STATUS OF STANDARD MODEL PREDCTTIONS FOR RD(")

Michele Papucci (LBNL \& CERN)

 in collab. with F.Bernlochner, Z.Ligeti, D.Robinson
LEPTON UNIVERSALITY VIOLATION?

> Deviations in $\mathrm{B} \rightarrow \mathrm{D}^{(*)}$ tv decays found in multiple measurements over the last years, almost 4σ disagreem with SM prediction

- Other hints of lepton universality violations in other decay modes

$$
\left.\left.\begin{array}{ll}
\left.\mathrm{R}(J / \psi)\right|_{\text {exp }}=\frac{\mathrm{BR}\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\mathrm{BR}\left(B_{c} \rightarrow J / \psi \ell \nu\right)}=0.71 \pm 0.17 \pm 0.18 & \text { vs }
\end{array} \quad \mathrm{R}(J / \psi)\right|_{t h}=0.25-0.28\right)
$$

Is it New Physics? Interesting BSM interpretations \rightarrow see talks in later sessions
> To assess discrepancy one need up-to-date predictions for the SM, with careful assessment of theoretical uncertainties
> Uncertainties come from form factors

- FFs determined by combination of
> data
> lattice QCD
> theoretical modeling
> subset of FFs affect also V_{cb} exclusive determination and long standing discrepancy there between exclusive and inclusive determinations

$B \rightarrow D, D^{*}$ DECAYS: NOTATION

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma(\bar{B} \rightarrow D l \nu)}{\mathrm{d} w}= & \frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{\mathrm{EW}}^{2} m_{B}^{5}}{48 \pi^{3}}\left(w^{2}-1\right)^{3 / 2} r_{D}^{3}\left(1+r_{D}\right)^{2} \mathcal{G}(w)^{2} \\
\frac{\mathrm{~d} \Gamma\left(\bar{B} \rightarrow D^{*} l \nu\right)}{\mathrm{d} w}= & \frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{\mathrm{EW}}^{2} m_{B}^{5}}{48 \pi^{3}}\left(w^{2}-1\right)^{1 / 2}(w+1)^{2} r_{D^{*}}^{3}\left(1-r_{D^{*}}\right)^{2} \\
& \times\left[1+\frac{4 w}{w+1} \frac{1-2 w r_{D^{*}}+r_{D^{*}}^{2}}{\left(1-r_{D^{*}}\right)^{2}}\right] \mathcal{F}(w)^{2}
\end{aligned}
$$

with $r_{D^{(*)}}=m_{D^{(*)}} / m_{B}$ and $w=v \cdot v^{\prime}=\frac{m_{B}^{2}+m_{D^{(*)}}^{2}-q^{2}}{2 m_{B} m_{D^{(*)}}}$

$$
\begin{aligned}
\mathcal{G}(w)=h_{+} & -\frac{1-r_{D}}{1+r_{D}} h_{-}, \\
\mathcal{F}(w)^{2}=h_{A_{1}}^{2} & \left\{2\left(1-2 w r_{D^{*}}+r_{D^{*}}^{2}\right)\left(1+R_{1} \frac{w-1}{w+1}\right)+\left[\left(1-r_{D^{*}}\right)+(w-1)\left(1-R_{2}\right)\right]^{2}\right\} \\
& \times\left[\left(1-r_{D^{*}}\right)^{2}+\frac{4 w}{w+1}\left(1-2 w r_{D^{*}}+r_{D^{*}}^{2}\right)\right]^{-1},
\end{aligned}
$$

$$
R_{1}(w)=\frac{h_{V}}{h_{A_{1}}}, \quad R_{2}(w)=\frac{h_{A_{3}}+r_{D^{*}} h_{A_{2}}}{h_{A_{1}}} . \quad \begin{aligned}
& R_{i} \text { are angular distributions } \rightarrow \\
& \text { can be accessed experimentally }
\end{aligned}
$$

