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LEPTON UNIVERSALITY VIOLATION?
➤ Deviations in B→ D(*)τν 

decays found in multiple 
measurements over the last 6 
years, almost 4σ disagreement 
with SM prediction  

➤ Other hints of lepton 
universality violations in 
other decay modes R(D)
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R(J/ )|exp =
BR(Bc ! J/ ⌧ ⌫)

BR(Bc ! J/ ` ⌫)
= 0.71± 0.17± 0.18
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R(K)|exp =
BR(B ! K µµ)

BR(B ! K ee)
= 0.745+0.090

�0.074 ± 0.036
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vs

Is it New Physics? Interesting BSM interpretations → see talks in later sessions

vs R(K)|exp = 1.00± 0.01
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R(D), R(D*), VCB, …

➤ To assess discrepancy one need up-to-date predictions for the 
SM, with careful assessment of theoretical uncertainties 

➤ Uncertainties come from form factors 

➤ FFs determined by combination of 

➤ data 

➤ lattice QCD 

➤ theoretical modeling 

➤ subset of FFs affect also Vcb exclusive determination and 
long standing discrepancy there between exclusive and 
inclusive determinations



B→D, D* DECAYS: NOTATION

We prefer to evaluate the scalar and pseudoscalar matrix elements using Eqs. (14) and (15)

instead of Eq. (16), because the natural choice for µ is below mb (or sometimes well below,

as in the small-velocity limit [30, 31]). In the MS scheme fermions do not decouple for µ <

m, introducing artificially large corrections in the running, compensated by corresponding

spurious terms in the �-function computed without integrating out heavy quarks [32].

C. Decay rates and form factor ratios

The B ! D(⇤)l⌫ di↵erential rates have the well-known expressions in the SM,

d�(B ! Dl⌫)

dw
=

G2
F |Vcb|
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F(w)2 , (18b)

where rD(⇤) = mD(⇤)/mB and ⌘EW = 1.0066 [33] is the electroweak correction. In addition,

G(w) = h+ �
1� rD
1 + rD

h� , (19a)
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and the form-factor ratios are defined as

R1(w) =
hV

hA1

, R2(w) =
hA3 + rD⇤ hA2

hA1

. (20)

In the heavy quark limit, R1,2(w) = 1 and F(w) = G(w) = ⇠(w), the leading Isgur-Wise

function. It is common to fit the measured B ! D⇤l⌫ angular distributions to R1,2(w). To

O("c,b, ↵s), the SM predictions are

R1(w) = 1 + ↵̂s
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⇤
.

To include the lepton mass suppressed terms, one sometimes defines [28, 34] additional

form factor ratios

R3(w) =
hA3 � rD⇤hA2

hA1

, R0(w) =
hA1(w + 1)� hA3(w � rD⇤)� hA2(1� wrD⇤)

(1 + rD⇤)hA1

. (22)
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instead of Eq. (16), because the natural choice for µ is below mb (or sometimes well below,

as in the small-velocity limit [30, 31]). In the MS scheme fermions do not decouple for µ <

m, introducing artificially large corrections in the running, compensated by corresponding

spurious terms in the �-function computed without integrating out heavy quarks [32].

C. Decay rates and form factor ratios

The B ! D(⇤)l⌫ di↵erential rates have the well-known expressions in the SM,

d�(B ! Dl⌫)

dw
=

G2
F |Vcb|

2 ⌘2EW m5
B

48⇡3
(w2

� 1)3/2 r3D (1 + rD)
2
G(w)2 , (18a)

d�(B ! D⇤l⌫)

dw
=

G2
F |Vcb|

2 ⌘2EW m5
B

48⇡3
(w2

� 1)1/2 (w + 1)2 r3D⇤(1� rD⇤)2

⇥


1 +

4w

w + 1

1� 2wrD⇤ + r2D⇤

(1� rD⇤)2

�
F(w)2 , (18b)

where rD(⇤) = mD(⇤)/mB and ⌘EW = 1.0066 [33] is the electroweak correction. In addition,

G(w) = h+ �
1� rD
1 + rD

h� , (19a)

F(w)2 = h2
A1

⇢
2(1� 2wrD⇤ + r2D⇤)

✓
1 +R1

w � 1

w + 1

◆
+
⇥
(1� rD⇤) + (w � 1)

�
1�R2

�⇤2
�

⇥


(1� rD⇤)2 +

4w

w + 1

�
1� 2wrD⇤ + r2D⇤

���1

, (19b)

and the form-factor ratios are defined as

R1(w) =
hV

hA1

, R2(w) =
hA3 + rD⇤ hA2

hA1

. (20)

In the heavy quark limit, R1,2(w) = 1 and F(w) = G(w) = ⇠(w), the leading Isgur-Wise

function. It is common to fit the measured B ! D⇤l⌫ angular distributions to R1,2(w). To

O("c,b, ↵s), the SM predictions are

R1(w) = 1 + ↵̂s

�
CV1 � CA1

�
�

2

w + 1

�
"bL̂4 + "cL̂5

�
, (21)

R2(w) = 1 + ↵̂s

�
CA3 + rD⇤CA2

�
�

2

w + 1

�
"bL̂4 + "cL̂5

�
+ "c

⇥
L̂6(1 + rD⇤)� L̂3(1� rD⇤)

⇤
.

To include the lepton mass suppressed terms, one sometimes defines [28, 34] additional

form factor ratios

R3(w) =
hA3 � rD⇤hA2

hA1

, R0(w) =
hA1(w + 1)� hA3(w � rD⇤)� hA2(1� wrD⇤)

(1 + rD⇤)hA1

. (22)
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spin symmetry doublet pseudoscalar (P ) and vector (V ) mesons correspond to the light

degrees of freedom (the “brown muck”) in a spin-12 state combined with the heavy quark

spin. They form two states with angular momentum JV,P = 1
2 ±

1
2 . Their masses can be

expressed as

mV,P = mQ + ⇤̄�
�1

2mQ
±

(2JP,V + 1)�2

2mQ
+ . . . , (3)

where mQ is the heavy quark mass parameter of HQET, ⇤̄ = O(⇤QCD), �1,2 = O(⇤2
QCD),

etc. To evaluate matrix elements relevant for semileptonic decays, it is simplest to use the

trace formalism [17–19]. Including ⇤QCD/mc,b corrections, the B ! D(⇤) matrix elements

can be written as [20]

hD(⇤)
| c̄� b |Bi

p
mD(⇤)mB

= �⇠(w)
n
Tr

⇥
H̄(c)

v0 �H(b)
v

⇤

+ "c Tr
⇥
H̄(c,1)

v0,v �H(b)
v

⇤
+ "b Tr

⇥
H̄(c)

v0 �H(b,1)
v,v0

⇤o
, (4)

where "c,b = ⇤̄/(2mc,b) and � is an arbitrary Dirac matrix. The pseudoscalar and vector

mesons can be represented by a “superfield”, which has the right transformation properties

under heavy quark and Lorentz symmetry,

H(Q)
v =

1 + /v

2

�
V (Q)
v /✏ � P (Q)

v �5
�
. (5)

The ⇤QCD/mc,b corrections can be parametrized via [20]

H(Q,1)
v,v0 =

1 + /v

2

n
V (Q)
v

⇥
/✏L̂2(w) + ✏ · v0L̂3(w)

⇤
� P (Q)

v �5 L̂1(w)
o

+
1� /v

2

n
V (Q)
v

⇥
/✏L̂5(w) + ✏ · v0L̂6(w)

⇤
� P (Q)

v �5 L̂4(w)
o
. (6)

It is convenient to use the dimensionless kinematic variable w instead of q2 = (pB � pD(⇤))2,

w = v · v0 =
m2

B +m2
D(⇤) � q2

2mBmD(⇤)
, v =

pB
mB

, v0 =
pD(⇤)

mD(⇤)
. (7)

In Eq. (4) and hereafter, we absorb into the leading order Isgur-Wise function a heavy quark

spin symmetry conserving O(⇤QCD/mc,b) subleading term, which does not a↵ect any model

independent predictions of HQET, via ⇠(w) ! ⇠(w) + 2("c + "b)�1(w). The function �1

parametrizes the matrix element of the time ordered product of the kinetic operator in the

subleading HQET Lagrangian, Okin = h̄v (iD)2 hv/(2mQ), with the leading order current. It

satisfies �1(1) = 0 [13], and hence ⇠(1) = 1 is maintained. Reparametrization invariance [21]

ensures that this redefinition of ⇠(w) is RGE invariant.

