STATUS OF STANDARD MODEL PREDICTIONS FOR RD(*)

Michele Papucci (LBNL & CERN)

in collab. with F.Bernlochner, Z.Ligeti, D.Robinson

LEPTON UNIVERSALITY VIOLATION?

- ➤ Deviations in B→ D^(*)τν decays found in multiple measurements over the last years, almost 4σ disagreements with SM prediction
- Other hints of lepton universality violations in other decay modes

$$R(J/\psi)|_{exp} = \frac{BR(B_c \to J/\psi \tau \nu)}{BR(B_c \to J/\psi \ell \nu)} = 0.71 \pm 0.17 \pm 0.18$$
 vs $R(J/\psi)|_{th} = 0.25 - 0.28$

$$R(K)|_{exp} = \frac{BR(B \to K \mu \mu)}{BR(B \to K e e)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$
 vs $R(K)|_{exp} = 1.00 \pm 0.01$

Is it New Physics? Interesting BSM interpretations \rightarrow see talks in later sessions

R(D), $R(D^*)$, V_{CB} , ...

- ➤ To assess discrepancy one need up-to-date predictions for the SM, with careful assessment of theoretical uncertainties
- ➤ Uncertainties come from form factors
 - > FFs determined by combination of
 - ➤ data
 - ➤ lattice QCD
 - theoretical modeling
 - ➤ subset of FFs affect also V_{cb} exclusive determination and long standing discrepancy there between exclusive and inclusive determinations

$B \rightarrow D$, D^* DECAYS: NOTATION

$$\frac{\mathrm{d}\Gamma(\overline{B} \to D l \nu)}{\mathrm{d}w} = \frac{G_F^2 |V_{cb}|^2 \eta_{\mathrm{EW}}^2 m_B^5}{48\pi^3} (w^2 - 1)^{3/2} r_D^3 (1 + r_D)^2 \mathcal{G}(w)^2,
\frac{\mathrm{d}\Gamma(\overline{B} \to D^* l \nu)}{\mathrm{d}w} = \frac{G_F^2 |V_{cb}|^2 \eta_{\mathrm{EW}}^2 m_B^5}{48\pi^3} (w^2 - 1)^{1/2} (w + 1)^2 r_{D^*}^3 (1 - r_{D^*})^2
\times \left[1 + \frac{4w}{w + 1} \frac{1 - 2w r_{D^*} + r_{D^*}^2}{(1 - r_{D^*})^2} \right] \mathcal{F}(w)^2,$$

with
$$r_{D^{(*)}} = m_{D^{(*)}}/m_B$$
 and $w = v \cdot v' = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}}$

$$\mathcal{G}(w) = h_{+} - \frac{1 - r_{D}}{1 + r_{D}} h_{-},$$

$$\mathcal{F}(w)^{2} = h_{A_{1}}^{2} \left\{ 2(1 - 2wr_{D^{*}} + r_{D^{*}}^{2}) \left(1 + \frac{w - 1}{w + 1} \right) + \left[(1 - r_{D^{*}}) + (w - 1) (1 - \frac{R_{2}}{2}) \right]^{2} \right\}$$

$$\times \left[(1 - r_{D^{*}})^{2} + \frac{4w}{w + 1} \left(1 - 2wr_{D^{*}} + r_{D^{*}}^{2} \right) \right]^{-1},$$

$$R_1(w) = \frac{h_V}{h_{A_1}}, \qquad R_2(w) = \frac{h_{A_3} + r_{D^*} h_{A_2}}{h_{A_1}}.$$

 R_i are angular distributions \rightarrow can be accessed experimentally

$B \rightarrow D$, D^* DECAYS: NOTATION

in case of τ decays one extra form factor in SM (more with NP)

→ *define other ratios:*

$$R_3(w) = \frac{h_{A_3} - r_{D^*} h_{A_2}}{h_{A_1}}, \qquad R_0(w) = \frac{h_{A_1}(w+1) - h_{A_3}(w - r_{D^*}) - h_{A_2}(1 - wr_{D^*})}{(1 + r_{D^*}) h_{A_1}}$$

enter in rate suppressed by factors of m_{τ}^2/m_B^2

Determination of Form Factors?