$B \rightarrow D, D *$ DECAYS: NOTATION

in case of τ decays one extra form factor in SM (more with NP)
\rightarrow define other ratios:

$$
R_{3}(w)=\frac{h_{A_{3}}-r_{D^{*}} h_{A_{2}}}{h_{A_{1}}}, \quad R_{0}(w)=\frac{h_{A_{1}}(w+1)-h_{A_{3}}\left(w-r_{D^{*}}\right)-h_{A_{2}}\left(1-w r_{D^{*}}\right)}{\left(1+r_{D^{*}}\right) h_{A_{1}}}
$$

enter in rate suppressed by factors of $m_{\tau}{ }^{2} / m_{B}{ }^{2}$

Determination of Form Factors?

THEORY INPUTS

BGL: UNITARITY CONSTRAINTS

> Boyd, Grinstein, Lebed ('95) (BGL): relate FFs to two point functions via dispersion relations, crossing symmetry, quarkhadron duality:

(Blanschke factors)
$>$ unitarity \rightarrow constraints on a_{n}, e.g. for single channel: $\quad \sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \leq 1$.
Can be used directly to fit spectra

HQET (+ UNITARITY)

- FFs are related by heavy quark symmetry (HQS)
$>$ HQET \rightarrow organize expansion in powers of $a_{s}, \Lambda / m_{b}, \Lambda / m_{c}$
> relations among form factors
> can be used to relate form factors measurements in e, μ to additional ffs in τ
> At LO: everything proportional to Isgur-Wise function ξ or 0
\rightarrow At $\mathrm{O}\left(\Lambda / \mathrm{m}_{\mathrm{b}}, \Lambda / \mathrm{m}_{\mathrm{c}}\right)$: subleading IW functions: χ_{2}, χ_{3}, η
$>$ HQET + z-parameterization from unitarity:
> Compute FF at $\mathrm{O}\left(\mathrm{a}_{\mathrm{s}}, \Lambda / \mathrm{m}_{\mathrm{b}}, \Lambda / \mathrm{m}_{\mathrm{c}}\right)$
> Taylor expand IW functions

$$
\frac{\mathcal{G}(w)}{\mathcal{G}\left(w_{0}\right)} \simeq 1-8 a^{2} \rho_{*}^{2} z_{*}+\left(V_{21} \rho_{*}^{2}-V_{20}\right) z_{*}^{2} .
$$

$$
\hat{\chi}_{2}(w) \simeq \hat{\chi}_{2}(1)+\hat{\chi}_{2}^{\prime}(1)(w-1), \quad \hat{\chi}_{3}(w) \simeq \hat{\chi}_{3}^{\prime}(1)(w-1), \quad \eta(w) \simeq \eta(1)+\eta^{\prime}(1)(w-1),
$$

Fit input shapes to 6 parameters (3 slopes, 2 intercepts $+\rho *$)

CLN: UNITARITY + HQET + QCD SUM RULES

> Caprini Lellouch Neubert (CLN ‘98): Use NLO HQET and further constraints from QCD sum rules:
> subleading IW functions determined
> Only two parameters: normalization and ρ^{*}
> Uncertainties small: $<2 \%$ (?) \rightarrow mostly neglected in experimental analyses (e.g. fix slopes to CLN prediction and float intercepts, ...)

EXPERIMENTAL \& LATTICE INPUTS

EXPERIMENTAL \& LATIICE ACCESS TO SPECTRA

> B \rightarrow Dlv: Belle, Lattice:
1510.03657

Lattice: good at small recoil, Exp: good at large recoil

EXPERIMENTAL ACCESS TO SPECTRA

> $\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{lv}$ (2017, Belle):

No lattice results yet for spectra (only preliminary info for finite lattice spacing)

NORMALIZATION AT ZERO RECOIL

> Lattice measurements at zero recoil:

$$
\mathcal{G}(1)_{\mathrm{LQCD}}=1.054(8), \quad \mathcal{F}(1)_{\mathrm{LQCD}}=0.906(13),
$$