4

Ri  are angular distributions → 
can be accessed experimentally



in case of τ decays one extra form factor in SM (more with NP) 

→ define other ratios:

We prefer to evaluate the scalar and pseudoscalar matrix elements using Eqs. (14) and (15)

instead of Eq. (16), because the natural choice for µ is below mb (or sometimes well below,

as in the small-velocity limit [30, 31]). In the MS scheme fermions do not decouple for µ <

m, introducing artificially large corrections in the running, compensated by corresponding

spurious terms in the �-function computed without integrating out heavy quarks [32].

C. Decay rates and form factor ratios

The B ! D(⇤)l⌫ di↵erential rates have the well-known expressions in the SM,

d�(B ! Dl⌫)

dw
=

G2
F |Vcb|

2 ⌘2EW m5
B

48⇡3
(w2

� 1)3/2 r3D (1 + rD)
2
G(w)2 , (18a)

d�(B ! D⇤l⌫)

dw
=

G2
F |Vcb|

2 ⌘2EW m5
B

48⇡3
(w2

� 1)1/2 (w + 1)2 r3D⇤(1� rD⇤)2

⇥


1 +

4w

w + 1

1� 2wrD⇤ + r2D⇤

(1� rD⇤)2

�
F(w)2 , (18b)

where rD(⇤) = mD(⇤)/mB and ⌘EW = 1.0066 [33] is the electroweak correction. In addition,

G(w) = h+ �
1� rD
1 + rD

h� , (19a)

F(w)2 = h2
A1

⇢
2(1� 2wrD⇤ + r2D⇤)

✓
1 +R1

w � 1

w + 1

◆
+
⇥
(1� rD⇤) + (w � 1)

�
1�R2

�⇤2
�

⇥


(1� rD⇤)2 +

4w

w + 1

�
1� 2wrD⇤ + r2D⇤

���1

, (19b)

and the form-factor ratios are defined as

R1(w) =
hV

hA1

, R2(w) =
hA3 + rD⇤ hA2

hA1

. (20)

In the heavy quark limit, R1,2(w) = 1 and F(w) = G(w) = ⇠(w), the leading Isgur-Wise

function. It is common to fit the measured B ! D⇤l⌫ angular distributions to R1,2(w). To

O("c,b, ↵s), the SM predictions are

R1(w) = 1 + ↵̂s

�
CV1 � CA1

�
�

2

w + 1

�
"bL̂4 + "cL̂5

�
, (21)

R2(w) = 1 + ↵̂s

�
CA3 + rD⇤CA2

�
�

2

w + 1

�
"bL̂4 + "cL̂5

�
+ "c

⇥
L̂6(1 + rD⇤)� L̂3(1� rD⇤)

⇤
.

To include the lepton mass suppressed terms, one sometimes defines [28, 34] additional

form factor ratios

R3(w) =
hA3 � rD⇤hA2

hA1

, R0(w) =
hA1(w + 1)� hA3(w � rD⇤)� hA2(1� wrD⇤)

(1 + rD⇤)hA1

. (22)
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enter in rate suppressed by factors of mτ2/mB2

Determination of Form Factors?

B→D, D* DECAYS: NOTATION



THEORY INPUTS



BGL: UNITARITY CONSTRAINTS
➤ Boyd, Grinstein, Lebed (’95) (BGL): relate FFs to two point 

functions via dispersion relations, crossing symmetry, quark-
hadron duality: 

➤ unitarity → constraints on an, e.g. for single channel: 

3. Parametrization of Form Factors

Our parametrizations of the form factors rely on a Taylor expansion about z = 0. To

connect this expansion to bounds at |z| = 1, we need a function which is analytic inside

the unit disk. The form factors Fi have cuts and poles along the segment q2 > (M −m)2

of the real axis in the complex q2 plane, and therefore only on the segment (−1, 0) of the

real axis in z or on the unit circle |z| = 1.

We have used the freedom to redefine φi by a phase to ensure that it has no poles,

branch cuts, or zeros in the interior of the unit circle |z| < 1, but the form factors Fi(q2)

have poles due to the existence of stable spin-one states with unit bottom and charm

number (spin-zero states only contribute to f− and a−, which, for massless leptons, give

vanishing contribution to the differential rate). The masses of these B∗
c mesons can be

reliably computed[11–13] with potential models. The vector states are predicted to have

masses corresponding (for z defined with m = mD∗) to z1 = −0.284, z2 = −0.472, z3 =

−0.531, and z4 = −0.907, while the axial vector masses correspond to z5 = −0.395,

z6 = −0.399, z7 = −0.609, and z8 = −0.619. One may form functions P (z) that are

products of terms of the form (z − zi)/(1 − z̄iz), known to mathematicians as Blaschke

factors[14]:

P0 = P1 =
8
∏

j=5

(z − zj)

(1− z̄jz)
,

P2 = P3 =
4
∏

j=1

(z − zj)

(1− z̄jz)
.

(3.1)

Such Pi’s are analytic on the unit disk for |zj | < 1 and serve to eliminate poles of Fi

at each z = zj when formed into the products Pi(z)Fi(z). Most importantly, each Pi is

unimodular on the unit circle, and therefore we may replace Fi with PiFi in our bound

Eq. (2.14) without changing the result. Since now both PiFi and φi are analytic on the

unit disc, Taylor expanding φiPiFi about z = 0 gives

Fi(z) =
1

Pi(z)φi(z)

∞
∑

n=0

anz
n. (3.2)

Substituting this expression into Eq. (2.14) gives the central result

∞
∑

n=0

|an|2 ≤ 1. (3.3)
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phase space factorsremoves poles 
(Blanschke factors)

Taylor expand in

III. COMBINED FIT TO B ! D⇤l⌫̄ AND B ! Dl⌫̄

A. Parametrization of the w dependence

Unitarity and analyticity provide strong constraints on the shapes of the B ! D(⇤)`⌫

form factors [41–46]. It is common to employ a parametrization of the B ! D`⌫ form factor

G(w), defined in Eq. (19), via the conformal mapping z(w) = (
p
w + 1�

p
2)/(

p
w + 1+

p
2).

Unitarity constraints yield, e.g., G(w)/G(1) ' 1� 8⇢2z + (51.⇢2 � 10.)z2
� (252.⇢2 � 84.)z3,

in which ⇢2 = �G
0(1)/G(1) is a slope parameter [43]. The convergence of this expansion

may be optimized by parametrizing it in a way that minimizes the range of the expansion

parameter, via

z⇤(w) =
p
w + 1�

p
2 a

p
w + 1 +

p
2 a

, a =

✓
1 + rD
2
p
rD

◆1/2

. (29)

The unitarity constraints suggest a form factor parametrization of the form

G(w)

G(w0)
' 1� 8a2⇢2⇤z⇤ +

�
V21⇢

2
⇤ � V20

�
z2
⇤ . (30)

Here w0 = 2a2 � 1 ' 1.28 is defined such that z⇤(w0) = 0, while V21 ' 57. and V20 ' 7.5

are obtained numerically from Ref. [43]. The uncertainty in the coe�cient of the z2
⇤ term

in Eq. (30) may be sizable [43], however, we check below that the fit results are stable if we

relax the constraint between the slope and the curvature.