THEORY INPUTS

BGL: UNITARITY CONSTRAINTS

➤ Boyd, Grinstein, Lebed ('95) (BGL): relate FFs to two point functions via dispersion relations, crossing symmetry, quark-hadron duality:

ightharpoonup unitarity ightharpoonup constraints on a_n , e.g. for single channel:

$$\sum_{n=0}^{\infty} |a_n|^2 \le 1.$$

Can be used directly to fit spectra

HQET (+ UNITARITY)

- > FFs are related by heavy quark symmetry (HQS)
- ► HQET → organize expansion in powers of a_s , Λ/m_b , Λ/m_c
- relations among form factors
- > can be used to relate form factors measurements in e,μ to additional ffs in τ
- \triangleright At LO: everything proportional to Isgur-Wise function ξ or 0
- ► At O(Λ/m_b , Λ/m_c): subleading IW functions: χ_2 , χ_3 , η
- ➤ HQET + z-parameterization from unitarity:
 - ➤ Compute FF at $O(\alpha_s, \Lambda/m_b, \Lambda/m_c)$
 - Taylor expand IW functions $\frac{\mathcal{G}(w)}{\mathcal{G}(w_0)} \simeq 1 8a^2 \rho_*^2 z_* + (V_{21} \rho_*^2 V_{20}) z_*^2.$

$$\hat{\chi}_2(w) \simeq \hat{\chi}_2(1) + \hat{\chi}'_2(1)(w-1), \qquad \hat{\chi}_3(w) \simeq \hat{\chi}'_3(1)(w-1), \qquad \eta(w) \simeq \eta(1) + \eta'(1)(w-1),$$

Fit input shapes to 6 parameters (3 slopes, 2 intercepts + ρ_*)

CLN: UNITARITY + HQET + QCD SUM RULES

- ➤ Caprini Lellouch Neubert (CLN '98): Use NLO HQET and further constraints from QCD sum rules:
 - subleading IW functions determined
 - Only two parameters: normalization and ρ*
 - ➤ Uncertainties small: <2% (?) → mostly neglected in experimental analyses (e.g. fix slopes to CLN prediction and float intercepts, ...)

EXPERIMENTAL & LATTICE INPUTS

EXPERIMENTAL & LATTICE ACCESS TO SPECTRA

➤ B→Dlv: Belle, Lattice:

1510.03657

Lattice: good at small recoil, Exp: good at large recoil

EXPERIMENTAL ACCESS TO SPECTRA

➤ B→D*lv (2017, Belle):

No lattice results yet for spectra (only preliminary info for finite lattice spacing)

NORMALIZATION AT ZERO RECOIL

➤ Lattice measurements at zero recoil:

$$\mathcal{G}(1)_{LQCD} = 1.054(8), \qquad \mathcal{F}(1)_{LQCD} = 0.906(13),$$

1403.0635, 1503.07237

FIT RESULTS

BGL FIT IN B \rightarrow D* USING BELLE SPECTRA

- ► HQET predict $R_{1,2} = 1 + O(\Lambda/m_{b,c}, \alpha_s)$, slopes small
- ➤ BGL seem to suggest large HQS violations, not seen from lattice
- ► Using lattice to extract V_{cb} : $|V_{cb}|_{CLN} = (38.2 \pm 1.5) \times 10^{-3}$, [1], $|V_{cb}|_{BGL} = (41.7^{+2.0}_{-2.1}) \times 10^{-3}$, [3], $|V_{cb}|_{BGL} = (41.9^{+2.0}_{-1.9}) \times 10^{-3}$, [4].
- ➤ Some tension between data + lattice + HQS

OTHER FIT COMBINATIONS

Use NLO HQET and:

fix norm. to lattice zero-recoil results

float norm. independently

fit ξ to lattice $B \rightarrow D$, use lattice for $B \rightarrow D^*$ norm

Fit	QCDSR	Lattice QCD			
		$\mathcal{F}(1)$	$f_{+,0}(1)$	$f_{+,0}(w > 1)$	Belle Data
$L_{w=1}$		√	√		✓
$L_{w=1}+SR$	✓	√	\checkmark		✓
NoL					✓
NoL+SR	√				√
$\mathcal{L}_{w\geq 1}$		√	\checkmark	\checkmark	✓
$L_{w\geq 1}+SR$	✓	√	\checkmark	\checkmark	✓
th: $L_{w \ge 1} + SR$	✓	√	√	✓	