FIT RESULTS

BGL FIT IN B \rightarrow D* * USING BELLE SPECTRA

FNAL/MILC D $=$ Lattice $B \rightarrow D+H Q S$
> HQET predict $\mathrm{R}_{1,2}=1+\mathrm{O}\left(\Lambda / \mathrm{m}_{\mathrm{b}, \mathrm{c}}, \mathrm{a}_{\mathrm{s}}\right)$, slopes small

- BGL seem to suggest large HQS violations, not seen from lattice
> Using lattice to extract V_{cb} :
(if $\sim 100 \%$ correl \rightarrow more than 5σ discrepancy)

$$
\begin{array}{ll}
\left|V_{c b}\right|_{\mathrm{CLN}}=(38.2 \pm 1.5) \times 10^{-3}, & {[1]} \\
\left|V_{c b}\right|_{\mathrm{BGL}}=\left(41.7_{-2.1}^{+2.0}\right) \times 10^{-3}, & {[3]} \\
\left|V_{c b}\right|_{\mathrm{BGL}}=\left(41.9_{-1.9}^{+2.0}\right) \times 10^{-3}, & {[4]}
\end{array}
$$

> Some tension between data + lattice + HQS

OTHER FIT COMBINATIONS

Use NLO HQET and:

fix norm. to	Fit	QCDSR	Lattice QCD			Belle Data
			$\mathcal{F}(1)$	$f_{+, 0}(1)$	$f_{+, 0}(w>1)$	
lattice zero-	$\mathrm{L}_{w=1}$	-	\checkmark	\checkmark	-	\checkmark
recoil results	$\mathrm{L}_{w=1}+\mathrm{SR}$	\checkmark	\checkmark	\checkmark	-	\checkmark
float norm. independently	NoL	-	-	-	-	\checkmark
	NoL+SR	\checkmark	-	-	-	\checkmark
fit ξ to lattice $B \rightarrow D$, use lattice for $B \rightarrow D^{*}$ norm	$\mathrm{L}_{w \geq 1}$	-	\checkmark	\checkmark	\checkmark	\checkmark
	$\mathrm{L}_{w \geq 1}+\mathrm{SR}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	th: $\mathrm{L}_{w \geq 1}+\mathrm{SR}$	\checkmark	\checkmark	\checkmark	\checkmark	-

" + SR": use QCD sum rules for priors on subleading IW functions

$$
\begin{gathered}
\hat{\chi}_{2}^{\text {ren }}(1)=-0.06 \pm 0.02, \quad \hat{\chi}_{2}^{\prime \text { ren }}(1)=0 \pm 0.02, \quad \hat{\chi}_{3}^{\prime \text { ren }}(1)=0.04 \pm 0.02, \\
\eta(1)=0.62 \pm 0.2, \quad \eta^{\prime}(1)=0 \pm 0.2 .
\end{gathered}
$$