The leading order Isgur-Wise function, ⇠(w), may be extracted from the parametrization

in Eq. (30) by using Eqs. (14) and (13). Keeping terms to O("c,b(w�1)), we can approximate

the subleading Isgur-Wise functions as

�̂2(w) ' �̂2(1) + �̂0
2(1)(w � 1) , �̂3(w) ' �̂0

3(1)(w � 1) , ⌘(w) ' ⌘(1) + ⌘0(1)(w � 1) ,

(31)

since �̂3(1) = 0. One finds at O("c,b, ↵s),

⇠(w)

⇠(w0)
' 1� 8a2⇢̄2⇤z⇤ + z2

⇤

⇢
V21⇢̄

2
⇤ � V20 + ("b � "c)


2⌅ ⌘0(1)

1� rD
1 + rD

�

+ ("b + "c)


⌅
⇥
12�̂0

3(1)� 4�̂2(1)
⇤
� 16

⇥
(a2 � 1)⌅� 16a4

⇤
�̂0
2(1)

�

+ ↵̂s


⌅

✓
C 0

V1
(w0) +

CV3(w0) + rDCV2(w0)

1 + rD

◆
+ 2a2(⌅� 32a2)

C 0
V3
(w0) + rDC 0

V2
(w0)

1 + rD

� 64a6
C 00

V3
(w0) + rDC 00

V2
(w0)

1 + rD
� 32a4C 00

V1
(w0)

��
, (32)
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3. Parametrization of Form Factors

Our parametrizations of the form factors rely on a Taylor expansion about z = 0. To

connect this expansion to bounds at |z| = 1, we need a function which is analytic inside

the unit disk. The form factors Fi have cuts and poles along the segment q2 > (M −m)2

of the real axis in the complex q2 plane, and therefore only on the segment (−1, 0) of the

real axis in z or on the unit circle |z| = 1.

We have used the freedom to redefine φi by a phase to ensure that it has no poles,

branch cuts, or zeros in the interior of the unit circle |z| < 1, but the form factors Fi(q2)

have poles due to the existence of stable spin-one states with unit bottom and charm

number (spin-zero states only contribute to f− and a−, which, for massless leptons, give

vanishing contribution to the differential rate). The masses of these B∗
c mesons can be

reliably computed[11–13] with potential models. The vector states are predicted to have

masses corresponding (for z defined with m = mD∗) to z1 = −0.284, z2 = −0.472, z3 =

−0.531, and z4 = −0.907, while the axial vector masses correspond to z5 = −0.395,

z6 = −0.399, z7 = −0.609, and z8 = −0.619. One may form functions P (z) that are

products of terms of the form (z − zi)/(1 − z̄iz), known to mathematicians as Blaschke

factors[14]:

P0 = P1 =
8
∏

j=5

(z − zj)

(1− z̄jz)
,

P2 = P3 =
4
∏

j=1

(z − zj)

(1− z̄jz)
.

(3.1)

Such Pi’s are analytic on the unit disk for |zj | < 1 and serve to eliminate poles of Fi

at each z = zj when formed into the products Pi(z)Fi(z). Most importantly, each Pi is

unimodular on the unit circle, and therefore we may replace Fi with PiFi in our bound

Eq. (2.14) without changing the result. Since now both PiFi and φi are analytic on the

unit disc, Taylor expanding φiPiFi about z = 0 gives

Fi(z) =
1

Pi(z)φi(z)

∞
∑

n=0

anz
n. (3.2)

Substituting this expression into Eq. (2.14) gives the central result

∞
∑

n=0

|an|2 ≤ 1. (3.3)

6Can be used directly to fit spectra 



HQET (+ UNITARITY)
➤ FFs are related by heavy quark symmetry (HQS) 

➤ HQET → organize expansion in powers of αs, Λ/mb, Λ/mc 

➤ relations among form factors 

➤ can be used to relate form factors measurements in e,μ to additional ffs in τ 

➤ At LO: everything proportional to Isgur-Wise function ξ or 0 

➤ At O(Λ/mb, Λ/mc): subleading IW functions: 𝝌2, 𝝌3, η 

➤ HQET + z-parameterization from unitarity:  

➤ Compute FF at O(αs, Λ/mb, Λ/mc) 

➤ Taylor expand IW functions

III. COMBINED FIT TO B ! D⇤l⌫̄ AND B ! Dl⌫̄

A. Parametrization of the w dependence

Unitarity and analyticity provide strong constraints on the shapes of the B ! D(⇤)`⌫

form factors [41–46]. It is common to employ a parametrization of the B ! D`⌫ form factor

G(w), defined in Eq. (19), via the conformal mapping z(w) = (
p
w + 1�

p
2)/(

p
w + 1+

p
2).

Unitarity constraints yield, e.g., G(w)/G(1) ' 1� 8⇢2z + (51.⇢2 � 10.)z2
� (252.⇢2 � 84.)z3,

in which ⇢2 = �G
0(1)/G(1) is a slope parameter [43]. The convergence of this expansion

may be optimized by parametrizing it in a way that minimizes the range of the expansion

parameter, via

z⇤(w) =
p
w + 1�

p
2 a

p
w + 1 +

p
2 a

, a =

✓
1 + rD
2
p
rD

◆1/2

. (29)

The unitarity constraints suggest a form factor parametrization of the form

G(w)

G(w0)
' 1� 8a2⇢2⇤z⇤ +

�
V21⇢

2
⇤ � V20

�
z2
⇤ . (30)

Here w0 = 2a2 � 1 ' 1.28 is defined such that z⇤(w0) = 0, while V21 ' 57. and V20 ' 7.5

are obtained numerically from Ref. [43]. The uncertainty in the coe�cient of the z2
⇤ term

in Eq. (30) may be sizable [43], however, we check below that the fit results are stable if we

relax the constraint between the slope and the curvature.

The leading order Isgur-Wise function, ⇠(w), may be extracted from the parametrization

in Eq. (30) by using Eqs. (14) and (13). Keeping terms to O("c,b(w�1)), we can approximate

the subleading Isgur-Wise functions as

�̂2(w) ' �̂2(1) + �̂0
2(1)(w � 1) , �̂3(w) ' �̂0

3(1)(w � 1) , ⌘(w) ' ⌘(1) + ⌘0(1)(w � 1) ,

(31)

since �̂3(1) = 0. One finds at O("c,b, ↵s),

⇠(w)

⇠(w0)
' 1� 8a2⇢̄2⇤z⇤ + z2

⇤

⇢
V21⇢̄

2
⇤ � V20 + ("b � "c)


2⌅ ⌘0(1)

1� rD
1 + rD

�

+ ("b + "c)


⌅
⇥
12�̂0

3(1)� 4�̂2(1)
⇤
� 16

⇥
(a2 � 1)⌅� 16a4

⇤
�̂0
2(1)

�

+ ↵̂s


⌅

✓
C 0

V1
(w0) +

CV3(w0) + rDCV2(w0)

1 + rD

◆
+ 2a2(⌅� 32a2)

C 0
V3
(w0) + rDC 0

V2
(w0)

1 + rD

� 64a6
C 00

V3
(w0) + rDC 00

V2
(w0)

1 + rD
� 32a4C 00

V1
(w0)

��
, (32)
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III. COMBINED FIT TO B ! D⇤l⌫̄ AND B ! Dl⌫̄

A. Parametrization of the w dependence

Unitarity and analyticity provide strong constraints on the shapes of the B ! D(⇤)`⌫

form factors [41–46]. It is common to employ a parametrization of the B ! D`⌫ form factor

G(w), defined in Eq. (19), via the conformal mapping z(w) = (
p
w + 1�

p
2)/(

p
w + 1+

p
2).

