = (41.9^{+2.0}_{-1.9}) \times 10^{-3}$, [4]. - ➤ Some tension between data + lattice + HQS # OTHER FIT COMBINATIONS *Use NLO HQET and:* fix norm. to lattice zero-recoil results float norm. independently fit ξ to lattice $B \rightarrow D$, use lattice for $B \rightarrow D^*$ norm | Fit | QCDSR | Lattice QCD | | | | |-------------------------|----------|------------------|--------------|------------------|------------| | | | $\mathcal{F}(1)$ | $f_{+,0}(1)$ | $f_{+,0}(w > 1)$ | Belle Data | | $L_{w=1}$ | | √ | √ | | ✓ | | $L_{w=1}+SR$ | ✓ | √ | \checkmark | | ✓ | | NoL | | | | | ✓ | | NoL+SR | √ | | | | √ | | $\mathcal{L}_{w\geq 1}$ | | √ | \checkmark | \checkmark | ✓ | | $L_{w\geq 1}+SR$ | ✓ | √ | \checkmark | \checkmark | ✓ | | th: $L_{w \ge 1} + SR$ | ✓ | √ | √ | ✓ | | "+SR": use QCD sum rules for priors on subleading IW functions $$\hat{\chi}_2^{\text{ren}}(1) = -0.06 \pm 0.02, \qquad \hat{\chi}_2'^{\text{ren}}(1) = 0 \pm 0.02, \qquad \hat{\chi}_3'^{\text{ren}}(1) = 0.04 \pm 0.02,$$ $$\eta(1) = 0.62 \pm 0.2, \qquad \eta'(1) = 0 \pm 0.2.$$ # FIT RESULTS | | $L_{w=1}$ | $L_{w=1}+SR$ | NoL | NoL+SR | $L_{w\geq 1}$ | $L_{w\geq 1}+SR$ | th: $L_{w\geq 1}+SR$ | |-----------------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|----------------------| | χ^2 | 40.2 | 44.0 | 38.7 | 43.1 | 49.0 | 53.8 | 7.4 | | dof | 44 | 48 | 43 | 47 | 48 | 52 | 4 | | $V_{cb} \times 10^3$ | 38.8 ± 1.2 | 38.5 ± 1.1 | | _ | 39.1 ± 1.1 | 39.3 ± 1.0 | | | $\mathcal{G}(1)$ | 1.055 ± 0.008 | 1.056 ± 0.008 | | _ | 1.060 ± 0.008 | 1.061 ± 0.007 | 1.052 ± 0.008 | | $\mathcal{F}(1)$ | 0.904 ± 0.012 | 0.901 ± 0.011 | | _ | 0.898 ± 0.012 | 0.895 ± 0.011 | 0.906 ± 0.013 | | $ar{ ho}_*^2$ | 1.17 ± 0.12 | 1.19 ± 0.07 | 1.06 ± 0.15 | 1.19 ± 0.08 | 1.33 ± 0.11 | 1.24 ± 0.06 | 1.24 ± 0.08 | | $\hat{\chi}_2(1)$ | -0.26 ± 0.26 | -0.07 ± 0.02 | 0.36 ± 0.62 | -0.06 ± 0.02 | 0.13 ± 0.22 | -0.06 ± 0.02 | -0.06 ± 0.02 | | $\hat{\chi}_2'(1)$ | 0.21 ± 0.38 | -0.00 ± 0.02 | 0.14 ± 0.39 | -0.00 ± 0.02 | -0.36 ± 0.28 | -0.00 ± 0.02 | -0.00 ± 0.02 | | $\hat{\chi}_3'(1)$ | 0.02 ± 0.07 | 0.05 ± 0.02 | 0.18 ± 0.19 | 0.04 ± 0.02 | 0.09 ± 0.07 | 0.05 ± 0.02 | 0.04 ± 0.02 | | $\eta(1)$ | 0.30 ± 0.04 | 0.30 ± 0.03 | -0.56 ± 0.80 | 0.35 ± 0.14 | 0.30 ± 0.04 | 0.30 ± 0.03 | 0.31 ± 0.04 | | $\eta'(1)$ | 0 (fixed) | -0.12 ± 0.16 | 0 (fixed) | -0.11 ± 0.18 | 0 (fixed) | -0.05 ± 0.09 | 0.05 ± 0.10 | | $m_b^{1S} [{ m GeV}]$ | 4.70 ± 0.05 | 4.70 ± 0.05 | 4.71 ± 0.05 | 4.70 ± 0.05 | 4.71 ± 0.05 | 4.71 ± 0.05 | 4.71 ± 0.05 | | $\delta m_{bc} [{ m GeV}]$ | 3.40 ± 0.02 no signs of strong tensions, V_{cb} is still "low", data prefers a lower η than QCDSR input $L_{w>=1}+SR$ spectra: # FITS & R_{1,2} # R(D) AND R(D*) # R(D) AND R(D*) | Scenario | R(D) | $R(D^*)$ | Correlation | | |------------------------|-------------------|-------------------|-------------|--| | $L_{w=1}$ | 0.292 ± 0.005 | 0.255 ± 0.005 | 41% | | | $L_{w=1}+SR$ | 0.291 ± 0.005 | 0.255 ± 0.003 | 57% | | | NoL | 0.273 ± 0.016 | 0.250 ± 0.006 | 49% | | | NoL+SR | 0.295 ± 0.007 | 0.255 ± 0.004 | 43% | | | $L_{w\geq 1}$ | 0.298 ± 0.003 | 0.261 ± 0.004 | 19% | | | $L_{w\geq 1}+SR$ | 0.299 ± 0.003 | 0.257 ± 0.003 | 44 % | | | th: $L_{w \ge 1} + SR$ | 0.306 ± 0.005 | 0.256 ± 0.004 | 33% | | | Data [9] | 0.403 ± 0.047 | 0.310 ± 0.017 | -23% | | | Refs. [48, 52, 54] | 0.300 ± 0.008 | | | | | Ref. [53] | 0.299 ± 0.003 | | _ | | | Ref. [34] | | 0.252 ± 0.003 | | | - ➤ Reduced uncert on SM predictions - ➤ Consistency between different fits - ➤ Discrepancy with data still present and sizable # NLO HQET FOR SM+NP ➤ NLO HQET calculation also for form factors entering BSM contributions 0.4 0.3 0.3 $R(D^*)$ $R(D^*)$ 0.2 0.2 NoL+SR NoL+SR $L_{w\geq 1}+SR$ $L_{w\geq 1}+SR$ \square LO, $\bar{\rho}_*^2 = 1.24$ \square LO, $\bar{\rho}_*^2 = 1.24$ $\mathcal{O}_S - \mathcal{O}_P$ $\mathcal{O}_S + \mathcal{O}_P$ 0.1 0.1 0.2 0.3 0.4 0.2 0.3 0.4 0.1 0.5 0.1 0.5R(D)R(D)0.4 0.4 NoL+SR 0.3 0.3 $L_{w\geq 1}+SR$ LO, $\bar{\rho}_*^2 = 1.24$ $R(D^*)$ $R(D^*)$ 0.2 0.2 NoL+SR $L_{w\geq 1}+SR$ \square LO, $\bar{\rho}_*^2 = 1.24$ $\mathcal{O}_V + \mathcal{O}_A$ \mathcal{O}_T 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.4 0.50.10.1 R(D) R(D) ## **CONCLUSIONS** - ➤ Experimental data in e, μ & Lattice results are improving determination of B→D(*) form factors - ➤ Apparent "tension" in current inputs between HQS, lattice and Belle B→D* distributions (can't self-consistently use lattice+BGL to extract V_{cb}) - ➤ Future lattice B→D* spectra and Belle II data (and non-unfolded BGL Belle fit?) will have something to say on this - ➤ Updated R(D), R(D*) predictions still show large discrepancy with measurements - ➤ Updated BSM predictions for R(D), R(D*) - ➤ Results included in Hammer package # **BACKUP** # FORM FACTOR DEFINITIONS **▶** B→D: $$\langle D | \bar{c} b | \overline{B} \rangle = \sqrt{m_B m_D} h_S (w + 1) ,$$ $$\langle D | \bar{c} \gamma^5 b | \overline{B} \rangle = \langle D | \bar{c} \gamma^\mu \gamma^5 b | \overline{B} \rangle = 0 ,$$ $$\langle D | \bar{c} \gamma^\mu b | \overline{B} \rangle = \sqrt{m_B m_D} \left[h_+ (v + v')^\mu + h_- (v - v')^\mu \right] ,$$ $$\langle D | \bar{c} \sigma^{\mu\nu} b | \overline{B} \rangle = i \sqrt{m_B m_D} \left[h_T (v'^\mu v^\nu - v'^\nu v^\mu) \right] ,$$ #### **>** B→D*: $$\langle D^* | \, \bar{c}b \, | \, \bar{B} \rangle = 0 \,,$$ $$\langle D^* | \, \bar{c}\gamma^5 b \, | \, \bar{B} \rangle = -\sqrt{m_B m_{D^*}} \, h_P \, (\epsilon^* \cdot v) \,,$$ $$\langle D^* | \, \bar{c}\gamma^\mu b \, | \, \bar{B} \rangle = i\sqrt{m_B m_{D^*}} \, h_V \, \varepsilon^{\mu\nu\alpha\beta} \, \epsilon^*_\nu v'_\alpha v_\beta \,,$$ $$\langle D^* | \, \bar{c}\gamma^\mu \gamma^5 b \, | \, \bar{B} \rangle = \sqrt{m_B m_{D^*}} \, \left[h_{A_1}(w+1)\epsilon^{*\mu} - h_{A_2}(\epsilon^* \cdot v)v^\mu - h_{A_3}(\epsilon^* \cdot v)v'^\mu \right] \,,$$ $$\langle D^* | \, \bar{c}\sigma^{\mu\nu} b \, | \, \bar{B} \rangle = -\sqrt{m_B m_{D^*}} \, \varepsilon^{\mu\nu\alpha\beta} \, \left[h_{T_1}\epsilon^*_\alpha (v+v')_\beta + h_{T_2}\epsilon^*_\alpha (v-v')_\beta + h_{T_3}(\epsilon^* \cdot v)v_\alpha v'_\beta \right] \,.$$ # **NLO HQET FF EXPRESSIONS** $$\hat{h}_{+} = 1 + \hat{\alpha}_{s} \left[C_{V_{1}} + \frac{w+1}{2} \left(C_{V_{2}} + C_{V_{3}} \right) \right] + (\varepsilon_{c} + \varepsilon_{b}) \, \hat{L}_{1} \,,$$ $$\hat{h}_{-} = \hat{\alpha}_{s} \, \frac{w+1}{2} \left(C_{V_{2}} - C_{V_{3}} \right) + (\varepsilon_{c} - \varepsilon_{b}) \, \hat{L}_{4} \,,$$ $$\hat{h}_{S} = 1 + \hat{\alpha}_{s} \, C_{S} + (\varepsilon_{c} + \varepsilon_{b}) \left(\hat{L}_{1} - \hat{L}_{4} \, \frac{w-1}{w+1} \right) \,,$$ $$\hat{h}_{T} = 1 + \hat{\alpha}_{s} \left(C_{T_{1}} - C_{T_{2}} + C_{T_{3}} \right) + (\varepsilon_{c} + \varepsilon_{b}) \left(\hat{L}_{1} - \hat{L}_{4} \right) \,.$$ $$\hat{h}_{V} = 1 + \hat{\alpha}_{s} C_{V_{1}} + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}),$$ $$\hat{h}_{A_{1}} = 1 + \hat{\alpha}_{s} C_{A_{1}} + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{5} \frac{w - 1}{w + 1}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4} \frac{w - 1}{w + 1}),$$ $$\hat{h}_{A_{2}} = \hat{\alpha}_{s} C_{A_{2}} + \varepsilon_{c} (\hat{L}_{3} + \hat{L}_{6}),$$ $$\hat{h}_{A_{3}} = 1 + \hat{\alpha}_{s} (C_{A_{1}} + C_{A_{3}}) + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{3} + \hat{L}_{6} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}),$$ $$\hat{h}_{P} = 1 + \hat{\alpha}_{s} C_{P} + \varepsilon_{c} [\hat{L}_{2} + \hat{L}_{3} (w - 1) + \hat{L}_{5} - \hat{L}_{6} (w + 1)] + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4})$$ $$\hat{h}_{T_{1}} = 1 + \hat{\alpha}_{s} [C_{T_{1}} + \frac{w - 1}{2} (C_{T_{2}} - C_{T_{3}})] + \varepsilon_{c} \hat{L}_{2} + \varepsilon_{b} \hat{L}_{1},$$ $$\hat{h}_{T_{2}} = \hat{\alpha}_{s} \frac{w + 1}{2} (C_{T_{2}} + C_{T_{3}}) + \varepsilon_{c} \hat{L}_{5} - \varepsilon_{b} \hat{L}_{4},$$ $$\hat{h}_{T_{3}} = \hat{\alpha}_{s} C_{T_{2}} + \varepsilon_{c} (\hat{L}_{6} - \hat{L}_{3}).$$ # HQET R_I EXPRESSIONS $$R_1(1) \simeq 1.34 - 0.12 \,\eta(1)$$, $R_2(1) \simeq 0.98 - 0.42 \,\eta(1) - 0.54 \,\hat{\chi}_2(1)$. $R'_1(1) \simeq -0.15 + 0.06 \,\eta(1) - 0.12 \,\eta'(1)$, $R'_2(1) \simeq 0.01 - 0.54 \,\hat{\chi}'_2(1) + 0.21 \,\eta(1) - 0.42 \,\eta'(1)$. $$R_3(1) \simeq 1.19 - 0.26 \,\eta(1) - 1.20 \,\hat{\chi}_2(1)$$, $R_0(1) \simeq 1.09 + 0.25 \,\eta(1)$, $R_3'(1) \simeq -0.08 - 1.20 \,\hat{\chi}_2'(1) + 0.13 \,\eta(1) - 0.26 \,\eta'(1)$, $R_0'(1) \simeq -0.18 + 0.87 \,\hat{\chi}_2(1) + 0.06 \,\eta(1) + 0.25 \,\eta'(1)$.