FIT RESULTS

	$\mathrm{L}_{w=1}$	$\mathrm{~L}_{w=1}+\mathrm{SR}$	NoL	$\mathrm{NoL}+\mathrm{SR}$	$\mathrm{L}_{w \geq 1}$	$\mathrm{~L}_{w \geq 1}+\mathrm{SR}$	th: $\mathrm{L}_{w \geq 1}+\mathrm{SR}$
χ^{2}	40.2	44.0	38.7	43.1	49.0	53.8	7.4
dof	44	48	43	47	48	52	4
$\left\|V_{c b}\right\| \times 10^{3}$	38.8 ± 1.2	38.5 ± 1.1	-	-	39.1 ± 1.1	39.3 ± 1.0	-
$\mathcal{G}(1)$	1.055 ± 0.008	1.056 ± 0.008	-	-	1.060 ± 0.008	1.061 ± 0.007	1.052 ± 0.008
$\mathcal{F}(1)$	0.904 ± 0.012	0.901 ± 0.011	-	-	0.898 ± 0.012	0.895 ± 0.011	0.906 ± 0.013
$\bar{\rho}_{*}^{2}$	1.17 ± 0.12	1.19 ± 0.07	1.06 ± 0.15	1.19 ± 0.08	1.33 ± 0.11	1.24 ± 0.06	1.24 ± 0.08
$\hat{\chi}_{2}(1)$	-0.26 ± 0.26	-0.07 ± 0.02	0.36 ± 0.62	-0.06 ± 0.02	0.13 ± 0.22	-0.06 ± 0.02	-0.06 ± 0.02
$\hat{\chi}_{2}^{\prime}(1)$	0.21 ± 0.38	-0.00 ± 0.02	0.14 ± 0.39	-0.00 ± 0.02	-0.36 ± 0.28	-0.00 ± 0.02	-0.00 ± 0.02
$\hat{\chi}_{3}^{\prime}(1)$	0.02 ± 0.07	0.05 ± 0.02	0.18 ± 0.19	0.04 ± 0.02	0.09 ± 0.07	0.05 ± 0.02	0.04 ± 0.02
$\eta(1)$	0.30 ± 0.04	0.30 ± 0.03	-0.56 ± 0.80	0.35 ± 0.14	0.30 ± 0.04	0.30 ± 0.03	0.31 ± 0.04
$\eta^{\prime}(1)$	0 (fixed)	-0.12 ± 0.16	0 (fixed)	-0.11 ± 0.18	$0($ fixed $)$	-0.05 ± 0.09	0.05 ± 0.10
$m_{b}^{1 S}[\mathrm{GeV}]$	4.70 ± 0.05	4.70 ± 0.05	4.71 ± 0.05	4.70 ± 0.05	4.71 ± 0.05	4.71 ± 0.05	4.71 ± 0.05
$\delta m_{b c}[\mathrm{GeV}]$	3.40 ± 0.02						

no signs of strong tensions, $V_{c b}$ is still "low", data prefers a lower η than QCDSR input

$$
L_{w>=1}+S R
$$

spectra:

FITS \& R ${ }_{1,2}$

R(D) AND R(D*)

R(D) AND R(D*)

Scenario	$R(D)$	$R\left(D^{*}\right)$	Correlation
$\mathrm{L}_{w=1}$	0.292 ± 0.005	0.255 ± 0.005	41%
$\mathrm{~L}_{w=1}+\mathrm{SR}$	0.291 ± 0.005	0.255 ± 0.003	57%
NoL	0.273 ± 0.016	0.250 ± 0.006	49%
$\mathrm{NoL}+\mathrm{SR}$	0.295 ± 0.007	0.255 ± 0.004	43%
$\mathrm{~L}_{w \geq 1}$	0.298 ± 0.003	0.261 ± 0.004	19%
$\mathrm{~L}_{w \geq 1}+\mathrm{SR}$	$\mathbf{0 . 2 9 9} \pm \mathbf{0 . 0 0 3}$	$\mathbf{0 . 2 5 7} \pm \mathbf{0 . 0 0 3}$	$\mathbf{4 4 \%}$
th:L $\mathrm{L}_{w \geq 1}+\mathrm{SR}$	0.306 ± 0.005	0.256 ± 0.004	33%
Data [9]	0.403 ± 0.047	0.310 ± 0.017	-23%
Refs. [48, 52, 54]	0.300 ± 0.008	-	-
Ref. [53]	0.299 ± 0.003	-	-
Ref. [34]	-	0.252 ± 0.003	-

- Reduced uncert on SM predictions
- Consistency between different fits
- Discrepancy with data still present and sizable

NLO HQET FOR SM+NP

> NLO HQET calculation also for form factors entering BSM contributions

CONCLUSIONS

> Experimental data in e, μ \& Lattice results are improving determination of $\mathrm{B} \rightarrow \mathrm{D}\left(^{*}\right)$ form factors
> Apparent "tension" in current inputs between HQS, lattice and Belle B $\rightarrow \mathrm{D}^{*}$ distributions (can't self-consistently use lattice+BGL to extract V_{cb})
> Future lattice $\mathrm{B} \rightarrow \mathrm{D}^{*}$ spectra and Belle II data (and non-unfolded BGL Belle fit?) will have something to say on this
> Updated $\mathrm{R}(\mathrm{D}), \mathrm{R}\left(\mathrm{D}^{*}\right)$ predictions still show large discrepancy with measurements
> Updated BSM predictions for $\mathrm{R}(\mathrm{D}), \mathrm{R}\left(\mathrm{D}^{*}\right)$
> Results included in Hammer package