Unitarity constraints yield, e.g., G(w)/G(1) ' 1� 8⇢2z + (51.⇢2 � 10.)z2
� (252.⇢2 � 84.)z3,

in which ⇢2 = �G
0(1)/G(1) is a slope parameter [43]. The convergence of this expansion

may be optimized by parametrizing it in a way that minimizes the range of the expansion

parameter, via

z⇤(w) =
p
w + 1�

p
2 a

p
w + 1 +

p
2 a

, a =

✓
1 + rD
2
p
rD

◆1/2

. (29)

The unitarity constraints suggest a form factor parametrization of the form

G(w)

G(w0)
' 1� 8a2⇢2⇤z⇤ +

�
V21⇢

2
⇤ � V20

�
z2
⇤ . (30)

Here w0 = 2a2 � 1 ' 1.28 is defined such that z⇤(w0) = 0, while V21 ' 57. and V20 ' 7.5

are obtained numerically from Ref. [43]. The uncertainty in the coe�cient of the z2
⇤ term

in Eq. (30) may be sizable [43], however, we check below that the fit results are stable if we

relax the constraint between the slope and the curvature.

The leading order Isgur-Wise function, ⇠(w), may be extracted from the parametrization

in Eq. (30) by using Eqs. (14) and (13). Keeping terms to O("c,b(w�1)), we can approximate

the subleading Isgur-Wise functions as

�̂2(w) ' �̂2(1) + �̂0
2(1)(w � 1) , �̂3(w) ' �̂0

3(1)(w � 1) , ⌘(w) ' ⌘(1) + ⌘0(1)(w � 1) ,

(31)

since �̂3(1) = 0. One finds at O("c,b, ↵s),

⇠(w)

⇠(w0)
' 1� 8a2⇢̄2⇤z⇤ + z2

⇤

⇢
V21⇢̄

2
⇤ � V20 + ("b � "c)


2⌅ ⌘0(1)

1� rD
1 + rD

�

+ ("b + "c)


⌅
⇥
12�̂0

3(1)� 4�̂2(1)
⇤
� 16

⇥
(a2 � 1)⌅� 16a4

⇤
�̂0
2(1)

�

+ ↵̂s


⌅

✓
C 0

V1
(w0) +

CV3(w0) + rDCV2(w0)

1 + rD

◆
+ 2a2(⌅� 32a2)

C 0
V3
(w0) + rDC 0

V2
(w0)

1 + rD

� 64a6
C 00

V3
(w0) + rDC 00

V2
(w0)

1 + rD
� 32a4C 00

V1
(w0)

��
, (32)
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Fit input shapes to 6 parameters (3 slopes, 2 intercepts + ρ*)  



CLN: UNITARITY + HQET + QCD SUM RULES

➤ Caprini Lellouch Neubert (CLN ‘98): Use NLO HQET and 
further constraints from QCD sum rules: 

➤ subleading IW functions determined 

➤ Only two parameters: normalization and ρ* 

➤ Uncertainties small: <2% (?) → mostly neglected in 
experimental analyses (e.g. fix slopes to CLN prediction 
and float intercepts, …)
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EXPERIMENTAL & LATTICE ACCESS TO SPECTRA

➤ B→Dlv:  Belle, Lattice:  
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FIG. 8. Form factors of the decay B ! D`⌫` and result of the combined fit to experimental and lattice QCD (FNAL/MILC
and HPQCD) data. The BGL series (Eq. (8)) is truncated after the cubic term. The points with error bars are Belle and
LQCD data. The solid curve is the f+ form factor and the dashed curve represents f0. The shaded areas around these curves
indicate the uncertainty in the coe�cients of the BGL expansion.
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EXPERIMENTAL ACCESS TO SPECTRA

➤ B→D*lv  (2017, Belle): 
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FIG. 8: The best fit values (solid red lines) and the corresponding ��2 + 1 errors (dashed lines)
of the unfolded decay rates are shown.
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No lattice results yet for spectra (only preliminary info for finite lattice spacing)
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NORMALIZATION AT ZERO RECOIL

➤ Lattice measurements at zero recoil:

and shapes of the form factors. The form factors at zero recoil, G(1) and F(1), have been

computed in lattice QCD (LQCD), providing state-of-the-art predictions for the normal-

izations of the B ! D(⇤)l⌫ rates. The most precise lattice QCD predictions at zero recoil

are [47, 48]

G(1)LQCD = 1.054(8) , F(1)LQCD = 0.906(13) , (35)

where we combined the quoted systematic and statistical uncertainties. Although these

normalizations may be expected to drop out of the predictions for R(D(⇤)), they do influence

the fit to the di↵erential decay distributions and hence the resulting form factor ratios.

Making use of these lattice constraints leads to our first fitting scenario:

⌅ Rescale the B ! D and B ! D⇤ form factors in the fit by G(1)LQCD/G(1) and

F(1)LQCD/F(1), respectively, such that the rates at w = 1 agree with the lattice

predictions. We refer to this fit as “Lw=1”.

Measurements of the rate normalizations are, however, subject to relatively large system-

atic uncertainties. For example, the calibration of the hadronic tagging e�ciency produces

systematic uncertainties of the order of a few percent [49]. To compare the best-fit shapes

without lattice constraints and such systematic e↵ects, we consider a second scenario:

⌅ Allow the normalizations of the B ! Dl⌫ and B ! D⇤l⌫ rates to float independently.

This approach only uses B ! D(⇤)l⌫ shape information to constrain the form factors,

but no theory input for the normalizations at zero-recoil, and is independent of lattice

information. We refer to this fit as “NoL”.

For each fit, we apply (relax) the QCDSR constraints, exploring a “constrained” (“uncon-

strained”) fit. The QCDSR constrained fits are denoted with a su�x “+SR”. Both Lw=1

and NoL fits alter the overall normalizations the B ! Dl⌫ and B ! D⇤l⌫ rates, but leave

the HQET expansions of the form factors unchanged. Thus, they can be considered as

introducing an extra source of heavy quark symmetry breaking in the normalizations (to

e↵ectively account for higher order e↵ects), while still preserving the form factor relations

in Eqs. (14) and (15).

Since lattice QCD predictions are also available for w � 1 for the B ! Dl⌫ form factors

f+(w) and f0(w), it is possible to obtain a prediction for the slope parameter, ⇢̄2⇤, from them.

This leads to a third fit approach, namely:

14
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BGL FIT IN B→D* USING BELLE SPECTRA 3
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FIG. 1. The form factor ratios R1(w) (left) and R2(w) (right) for the BGL (red long dashed), CLN (gray dashed), and noCLN

(yellow dotted) fits. The BGL and noCLN fits suggest a large violation of heavy quark symmetry, in conflict with lattice QCD

predictions. The blue lines show the implications of the preliminary FNAL/MILC lattice results [24], which are not in the

continuum limit, but are fairly stable for a range of lattice spacings, and the uncertainties encompass the spread of the results

and their uncertainties. The black data point for R1(1) shows the result of converting the FNAL/MILC B ! D ` ⌫̄ result,

using heavy quark symmetry (details in the text).

since other subleading Isgur-Wise functions are sup-
pressed by w� 1. Here rD = mD/mB and "c,b = ⇤̄/mc,b

is treated as in Ref. [2]. Using f+(w = 1) = 1.199 ±

0.010 [27] one finds ⌘(1) = 0.22± 0.10. The uncertainty
in this relation and the extracted value of ⌘(1) is dom-
inated by O(⇤2

QCD/m
2
c) corrections parametrized by a

number of unknown matrix elements [28], which we esti-
mate with "2c ⇠ 0.05. Thus we obtain

R1(1) = 1.34� 0.12 ⌘(1) = 1.31± 0.05 . (9)

This estimate is shown with the black dot and error bar
in the left plot in Fig. 1. It shows good consistency with
our estimate from the preliminary direct calculation of
the B ! D⇤`⌫̄ form factors, the region bounded by the
blue curves.