"+SR": use QCD sum rules for priors on subleading IW functions

$$\hat{\chi}_2^{\text{ren}}(1) = -0.06 \pm 0.02, \qquad \hat{\chi}_2'^{\text{ren}}(1) = 0 \pm 0.02, \qquad \hat{\chi}_3'^{\text{ren}}(1) = 0.04 \pm 0.02,$$

$$\eta(1) = 0.62 \pm 0.2, \qquad \eta'(1) = 0 \pm 0.2.$$

FIT RESULTS

	$L_{w=1}$	$L_{w=1}+SR$	NoL	NoL+SR	$L_{w\geq 1}$	$L_{w\geq 1}+SR$	th: $L_{w\geq 1}+SR$
χ^2	40.2	44.0	38.7	43.1	49.0	53.8	7.4
dof	44	48	43	47	48	52	4
$V_{cb} \times 10^3$	38.8 ± 1.2	38.5 ± 1.1		_	39.1 ± 1.1	39.3 ± 1.0	
$\mathcal{G}(1)$	1.055 ± 0.008	1.056 ± 0.008		_	1.060 ± 0.008	1.061 ± 0.007	1.052 ± 0.008
$\mathcal{F}(1)$	0.904 ± 0.012	0.901 ± 0.011		_	0.898 ± 0.012	0.895 ± 0.011	0.906 ± 0.013
$ar{ ho}_*^2$	1.17 ± 0.12	1.19 ± 0.07	1.06 ± 0.15	1.19 ± 0.08	1.33 ± 0.11	1.24 ± 0.06	1.24 ± 0.08
$\hat{\chi}_2(1)$	-0.26 ± 0.26	-0.07 ± 0.02	0.36 ± 0.62	-0.06 ± 0.02	0.13 ± 0.22	-0.06 ± 0.02	-0.06 ± 0.02
$\hat{\chi}_2'(1)$	0.21 ± 0.38	-0.00 ± 0.02	0.14 ± 0.39	-0.00 ± 0.02	-0.36 ± 0.28	-0.00 ± 0.02	-0.00 ± 0.02
$\hat{\chi}_3'(1)$	0.02 ± 0.07	0.05 ± 0.02	0.18 ± 0.19	0.04 ± 0.02	0.09 ± 0.07	0.05 ± 0.02	0.04 ± 0.02
$\eta(1)$	0.30 ± 0.04	0.30 ± 0.03	-0.56 ± 0.80	0.35 ± 0.14	0.30 ± 0.04	0.30 ± 0.03	0.31 ± 0.04
$\eta'(1)$	0 (fixed)	-0.12 ± 0.16	0 (fixed)	-0.11 ± 0.18	0 (fixed)	-0.05 ± 0.09	0.05 ± 0.10
$m_b^{1S} [{ m GeV}]$	4.70 ± 0.05	4.70 ± 0.05	4.71 ± 0.05	4.70 ± 0.05	4.71 ± 0.05	4.71 ± 0.05	4.71 ± 0.05
$\delta m_{bc} [{ m GeV}]$	3.40 ± 0.02	3.40 ± 0.02	3.40 ± 0.02	3.40 ± 0.02	3.40 ± 0.02	3.40 ± 0.02	3.40 ± 0.02

no signs of strong tensions, V_{cb} is still "low", data prefers a lower η than QCDSR input

 $L_{w>=1}+SR$

spectra:

FITS & R_{1,2}

R(D) AND R(D*)

R(D) AND R(D*)

Scenario	R(D)	$R(D^*)$	Correlation	
$L_{w=1}$	0.292 ± 0.005	0.255 ± 0.005	41%	
$L_{w=1}+SR$	0.291 ± 0.005	0.255 ± 0.003	57%	
NoL	0.273 ± 0.016	0.250 ± 0.006	49%	
NoL+SR	0.295 ± 0.007	0.255 ± 0.004	43%	
$L_{w\geq 1}$	0.298 ± 0.003	0.261 ± 0.004	19%	
$L_{w\geq 1}+SR$	0.299 ± 0.003	0.257 ± 0.003	44 %	
th: $L_{w \ge 1} + SR$	0.306 ± 0.005	0.256 ± 0.004	33%	
Data [9]	0.403 ± 0.047	0.310 ± 0.017	-23%	
Refs. [48, 52, 54]	0.300 ± 0.008			
Ref. [53]	0.299 ± 0.003		_	
Ref. [34]		0.252 ± 0.003		