BACKUP

FORM FACTOR DEFINITIONS

> $\mathrm{B} \rightarrow \mathrm{D}$:

$$
\begin{aligned}
\langle D| \bar{c} b|\bar{B}\rangle & =\sqrt{m_{B} m_{D}} h_{S}(w+1), \\
\langle D| \bar{c} \gamma^{5} b|\bar{B}\rangle & =\langle D| \bar{c} \gamma^{\mu} \gamma^{5} b|\bar{B}\rangle=0, \\
\langle D| \bar{c} \gamma^{\mu} b|\bar{B}\rangle & =\sqrt{m_{B} m_{D}}\left[h_{+}\left(v+v^{\prime}\right)^{\mu}+h_{-}\left(v-v^{\prime}\right)^{\mu}\right], \\
\langle D| \bar{c} \sigma^{\mu \nu} b|\bar{B}\rangle & =i \sqrt{m_{B} m_{D}}\left[h_{T}\left(v^{\prime \mu} v^{\nu}-v^{\prime \nu} v^{\mu}\right)\right],
\end{aligned}
$$

> $\mathrm{B} \rightarrow \mathrm{D}^{*}$:

$$
\begin{aligned}
\left\langle D^{*}\right| \bar{c} b|\bar{B}\rangle & =0, \\
\left\langle D^{*}\right| \bar{c} \gamma^{5} b|\bar{B}\rangle & =-\sqrt{m_{B} m_{D^{*}}} h_{P}\left(\epsilon^{*} \cdot v\right), \\
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} b|\bar{B}\rangle & =i \sqrt{m_{B} m_{D^{*}}} h_{V} \varepsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta}, \\
\left\langle D^{*}\right| \bar{c} \gamma^{\mu} \gamma^{5} b|\bar{B}\rangle & =\sqrt{m_{B} m_{D^{*}}}\left[h_{A_{1}}(w+1) \epsilon^{* \mu}-h_{A_{2}}\left(\epsilon^{*} \cdot v\right) v^{\mu}-h_{A_{3}}\left(\epsilon^{*} \cdot v\right) v^{\prime \mu}\right], \\
\left\langle D^{*}\right| \bar{c} \sigma^{\mu \nu} b|\bar{B}\rangle & =-\sqrt{m_{B} m_{D^{*}}} \varepsilon^{\mu \nu \alpha \beta}\left[h_{T_{1}} \epsilon_{\alpha}^{*}\left(v+v^{\prime}\right)_{\beta}+h_{T_{2}} \epsilon_{\alpha}^{*}\left(v-v^{\prime}\right)_{\beta}+h_{T_{3}}\left(\epsilon^{*} \cdot v\right) v_{\alpha} v_{\beta}^{\prime}\right] .
\end{aligned}
$$