Another clear way to see that the central values of the
BGL and noCLN fit results cannot be accommodated in
HQET, without postulating a breakdown of the expan-
sion, is by recalling that [2]

R1(1) = 1.34� 0.12 ⌘(1) + . . . ,

R2(1) = 0.98� 0.42 ⌘(1)� 0.54 �̂2(1) + . . . ,

R0
1(1) = �0.15 + 0.06 ⌘(1)� 0.12 ⌘0(1) + . . . , (10)

R0
2(1) = 0.01� 0.54 �̂0

2(1) + 0.21 ⌘(1)� 0.42 ⌘0(1) + . . . ,

where the ellipses denote O("2c,b, ↵s "c,b, ↵2
s) higher order

corrections. Here ⌘ and �̂2 are subleading Isgur-Wise
functions. These equations have no solutions close to the
BGL or noCLN fit results in Table II with O(1) values
of {⌘(1), ⌘0(1), �̂2(1), �̂0

2(1)}.
Figure 2 shows d�/dw in the three fit scenarios, as

well as the Belle data [1]. The shaded band shows the
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FIG. 2. d�/dw in the 3 fits.

uncertainty of the noCLN fit, which is comparable to the
uncertainties of the other two fits. The BGL and noCLN
fits show larger rates near zero and maximal recoil in
comparison to CLN. The CLN fit shows a larger rate at
intermediate values of w.

IV. CONCLUSIONS

Our results show that the tensions concerning the de-
terminations of |Vcb| cannot be considered resolved. The
central values of the BGL and noCLN fits, which give
good descriptions of the data, imply large deviations from
heavy quark symmetry. These fits are also in tension
with lattice QCD predictions for the form factor ratio

noCLN = fit of linearized R1,2

➤ HQET predict R1,2 = 1 + O(Λ/mb,c, αs), slopes small 

➤ BGL seem to suggest large HQS violations, not seen from lattice 

➤ Using lattice to extract Vcb:

Tensions between heavy quark symmetry and |Vcb|?

Florian U. Bernlochner,1, 2 Zoltan Ligeti,3 Michele Papucci,3 and Dean J. Robinson4

1Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
2Karlsruher Institute of Technology, 76131 Karlsruhe, Germany

3Ernest Orlando Lawrence Berkeley National Laboratory,
University of California, Berkeley, CA 94720, USA

4Physics Department, University of Cincinnati, Cincinnati OH 45221, USA

Recently four papers [1–4] extracted |Vcb| using the Belle measurement [1] of the exclusive B̄ !
D⇤`⌫̄ di↵erential decay rates, which made public the unfolded distributions for the first time. Since

these fits use mostly the same data, if their correlations were close to 100%, the tension between them

would be very large. We determine these correlations, quantify the tension between the results, and

explore what might lead to improving the consistency of the fits. We find that all fits to B̄ ! D⇤`⌫̄,
which yield |Vcb| in agreement with its determination for inclusive semileptonic B decays, also imply

large violations of heavy quark symmetry. These fits are also in tension with preliminary lattice

QCD data on the form factors away from zero recoil. Thus, there are no set of assumptions under

which the tension between exclusive and inclusive detreminations of |Vcb| can be considered settled.

I. INTRODUCTION

Following the publication of the unfolded B̄ ! D⇤` ⌫̄
spectra by Belle [1], recent theory papers [2–4] could per-
form fits to the data for the first time, using di↵erent
theoretical frameworks. In particular, using the BGL
parametrization [5, 6] for the B̄ ! D⇤` ⌫̄ form factors,
a substantial shift in the extracted value of |Vcb| was
found [3, 4], compared to the Belle [1] analysis using the
CLN [7] parametrization,

|Vcb|CLN = (38.2± 1.5)⇥ 10�3 , [1] , (1a)

|Vcb|BGL = (41.7+2.0
�2.1)⇥ 10�3 , [3] , (1b)

|Vcb|BGL = (41.9+2.0
�1.9)⇥ 10�3 , [4] . (1c)

Note that the main result in Ref. [1] was |Vcb|CLN =
(37.4 ± 1.3) ⇥ 10�3, obtained from a fit inside the Belle
framework, before unfolding; only Eq. (1a) quoted in the
Appendix of [1] can be directly compared with Eqs. (1b)
and (1c). Intriguingly, the BGL fit results for |Vcb| are
compatible with those from inclusive B ! Xc`⌫̄ mea-
surements [8]. If one assumed, naively, a 100% correla-
tion between the fits yielding Eqs. (1a), (1b), and (1c),
then the tension between Eqs. (1a) and (1b) or between
Eqs. (1a) and (1c) would be above 5�.

The BGL [5, 6] fit implements constraints on the
B ! D⇤`⌫̄ form factors based on analyticity and uni-
tarity [9–11]. The CLN [7] fit imposes, in addition, con-
straints on the form factors from heavy quark symme-
try, and relies on QCD sum rule calculations [12–14] of
the subleading Isgur-Wise functions [15–18], without ac-
counting for their uncertainties. Ref. [2] performed com-
bined fits to B̄ ! D⇤` ⌫̄ and B̄ ! D` ⌫̄, using predictions
of the heavy quark e↵ective theory (HQET) [19, 20], in-
cluding all O(⇤QCD/mc,b) uncertainties and their corre-
lations for the first time. The e↵ect of relaxing the QCD
sum rule inputs in the CLN fit was found to be small
compared to the di↵erence of the CLN and BGL results.

The recent papers using the BGL parametrization [3, 4]
assert that the higher values obtained for |Vcb| are due

to the too restrictive functional forms used in the CLN
fits. It was previously also noticed that the CLN gives a
poorer fit to the B ! D`⌫̄ data than BGL [21].
Based on our work in Ref. [2], in this paper we explore

which di↵erences between the BGL and CLN fits are re-
sponsible for the di↵erent extracted |Vcb| values, study
the consistency and compatibility of the fits, and the sig-
nificance of the shift in the extracted value of |Vcb|.

II. DEFINITIONS

The B ! D(⇤)`⌫̄ form factors which occur in the stan-
dard model are defined as

hD⇤
| c̄�µb |Bi = i

p
mBmD⇤ hV "µ⌫↵� ✏⇤⌫v

0
↵v� ,

hD⇤
| c̄�µ�5b |Bi =

p
mBmD⇤

⇥
hA1(w + 1)✏⇤µ (2)

� hA2(✏
⇤
· v)vµ � hA3(✏

⇤
· v)v0µ

⇤
,

where v is the four-velocity of the B and v0 is that of the
D(⇤), and the form factors depend on w = v ·v0 = (m2

B +
m2

D(⇤)�q2)/(2mBmD(⇤)). Neglecting lepton masses, only
one linear combination of hA2 and hA3 is measurable.
In the heavy quark limit, hA1 = hA3 = hV = ⇠ and

hA2 = 0, where ⇠ is the Isgur-Wise function. Each
of these form factors can be expanded in powers of
⇤QCD/mb,c and ↵s. It is convenient to parametrize de-
viations from the heavy quark limit via the form factor
ratios

