S. Stone

R_K & R_{K*} Status & Outlook

Physics rationale

- Finding New Particles, arising from New Forces is the goal of High Energy Physics
- Motivated by: dark matter, hierarchy problem, particle masses, origin of CKM elements
- ATLAS & CMS can detect these directly
- LHCb & other flavor physics experiments (Belle II, BES III, DUNE, Muon g-2, μ to e conversion) do this indirectly

Effects on M_w from quantum loops

m_⊔ [GeV]

- FP probes large mass scales via virtual quantum loops. An example, of the importance of such loops are changes in the W mass
 - M_w changes due to m_t
 - M_w changes due to m_H Gave predictions of m_H

prior to discovery

Lepton flavor universality

- In the SM differences between interactions of individual charged leptons can only be due to their masses, which leads to precise predictions
- $m_{\tau}/m_{\mu}/m_{e}$: 3477 / 207 / 1
- Seemed prudent to makes some tests
- Hiller & Kruger suggest order ~10% effects from some NP models (hep-ph/0310219)

Penguin decays NP may be seen easier in suppressed

- NP may be seen easier in suppressed processes such as penguin decays
- SM diagrams:

- New particles can appear, augmenting SM ones
- Next: experimental tests

 $b \rightarrow h\mu^+\mu^- d\mathcal{B}/dq^2$

- Data generally below model predictions at low q²
- Charmonium resonances at high q²

K*μ⁺μ⁻ d8/dq²

Enlarged

Resonances

- Presence of charmonium states at high q² confirmed in B⁻→K⁻μ⁺μ⁻.
- So look for NP in low q2 region

$R_K = (B^- \rightarrow K^- \mu^+ \mu^-)/(B^- \rightarrow K^- e^+ e^-)$

- Dedicated analysis to measure the ratio
- Actually measure the double ratio:

$$R_{K} = \frac{\mathcal{E}\left(B^{-} \to K^{-}\mu^{+}\mu^{-}\right)/\mathcal{E}\left(B^{-} \to K^{-}J/\psi, J/\psi \to \mu^{+}\mu^{-}\right)}{\mathcal{E}\left(B^{-} \to K^{-}e^{+}e^{-}\right)/\mathcal{E}\left(B^{-} \to K^{-}J/\psi, J/\psi \to e^{+}e^{-}\right)}$$

- Use the J/ψ to determine signal shapes & as a normalization for each mode
- Measurement made in the interval 1<q²<6</p>
 GeV²

R_K dimuon data

- # J/ψ events: 667,046±882
- # Low q² events: 1226±41

Kee mass distributions

R_k results

$$R_{K} = \frac{\mathcal{E}(B^{-} \to K^{-}\mu^{+}\mu^{-})}{\mathcal{E}(B^{-} \to K^{-}e^{+}e^{-})} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

for $1 < q^2 < 6 \text{ GeV}^2$, 2.6σ from SM

Branching ratio comparison

13

 Some evidence that Kee is consistent with SM branching ratio and Kμμ is not

$B^0 \rightarrow K^{*0}\ell^+\ell^-$

SM expectations

$$R_{K^*} \equiv \frac{\mathcal{E}\left(B^0 \to K^{*0} \mu^+ \mu^-\right)}{\mathcal{E}\left(B^0 \to K^{*0} e^+ e^-\right)}$$

Also measured as a double ratio

LHCb data

- $R_{K^*} = 0.660^{+0.110}_{-0.070} \pm 0.024, 0.045 < q^2 < 1.1$
- $R_{K^*} = 0.685^{+0.113}_{-0.069} \pm 0.047, 1.1 < q^2 < 6.0$
- Each ~2.4σ from SM

K*µµ

 Almost background free J/ψ sample, again signal shape used in low q² bins.