NLO HQET FF EXPRESSIONS

$$
\begin{aligned}
& \hat{h}_{+}=1+\hat{\alpha}_{s}\left[C_{V_{1}}+\frac{w+1}{2}\left(C_{V_{2}}+C_{V_{3}}\right)\right]+\left(\varepsilon_{c}+\varepsilon_{b}\right) \hat{L}_{1}, \\
& \hat{h}_{-}=\hat{\alpha}_{s} \frac{w+1}{2}\left(C_{V_{2}}-C_{V_{3}}\right)+\left(\varepsilon_{c}-\varepsilon_{b}\right) \hat{L}_{4}, \\
& \hat{h}_{S}=1+\hat{\alpha}_{s} C_{S}+\left(\varepsilon_{c}+\varepsilon_{b}\right)\left(\hat{L}_{1}-\hat{L}_{4} \frac{w-1}{w+1}\right), \\
& \hat{h}_{T}=1+\hat{\alpha}_{s}\left(C_{T_{1}}-C_{T_{2}}+C_{T_{3}}\right)+\left(\varepsilon_{c}+\varepsilon_{b}\right)\left(\hat{L}_{1}-\hat{L}_{4}\right) . \\
& \hat{h}_{V}
\end{aligned}=1+\hat{\alpha}_{s} C_{V_{1}}+\varepsilon_{c}\left(\hat{L}_{2}-\hat{L}_{5}\right)+\varepsilon_{b}\left(\hat{L}_{1}-\hat{L}_{4}\right), \quad \text {, } \begin{aligned}
\hat{h}_{A_{1}} & =1+\hat{\alpha}_{s} C_{A_{1}}+\varepsilon_{c}\left(\hat{L}_{2}-\hat{L}_{5} \frac{w-1}{w+1}\right)+\varepsilon_{b}\left(\hat{L}_{1}-\hat{L}_{4} \frac{w-1}{w+1}\right), \\
\hat{h}_{A_{2}} & =\hat{\alpha}_{s} C_{A_{2}}+\varepsilon_{c}\left(\hat{L}_{3}+\hat{L}_{6}\right), \\
\hat{h}_{A_{3}} & =1+\hat{\alpha}_{s}\left(C_{A_{1}}+C_{A_{3}}\right)+\varepsilon_{c}\left(\hat{L}_{2}-\hat{L}_{3}+\hat{L}_{6}-\hat{L}_{5}\right)+\varepsilon_{b}\left(\hat{L}_{1}-\hat{L}_{4}\right), \\
\hat{h}_{P} & =1+\hat{\alpha}_{s} C_{P}+\varepsilon_{c}\left[\hat{L}_{2}+\hat{L}_{3}(w-1)+\hat{L}_{5}-\hat{L}_{6}(w+1)\right]+\varepsilon_{b}\left(\hat{L}_{1}-\hat{L}_{4}\right) \\
\hat{h}_{T_{1}} & =1+\hat{\alpha}_{s}\left[C_{T_{1}}+\frac{w-1}{2}\left(C_{T_{2}}-C_{T_{3}}\right)\right]+\varepsilon_{c} \hat{L}_{2}+\varepsilon_{b} \hat{L}_{1}, \\
\hat{h}_{T_{2}} & =\hat{\alpha}_{s} \frac{w+1}{2}\left(C_{T_{2}}+C_{T_{3}}\right)+\varepsilon_{c} \hat{L}_{5}-\varepsilon_{b} \hat{L}_{4}, \\
\hat{h}_{T_{3}} & =\hat{\alpha}_{s} C_{T_{2}}+\varepsilon_{c}\left(\hat{L}_{6}-\hat{L}_{3}\right) .
\end{aligned}
$$

HOET RI EXPRESSIONS

$$
\begin{aligned}
& R_{1}(1) \simeq 1.34-0.12 \eta(1) \\
& R_{2}(1) \simeq 0.98-0.42 \eta(1)-0.54 \hat{\chi}_{2}(1) \\
& R_{1}^{\prime}(1) \simeq-0.15+0.06 \eta(1)-0.12 \eta^{\prime}(1) \\
& R_{2}^{\prime}(1) \simeq 0.01-0.54 \hat{\chi}_{2}^{\prime}(1)+0.21 \eta(1)-0.42 \eta^{\prime}(1) \\
& R_{3}(1) \simeq 1.19-0.26 \eta(1)-1.20 \hat{\chi}_{2}(1) \\
& R_{0}(1) \simeq 1.09+0.25 \eta(1) \\
& R_{3}^{\prime}(1) \simeq-0.08-1.20 \hat{\chi}_{2}^{\prime}(1)+0.13 \eta(1)-0.26 \eta^{\prime}(1) \\
& R_{0}^{\prime}(1) \simeq-0.18+0.87 \hat{\chi}_{2}(1)+0.06 \eta(1)+0.25 \eta^{\prime}(1)
\end{aligned}
$$