R1(w) =
hV

hA1

, R2(w) =
hA3 + rD⇤hA2

hA1

, (3)

which satisfy R1,2(w) = 1 + O(⇤QCD/mc,b, ↵s) in the
mb,c � ⇤QCD limit, and rD⇤ = mD⇤/mB .
The B ! D⇤`⌫̄ decay rate is given by

d�

dw
=

G2
F |Vcb|

2 m5
B

48⇡3
(w2

� 1)1/2 (w + 1)2 r3D⇤(1� rD⇤)2

⇥


1 +

4w

w + 1

1� 2wrD⇤ + r2D⇤

(1� rD⇤)2

�
F(w)2 , (4)

➤ Some tension between data + lattice + HQS

FNAL/MILC D = Lattice B→D + HQS

(if ~100% correl → more than 5σ discrepancy)



OTHER FIT COMBINATIONS 

Fit QCDSR
Lattice QCD

Belle Data
F(1) f+,0(1) f+,0(w > 1)

Lw=1 — X X — X

Lw=1+SR X X X — X

NoL — — — — X

NoL+SR X — — — X

Lw�1 — X X X X

Lw�1+SR X X X X X

th:Lw�1+SR X X X X —

TABLE I. Summary of theory and data inputs for each fit scenario. All use the HQET predictions

to order O(⇤QCD/mc,b) and O(↵s), as well as the unitarity constraints.

⌅ Extract ⇠(w), including the slope parameter ⇢̄2⇤, by fitting to the w � 1 lattice QCD

data forB ! D, and apply it simultaneously with the LQCD normalization ofB ! D⇤

at w = 1. We refer to this fit as “Lw�1”.

In a “theory only” version of this fit, denoted by “th:Lw�1+SR”, one fully constrains the

B ! D(⇤)l⌫ di↵erential rates without any experimental input; the only fit is to lattice data

and QCDSR constraints. For the “Lw�1+SR” fit, we combine the w � 1 B ! D and w = 1

B ! D⇤ lattice data with QCDSR constraints and the experimental information, to include

all available information and explore possible tensions. We summarize the inputs of the

various fit scenarios pursued in this paper in Table I.

All fits explored in this paper use the unitarity constraints. The consequences of relaxing

the unitarity constraints between the slope and the curvature terms in Eq. (30) will be

explored in detail elsewhere [50].

D. Data and fit details

To determine the leading and subleading Isgur-Wise functions and |Vcb|, we carry out a

simultaneous fit of the available B ! D(⇤)l⌫ spectra. There are only two measurements [49,

51] which provide kinematic distributions fully corrected for detector e↵ects. The measured

15

Use NLO HQET  and:

fix norm. to 
lattice zero-
recoil results

float norm. 
independently

fit ξ to lattice B→D, 
use lattice for B→D* 
norm

“+SR”: use QCD sum rules for priors on subleading IW functions

where ⌅ = 64a4⇢̄2⇤ � 16a2 � V21. The slope parameter ⇢̄2⇤ = �⇠0(w0)/⇠(w0) is related to the

slope ⇢2⇤ = �G
0(w0)/G(w0) via

⇢̄2⇤ � ⇢2⇤ = ("b + "c)
⇥
12�̂0

3(1)� 4�̂2(1)� 16(a2 � 1)�̂0
2(1)

⇤
+ 2("b � "c)⌘

0(1)
1� rD
1 + rD

+ ↵̂s


rDCV2(w0) + CV3(w0)

1 + rD
+ C 0

V1
(w0) + 2a2

rDC 0
V2
(w0) + C 0

V3
(w0)

1 + rD

�
. (33)

Enforcing ⇠(1) = 1, one may directly extract ⇠(w0) via evaluation of Eq. (32) at the zero recoil

point, z⇤(w = 1) = (1�a)/(1+a), and thereby obtain a properly normalized parametrization

for ⇠(w). Since ⌘(1) does not appear in Eq. (32), this implies that constraining ⇠(w) in itself

does not constrain ⌘(1), which is the largest unknown contribution in R1,2(1).

This expression for ⇠(w), combined with the HQET expansions in Eqs. (14) and (15),

allows one to parametrize all B ! D(⇤) form factors in terms of six parameters: ⇢̄2⇤, �̂2(1),

�̂0
2(1), �̂

0
3(1), ⌘(1) and ⌘0(1). The normalizations of the form factors are also fixed by Eq. (32),

thus |Vcb| may be determined from a global fit to overall rates without using lattice results.

B. QCD sum rule inputs

The subleading Isgur-Wise functions have only been calculated using model dependent

methods, and are not yet available from lattice QCD. The two-loop QCD sum rule (QCDSR)

calculations [23–25] imply that the subleading Isgur-Wise function ⌘(w) is approximately

constant. The functions �̂2,3, which parametrize corrections from the chromomagnetic term

in the subleading HQET Lagrangian, are small, in agreement with quark model intuition.

The QCD sum rule results are obtained at a fixed scale. The scale dependence can be

removed from �̂2,3 by defining “renormalization improved” functions, �̂ren
2,3 [16]. These are

obtained by multiplying the results of Refs. [23, 24] for �̂2,3 by [↵s(⇤)]3/�0 ⇠ 1.4, where

⇤ ⇠ 1GeV and �0 = 9 for three light flavors. For these renormalized subleading Isgur-Wise

functions, we use

�̂ren
2 (1) = �0.06± 0.02 , �̂0 ren

2 (1) = 0± 0.02 , �̂0 ren
3 (1) = 0.04± 0.02 ,

⌘(1) = 0.62± 0.2 , ⌘0(1) = 0± 0.2 . (34)

These central values reproduce L̂1...6 in Ref. [43], often used to predict R1,2 and R(D(⇤)).

We assign relatively large uncertainties, to permit assessment of possible pulls of the

experimental data from these QCDSR predictions. Replacing �̂2,3 with �̂ren
2,3 , the Wilson

12



FIT RESULTS
Lw=1 Lw=1+SR NoL NoL+SR Lw�1 Lw�1+SR th:Lw�1+SR

�
2 40.2 44.0 38.7 43.1 49.0 53.8 7.4

dof 44 48 43 47 48 52 4

|Vcb|⇥ 103 38.8± 1.2 38.5± 1.1 — — 39.1± 1.1 39.3± 1.0 —

G(1) 1.055± 0.008 1.056± 0.008 — — 1.060± 0.008 1.061± 0.007 1.052± 0.008

F(1) 0.904± 0.012 0.901± 0.011 — — 0.898± 0.012 0.895± 0.011 0.906± 0.013

⇢̄
2
⇤ 1.17± 0.12 1.19± 0.07 1.06± 0.15 1.19± 0.08 1.33± 0.11 1.24± 0.06 1.24± 0.08

�̂2(1) �0.26± 0.26 �0.07± 0.02 0.36± 0.62 �0.06± 0.02 0.13± 0.22 �0.06± 0.02 �0.06± 0.02

�̂
0
2(1) 0.21± 0.38 �0.00± 0.02 0.14± 0.39 �0.00± 0.02 �0.36± 0.28 �0.00± 0.02 �0.00± 0.02

�̂
0
3(1) 0.02± 0.07 0.05± 0.02 0.18± 0.19 0.04± 0.02 0.09± 0.07 0.05± 0.02 0.04± 0.02

⌘(1) 0.30± 0.04 0.30± 0.03 �0.56± 0.80 0.35± 0.14 0.30± 0.04 0.30± 0.03 0.31± 0.04

⌘
0(1) 0 (fixed) �0.12± 0.16 0 (fixed) �0.11± 0.18 0 (fixed) �0.05± 0.09 0.05± 0.10

m
1S
b [GeV] 4.70± 0.05 4.70± 0.05 4.71± 0.05 4.70± 0.05 4.71± 0.05 4.71± 0.05 4.71± 0.05

�mbc [GeV] 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02

TABLE II. Summary of the results for the fit scenarios considered. The correlations are shown in

Appendix B.

for 48 dof, corresponding to a fit probability of 8%, which is still an acceptable fit. The

slope parameter becomes ⇢̄2⇤ = 0.93 ± 0.05, below those obtained including the ⇤QCD/mc,b

and ↵s corrections. The uncertainty of ⇢̄2⇤ is noticeably smaller due to the smaller number

of degrees of freedom in this fit. The value of |Vcb| is only weakly a↵ected by this shift in ⇢̄2⇤.