- ➤ Reduced uncert on SM predictions
- ➤ Consistency between different fits
- ➤ Discrepancy with data still present and sizable

NLO HQET FOR SM+NP

➤ NLO HQET calculation also for form factors entering BSM

contributions 0.4 0.3 0.3 $R(D^*)$ $R(D^*)$ 0.2 0.2 NoL+SR NoL+SR $L_{w\geq 1}+SR$ $L_{w\geq 1}+SR$ \square LO, $\bar{\rho}_*^2 = 1.24$ \square LO, $\bar{\rho}_*^2 = 1.24$ $\mathcal{O}_S - \mathcal{O}_P$ $\mathcal{O}_S + \mathcal{O}_P$ 0.1 0.1 0.2 0.3 0.4 0.2 0.3 0.4 0.1 0.5 0.1 0.5R(D)R(D)0.4 0.4 NoL+SR 0.3 0.3 $L_{w\geq 1}+SR$ LO, $\bar{\rho}_*^2 = 1.24$ $R(D^*)$ $R(D^*)$ 0.2 0.2 NoL+SR $L_{w\geq 1}+SR$ \square LO, $\bar{\rho}_*^2 = 1.24$ $\mathcal{O}_V + \mathcal{O}_A$ \mathcal{O}_T 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.4 0.50.10.1

R(D)

R(D)

CONCLUSIONS

- ➤ Experimental data in e, μ & Lattice results are improving determination of B→D(*) form factors
- ➤ Apparent "tension" in current inputs between HQS, lattice and Belle B→D* distributions (can't self-consistently use lattice+BGL to extract V_{cb})
 - ➤ Future lattice B→D* spectra and Belle II data (and non-unfolded BGL Belle fit?) will have something to say on this
- ➤ Updated R(D), R(D*) predictions still show large discrepancy with measurements
- ➤ Updated BSM predictions for R(D), R(D*)
- ➤ Results included in Hammer package

BACKUP

FORM FACTOR DEFINITIONS

▶ B→D:

$$\langle D | \bar{c} b | \overline{B} \rangle = \sqrt{m_B m_D} h_S (w + 1) ,$$

$$\langle D | \bar{c} \gamma^5 b | \overline{B} \rangle = \langle D | \bar{c} \gamma^\mu \gamma^5 b | \overline{B} \rangle = 0 ,$$

$$\langle D | \bar{c} \gamma^\mu b | \overline{B} \rangle = \sqrt{m_B m_D} \left[h_+ (v + v')^\mu + h_- (v - v')^\mu \right] ,$$

$$\langle D | \bar{c} \sigma^{\mu\nu} b | \overline{B} \rangle = i \sqrt{m_B m_D} \left[h_T (v'^\mu v^\nu - v'^\nu v^\mu) \right] ,$$

> B→D*:

$$\langle D^* | \, \bar{c}b \, | \, \bar{B} \rangle = 0 \,,$$

$$\langle D^* | \, \bar{c}\gamma^5 b \, | \, \bar{B} \rangle = -\sqrt{m_B m_{D^*}} \, h_P \, (\epsilon^* \cdot v) \,,$$

$$\langle D^* | \, \bar{c}\gamma^\mu b \, | \, \bar{B} \rangle = i\sqrt{m_B m_{D^*}} \, h_V \, \varepsilon^{\mu\nu\alpha\beta} \, \epsilon^*_\nu v'_\alpha v_\beta \,,$$

$$\langle D^* | \, \bar{c}\gamma^\mu \gamma^5 b \, | \, \bar{B} \rangle = \sqrt{m_B m_{D^*}} \, \left[h_{A_1}(w+1)\epsilon^{*\mu} - h_{A_2}(\epsilon^* \cdot v)v^\mu - h_{A_3}(\epsilon^* \cdot v)v'^\mu \right] \,,$$

$$\langle D^* | \, \bar{c}\sigma^{\mu\nu} b \, | \, \bar{B} \rangle = -\sqrt{m_B m_{D^*}} \, \varepsilon^{\mu\nu\alpha\beta} \, \left[h_{T_1}\epsilon^*_\alpha (v+v')_\beta + h_{T_2}\epsilon^*_\alpha (v-v')_\beta + h_{T_3}(\epsilon^* \cdot v)v_\alpha v'_\beta \right] \,.$$