$B^0 \rightarrow K^{*0}e^+e^-$

Candidates per 34 MeV/ c^2

Pulls

- Invariant mass spectra,
- J/ψ shape is used to model signal

 $m(K^{+}\pi^{-}e^{+}e^{-})$ [MeV/ c^{2}]

Angular observables in K*μ⁺μ⁻

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K \right]$$

$$+\frac{1}{4}(1-F_{
m L})\sin^2 heta_K\cos2 heta_l$$

$$-F_{\rm L}\cos^2 heta_K\cos2 heta_l+S_3\sin^2 heta_K\sin^2 heta_l\cos2\phi$$

$$+ S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi$$

$$+ rac{4}{3}A_{\mathrm{FB}}\sin^2 heta_K\cos heta_l + S_7\sin2 heta_K\sin heta_l\sin\phi$$

$$+ S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi$$
.

 $(A_{FB}, \frac{F_L}{a}$ and $S_j)$ are the observables

A cleaner set of observables, where hadronic form factor uncertainties cancel at the leading order, can be defined

$$P_5' \equiv \frac{S_5}{\sqrt{F_L(1-F_L)}}$$

The curious case of P₅

- Most angular observables agree with SM
- Deviation in P₅' near q²=~6 GeV²

FF from LQSR (JHEP 08 (2016) 98, and LQCD (arXiv:1501.00367)

Lepton universality test in P₅'

Belle separates e's & μ's (PRL 118, 111801, 2017)

Exp. references

	dataset	Angles and modes used	Measured obervables	Reference
ATLAS EXPERIMENT	8TeV data (20.3 fb ⁻¹)	$(\theta_{l},\;\theta_{K},\phi)$ with folding technique, $\ell=\mu$	F _L , S _j , P' _i	ATLAS-CONF- 2017-023
LHCP	Run1 data (3fb ⁻¹)	Full angular analysis $(\theta_l, \theta_K, \phi), \ell = \mu^*$	A _{FB} , F _L , S _j , P' _i Branching ratios	JHEP 02 (2016) 104 JHEP 06 (2014)133
CMS	8TeV data (20.5 fb ⁻¹)	$(\theta_{l},\;\theta_{K},\phi)$ with folding technique $\ell=\mu$	P' ₅ ,P ₁ A _{FB} , F _L measured in a previous paper	CMS-PAS-BPH- 15-008 PLB 753 (2016) 424
	All	$(\theta_{l},\;\theta_{K})$, also B+ modes ℓ =e, μ	A _{FB} , F _L	PRD 93 (2016) 052015
BELLE	All	$(\theta_{l}, \theta_{K}, \phi)$ with folding technique, also B ⁺ modes, ℓ =e, μ	A_{FB} , F_L , S_j , P'_i , and also Qi	PRL 118 (2017) 111801
	6.8fb ⁻¹	$\ell = \mu$	Branching ratios	PRL 107 (2011)201802

Effective Hamiltonian

Integrate out heavy degrees of freedom, then

$$\mathcal{H}_{eff}^{SM} = -\frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{\ell=e,\mu} \left(C_1 \mathcal{O}_1^{\ell} + C_2 \mathcal{O}_2^{\ell} + \sum_{i=3}^{10} C_i^{\ell} \mathcal{O}_i^{\ell} \right), \text{ where } C_i^* \text{s are Wilson coeff. & } \mathcal{O}_i^* \text{ are operators. Can use independent } C_i^{\mu} \& C_i^{e}.$$

- Different processes are described by different \mathcal{O}_i
- NP can appear in C_i 's
- $\mathcal{O}_{1,2}$: Current-current $\mathcal{O}_{3,4,5,6}$: QCD penguins \mathcal{O}_{7} : Electromagnetic penguin \mathcal{O}_{8} : Chromo-magnetic penguin $\mathcal{O}_{9,10}$: Electroweak penguin
- Also include inherently NP chirality flipped operators \mathcal{O}_9' & \mathcal{O}_{10}' as additional possibilities.
- Allows for a model independent analysis