In the “NoL” fits, using no LQCD inputs, we use only shape information to disentangle ⇢̄2⇤

from the subleading contributions, while allowing the B ! Dl⌫ and B ! D⇤l⌫ channels to

each have arbitrary normalizations (these fits cannot determine |Vcb|). This results in large

uncertainties in the QCDSR unconstrained fit. Again, ⌘0(1) and ⇢̄2⇤ are strongly correlated,

so the former is fixed at zero. Including the QCDSR constraints in the “NoL+SR” fit yields

results close to those in the “Lw=1+SR” fit.

In the “th:Lw�1+SR” scenario, which uses no experimental data, fitting the parametrized

⇠(w) to the six lattice points for f+,0(w) in Table III and F(1) in Eq. (35), results in a slope

parameter

⇢̄2⇤ = 1.24± 0.08 . (38)

The fitted w spectra are shown in Fig. 1 (gray curves), together with the lattice data points.

The �2 of the fit is 7.4, corresponding to a fit probability of 11% with 7 � 3 = 4 degrees

17
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FIG. 2. The measured B ! D
(⇤)

l⌫ decay distributions [49, 51] compared to the best fit contours

(dark blue curves) for the “Lw�1+SR” fit, using LQCD at all w and QCDSR constraints. The blue

bands show the 68% CL regions. The orange curves and bands show the central values and the

68% CL regions of the fit predictions for d�(B ! D
(⇤)

⌧⌫)/dw.

44%. For |Vcb| the fit gives

|Vcb| = (39.3± 1.0)⇥ 10�3 . (40)

This is higher than the “Lw=1+SR” result, because the value of ⇢̄2⇤ is also higher.

The correlation matrices for all fits are shown in Appendix B. In the “Lw=1” and “Lw�1”
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fit scenarios are described in the text and in Table I, and the fit results are shown in Table II. All
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Table IV). The black ellipse shows the world average of the data [9]. The contours are 68% CL
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R(D) AND R(D*)

➤ Reduced uncert on SM predictions 

➤ Consistency between different fits 

➤ Discrepancy with data still present and sizable 

Scenario R(D) R(D⇤) Correlation

Lw=1 0.292± 0.005 0.255± 0.005 41%

Lw=1+SR 0.291± 0.005 0.255± 0.003 57%

NoL 0.273± 0.016 0.250± 0.006 49%

NoL+SR 0.295± 0.007 0.255± 0.004 43%

Lw�1 0.298± 0.003 0.261± 0.004 19%

Lw�1+SR 0.299± 0.003 0.257± 0.003 44%

th:Lw�1+SR 0.306± 0.005 0.256± 0.004 33%

Data [9] 0.403± 0.047 0.310± 0.017 �23%

Refs. [48, 52, 54] 0.300± 0.008 — —

Ref. [53] 0.299± 0.003 — —

Ref. [34] — 0.252± 0.003 —

TABLE IV. The R(D) and R(D⇤) predictions for our fit scenarios, the world average of the data,

and other theory predictions. The fit scenarios are described in the text and in Table I. The bold

numbers are our most precise predictions.

In Fig. 5 we illustrate the impacts NP might have on the allowed R(D)�R(D⇤) regions,

assuming the dominance of one new physics operator in a standard four-Fermi basis. NP

couplings are permitted to have an arbitrary phase, generating allowed regions rather than

single contours. We display the allowed regions generated for the “NoL+SR” best fit values;

the “Lw�1+SR” best fit values; and for leading order contributions only, i.e., ↵s, "c,b ! 0,

with ⇢̄2⇤ = 1.24. The small variation between the “NoL+SR” and “Lw�1+SR” regions

illustrates the good consistency of the predictions obtained with and without LQCD. On

each plot, we also include for comparison the corresponding contours (dashed lines) produced

by a NP OV � OA coupling. The latter rescales R(D) and R(D⇤) keeping their ratio fixed.

Solid dots indicate the SM point for each case. For scalar currents, if NP only contributes

to OS (OP ) then only R(D) (R(D⇤)) is a↵ected in accordance with Eq. (10b) (Eq. (11a)),

respectively. We plot the allowed regions for the OS ± OP linear combinations, which are

also motivated by specific NP models.

22



NLO HQET FOR SM+NP
➤ NLO HQET calculation also for form factors entering BSM 

contributions
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FIG. 5. The allowed ranges of R(D)�R(D⇤), due to one of the new physics operators in addition

to the SM: OS �OP (top left), OS +OP (top right), OV +OA (bottom left), OT (bottom right).

IV. |Vcb| AND B̄ ! D⇤ ` ⌫`

In two recent manuscripts [55, 56] the implication of using the BGL parametrization [42]

for the B̄ ! D⇤ ` ⌫̄` form factors was explored and large shift in the extracted value of

|Vcb| was reported. Such a shift is intriguing as it makes the extracted value of |Vcb| much

more compatible with the value reported by inclusive measurements, cf. [9]. An interesting

additional comparison would be to confront these values with our parametrization, if we only

fit B̄ ! D⇤ ` ⌫̄` information. The result of such a fit, labeled in the following as “LD⇤ only
w=1 ”,

without QCDSR constraints is summarized in V. Without QCDSR constraints there is little

sensitivity to determine sub-leading contributions, but it’s interesting how large such terms

can become to accommodate the measured spectra. The obtained value of |Vcb| from all

three form factor parameterizations are summarized in Table VI, and we reproduce the
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CONCLUSIONS

➤ Experimental data in e,μ & Lattice results are improving 
determination of B→D(*) form factors 

➤ Apparent “tension” in current inputs between HQS, lattice 
and Belle B→D* distributions (can’t self-consistently use lattice+BGL 
to extract Vcb) 

➤ Future lattice B→D* spectra and Belle II data (and non-unfolded BGL 
Belle fit?) will have something to say on this 

➤ Updated R(D), R(D*) predictions still show large discrepancy 
with measurements 

➤ Updated BSM predictions for R(D), R(D*) 

➤ Results included in Hammer package
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FORM FACTOR DEFINITIONS

➤ B→D: 

B. B ! D(⇤) form factors

We use the standard definitions of the form factors. For B ! D decays,

hD| c̄ b |Bi =
p
mBmD hS (w + 1) , (10a)

hD| c̄�5b |Bi = hD| c̄�µ�5b |Bi = 0 , (10b)

hD| c̄�µb |Bi =
p
mBmD

⇥
h+(v + v0)µ + h�(v � v0)µ

⇤
, (10c)

hD| c̄�µ⌫b |Bi = i
p
mBmD

⇥
hT (v0µv⌫ � v0⌫vµ)

⇤
, (10d)

while for the B ! D⇤ transitions,

hD⇤
| c̄b |Bi = 0 , (11a)

hD⇤
| c̄�5b |Bi = �

p
mBmD⇤ hP (✏⇤ · v) , (11b)

hD⇤
| c̄�µb |Bi = i

p
mBmD⇤ hV "µ⌫↵� ✏⇤⌫v

0
↵v� , (11c)

hD⇤
| c̄�µ�5b |Bi =

p
mBmD⇤

⇥
hA1(w + 1)✏⇤µ � hA2(✏

⇤
· v)vµ � hA3(✏

⇤
· v)v0µ

⇤
, (11d)

hD⇤
| c̄�µ⌫b |Bi = �

p
mBmD⇤ "µ⌫↵�

⇥
hT1✏

⇤
↵(v + v0)� + hT2✏

⇤
↵(v � v0)� + hT3(✏

⇤
· v)v↵v

0
�

⇤
.