NLO HQET FF EXPRESSIONS

$$\hat{h}_{+} = 1 + \hat{\alpha}_{s} \left[C_{V_{1}} + \frac{w+1}{2} \left(C_{V_{2}} + C_{V_{3}} \right) \right] + (\varepsilon_{c} + \varepsilon_{b}) \, \hat{L}_{1} \,,$$

$$\hat{h}_{-} = \hat{\alpha}_{s} \, \frac{w+1}{2} \left(C_{V_{2}} - C_{V_{3}} \right) + (\varepsilon_{c} - \varepsilon_{b}) \, \hat{L}_{4} \,,$$

$$\hat{h}_{S} = 1 + \hat{\alpha}_{s} \, C_{S} + (\varepsilon_{c} + \varepsilon_{b}) \left(\hat{L}_{1} - \hat{L}_{4} \, \frac{w-1}{w+1} \right) \,,$$

$$\hat{h}_{T} = 1 + \hat{\alpha}_{s} \left(C_{T_{1}} - C_{T_{2}} + C_{T_{3}} \right) + (\varepsilon_{c} + \varepsilon_{b}) \left(\hat{L}_{1} - \hat{L}_{4} \right) \,.$$

$$\hat{h}_{V} = 1 + \hat{\alpha}_{s} C_{V_{1}} + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}),$$

$$\hat{h}_{A_{1}} = 1 + \hat{\alpha}_{s} C_{A_{1}} + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{5} \frac{w - 1}{w + 1}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4} \frac{w - 1}{w + 1}),$$

$$\hat{h}_{A_{2}} = \hat{\alpha}_{s} C_{A_{2}} + \varepsilon_{c} (\hat{L}_{3} + \hat{L}_{6}),$$

$$\hat{h}_{A_{3}} = 1 + \hat{\alpha}_{s} (C_{A_{1}} + C_{A_{3}}) + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{3} + \hat{L}_{6} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}),$$

$$\hat{h}_{P} = 1 + \hat{\alpha}_{s} C_{P} + \varepsilon_{c} [\hat{L}_{2} + \hat{L}_{3} (w - 1) + \hat{L}_{5} - \hat{L}_{6} (w + 1)] + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4})$$

$$\hat{h}_{T_{1}} = 1 + \hat{\alpha}_{s} [C_{T_{1}} + \frac{w - 1}{2} (C_{T_{2}} - C_{T_{3}})] + \varepsilon_{c} \hat{L}_{2} + \varepsilon_{b} \hat{L}_{1},$$

$$\hat{h}_{T_{2}} = \hat{\alpha}_{s} \frac{w + 1}{2} (C_{T_{2}} + C_{T_{3}}) + \varepsilon_{c} \hat{L}_{5} - \varepsilon_{b} \hat{L}_{4},$$

$$\hat{h}_{T_{3}} = \hat{\alpha}_{s} C_{T_{2}} + \varepsilon_{c} (\hat{L}_{6} - \hat{L}_{3}).$$

HQET R_I EXPRESSIONS

$$R_1(1) \simeq 1.34 - 0.12 \,\eta(1)$$
,
 $R_2(1) \simeq 0.98 - 0.42 \,\eta(1) - 0.54 \,\hat{\chi}_2(1)$.
 $R'_1(1) \simeq -0.15 + 0.06 \,\eta(1) - 0.12 \,\eta'(1)$,
 $R'_2(1) \simeq 0.01 - 0.54 \,\hat{\chi}'_2(1) + 0.21 \,\eta(1) - 0.42 \,\eta'(1)$.

$$R_3(1) \simeq 1.19 - 0.26 \,\eta(1) - 1.20 \,\hat{\chi}_2(1)$$
,
 $R_0(1) \simeq 1.09 + 0.25 \,\eta(1)$,
 $R_3'(1) \simeq -0.08 - 1.20 \,\hat{\chi}_2'(1) + 0.13 \,\eta(1) - 0.26 \,\eta'(1)$,
 $R_0'(1) \simeq -0.18 + 0.87 \,\hat{\chi}_2(1) + 0.06 \,\eta(1) + 0.25 \,\eta'(1)$.