(11e)

The i, �1, and w+1 factors are chosen such that in the heavy quark limit each form factor

either vanishes or equals the leading order Isgur-Wise function,

h� = hA2 = hT2 = hT3 = 0 ,

h+ = hV = hA1 = hA3 = hS = hP = hT = hT1 = ⇠ . (12)

Using Eqs. (4) and (9), one can compute all form factors to order O(⇤QCD/mc,b) and

O(↵s). It is convenient to factor out ⇠(w), defining

ĥ(w) = h(w)/⇠(w) . (13)

By virtue of Eq. (6), the B ! Dl⌫ form factors only depend on two linear combinations of

subleading Isgur-Wise functions, L̂1 and L̂4,

ĥ+ = 1 + ↵̂s

h
CV1 +

w + 1

2
(CV2 + CV3)

i
+ ("c + "b) L̂1 ,

ĥ� = ↵̂s
w + 1

2
(CV2 � CV3) + ("c � "b) L̂4 ,

ĥS = 1 + ↵̂s CS + ("c + "b)

✓
L̂1 � L̂4

w � 1

w + 1

◆
,
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NLO HQET FF EXPRESSIONS

B. B ! D(⇤) form factors

We use the standard definitions of the form factors. For B ! D decays,

hD| c̄ b |Bi =
p
mBmD hS (w + 1) , (10a)
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hD| c̄�µb |Bi =
p
mBmD

⇥
h+(v + v0)µ + h�(v � v0)µ

⇤
, (10c)
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⇤
↵(v + v0)� + hT2✏

⇤
↵(v � v0)� + hT3(✏

⇤
· v)v↵v

0
�

⇤
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(11e)

The i, �1, and w+1 factors are chosen such that in the heavy quark limit each form factor

either vanishes or equals the leading order Isgur-Wise function,

h� = hA2 = hT2 = hT3 = 0 ,

h+ = hV = hA1 = hA3 = hS = hP = hT = hT1 = ⇠ . (12)

Using Eqs. (4) and (9), one can compute all form factors to order O(⇤QCD/mc,b) and

O(↵s). It is convenient to factor out ⇠(w), defining

ĥ(w) = h(w)/⇠(w) . (13)

By virtue of Eq. (6), the B ! Dl⌫ form factors only depend on two linear combinations of

subleading Isgur-Wise functions, L̂1 and L̂4,

ĥ+ = 1 + ↵̂s

h
CV1 +

w + 1

2
(CV2 + CV3)

i
+ ("c + "b) L̂1 ,

ĥ� = ↵̂s
w + 1

2
(CV2 � CV3) + ("c � "b) L̂4 ,

ĥS = 1 + ↵̂s CS + ("c + "b)

✓
L̂1 � L̂4

w � 1

w + 1

◆
,

6ĥT = 1 + ↵̂s

�
CT1 � CT2 + CT3

�
+ ("c + "b)

�
L̂1 � L̂4

�
. (14)

For the B ! D⇤l⌫ form factors we obtain

ĥV = 1 + ↵̂s CV1 + "c
�
L̂2 � L̂5

�
+ "b

�
L̂1 � L̂4

�
,

ĥA1 = 1 + ↵̂s CA1 + "c

✓
L̂2 � L̂5

w � 1

w + 1

◆
+ "b

✓
L̂1 � L̂4

w � 1

w + 1

◆
,

ĥA2 = ↵̂s CA2 + "c
�
L̂3 + L̂6

�
,

ĥA3 = 1 + ↵̂s

�
CA1 + CA3

�
+ "c

�
L̂2 � L̂3 + L̂6 � L̂5

�
+ "b

�
L̂1 � L̂4

�
,

ĥP = 1 + ↵̂s CP + "c
⇥
L̂2 + L̂3(w � 1) + L̂5 � L̂6(w + 1)

⇤
+ "b

�
L̂1 � L̂4

�
,

ĥT1 = 1 + ↵̂s

h
CT1 +

w � 1

2

�
CT2 � CT3

�i
+ "cL̂2 + "bL̂1 ,

ĥT2 = ↵̂s
w + 1

2

�
CT2 + CT3

�
+ "cL̂5 � "bL̂4 ,

ĥT3 = ↵̂s CT2 + "c
�
L̂6 � L̂3

�
. (15)

In Eqs. (14) and (15), the relations for the SM currents — that is, h+, h�, hV , hA1 , hA2 ,

and hA3 — agree with the literature, e.g., Refs. [16, 20]. Because of Luke’s theorem, the

O(⇤QCD/mc,b) corrections to h+, hS, hA1 , and hT1 vanish at zero recoil. To the best of our

knowledge, the expressions for hT and hT1,2,3 cannot be found in the literature. For hT2 and
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One can verify using mb = mB � ⇤̄+O(⇤2
QCD/mb) and mc = mD(⇤) � ⇤̄+O(⇤2

QCD/mc) that

the form factor expansions in Eqs. (14) and (15) satisfy these relations, including all O("c,b)

and O(↵s) terms. We emphasize that this only holds using the MS masses at the common

scale µ. Using mb(mb) and mc(mc) [29] in Eqs. (16), as done in some papers, is inconsistent.
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pole mass as the function mb(m1S
b ) = m1S

b (1 + 2↵2
s/9 + . . .). Neglecting higher order terms,

as done throughout this paper, is a good approximation in all cases where those are known,

including the evaluation of R1,2 [22]. We adopt the inputs [40],

m1S
b = (4.71± 0.05)GeV , �mbc = mb �mc = (3.40± 0.02)GeV , (24)

from fits to inclusive B ! Xcl⌫̄ spectra and other determinations of m1S
b . We eliminate mc

using mc = mb(m1S
b )� �mbc, and extract ⇤̄ via

⇤̄ = mB �mb(m
1S
b ) + �1/(2m

1S
b ) . (25)

Here mB = (mB + 3mB⇤)/4 ' 5.313GeV is the spin-averaged meson mass, and we use

�1 = �0.3GeV2 [40]. Enforcing the cancellation of the leading renormalon is equivalent to

using mb(m1S
b ) ! m1S

b everywhere in Eqs. (14) and (15), except in the ⇤̄/mc,b terms, that

are not multiplied by subleading Isgur-Wise functions.

We match the QCD and HQET theories at scale µ2 = mbmc, corresponding to ↵s ' 0.26.

The 1S scheme then yields, for example, the following SM predictions for R1,2(1)

R1(1) ' 1.34� 0.12 ⌘(1) ,

R2(1) ' 0.98� 0.42 ⌘(1)� 0.54 �̂2(1) . (26)

For R0
1,2(1) we obtain

R0
1(1) ' �0.15 + 0.06 ⌘(1)� 0.12 ⌘0(1) ,

R0
2(1) ' 0.01� 0.54 �̂0

2(1) + 0.21 ⌘(1)� 0.42 ⌘0(1) . (27)

For completeness, the similar relations for R0,3 are

R3(1) ' 1.19� 0.26 ⌘(1)� 1.20 �̂2(1) ,

R0(1) ' 1.09 + 0.25 ⌘(1) ,

R0
3(1) ' �0.08� 1.20 �̂0

2(1) + 0.13 ⌘(1)� 0.26 ⌘0(1) ,

R0
0(1) ' �0.18 + 0.87 �̂2(1) + 0.06 ⌘(1) + 0.25 ⌘0(1) . (28)
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