Operators contributing to LFU

- $O_9^{(\prime)} = \frac{\alpha_{EM}}{4\pi} \left(\overline{s} \gamma^\mu P_{L(R)} b \right) \left(\overline{\ell} \gamma_\mu \ell \right), \quad O_{10}^{(\prime)} = \frac{\alpha_{EM}}{4\pi} \left(\overline{s} \gamma^\mu P_{L(R)} b \right) \left(\overline{\ell} \gamma_\mu \gamma_5 \ell \right),$ where P_L & P_R are left & right handed projection operators
- $\mathcal{B}(B_s \to \mu^+ \mu^-)$ provides a constraint on $C_{10}^{\mu} + C_{10}^{\mu'}$; other constraints from B_s mixing
- K* longitudinal part of the rate is similar to Kℓℓ but with chirally flipped operators that interfere with reversed sign with the SM
- As a consequence, different C_i variations have different effects on R_K & R_{K*}

Correlated variations in Ci's

Parametric dependence of R_K vs R_{K*} allowing a single C_i^μ to vary (not C_i^e)

• Decreases in both R_K & R_{K^*} can be explained by C_9^{μ} or C_{10}^{μ} , not $C_9^{\prime\mu}$ or C_{10}^{μ}

Exotic hadrons & flavor

Example fits

Two separate fits Altmannshofer, Stangl & Straub [arXiv:1704.05435]

- □ 1) LFU observables: R_K , R_{K^*} , $ReC_9^{\prime \mu_{-1}}$ Belle e-µ differences in angular observables
- □ 2) b→sμμ global fit observables: Κ*μμ 8 & angular, Kμμ Z, φμμ Z & angular, $\mathcal{E}(b \rightarrow X_s \mu \mu)$ from BaBar; red dashed line with hadronic uncertainties x5
- Here $ReC_{9(10)}^{\mu}$ is diff wrt SM. Prefers ReC_o^µ~-1, (SM is 0)

Exotic hadrons & flavor physics, May 2018

NP diagrams

 Either of these processes could interfere with the SM diagrams & can explain the data

Should we believe LFU violation?

Yes

- R measurements are double ratio's to J/ψ, LHCb's check with K*J/ψ→e+e-/μ+μ-=1.043±0.006±0.045
- 8(B-→K-e+e-) agrees with SM prediction puts onus on muon mode which is well measured and low
- Both R_K & R_{K*} are different than ~1
- Supporting evidence of effects in angular distributions

No, not yet

- Statistics are marginal in each measurement
- Need confirming evidence in other experiments for R_K
 & R_{K*}
- Disturbing that R_{K*} is not
 ~1 in lowest q² bin, which it
 should be, because of the
 photon pole
- Angular distribution evidence can be effected by hadronic uncertainties

Conclusions

- We may be seeing the first hints of physics beyond the SM in a failure of lepton flavor universality in B→K^(*)ℓ⁺ℓ⁻ a suppressed decay
- This implies lepton flavor violation, e.g. may be able to see B⁻→K⁻τ[±]μ[∓] (Glashow, Guadagnoli & Lane <u>arXiv:1411.0565</u>)
- Viable models include:
 - Z': not just a heavy Z, different couplings,
 - e.g. Z'→bs
 - Leptoquarks

Can these be seen in direct production at the LHC?

Outlook: Data

- Belle II will have ~40x more data, allowing significant results even with part of the \(\mathcal{L} \)
- CMS now is triggering on a single μ. Plans to park 10 B B's this year, especially when ∠ is low. Uses up to 4kHz bandwidth. ATLAS will test K^(*)e⁺e⁻ triggers.
- LHCb Run I data set is 3/fb, Run II thus far is 3.8/fb, plus 2018 data~1.8/fb for a total of 5.6/fb
- Effective b yields are Run II/Run I ~2.5
- So after Run II is over will have 5.7 times more be events than the results presented here for Run I + Run II. Thus 2.6σ effects should go to 6σ if the central values stay the same

Outlook II

- LHCb prospects are even better
 - Can improve ε's with clever algorithms
 - □ Can use more decay modes, e.g. $B^- \rightarrow K^- \pi^+ \pi^- \ell^+ \ell^-$, which has about the same branching fraction as $K^- \ell^+ \ell^-$, & $\Lambda_b \rightarrow p K^- \ell^+ \ell^-$
- Run III and beyond: After Upgrade I, expect a lot more luminosity ~50/fb, but calorimeter will be somewhat compromised by ~6 interactions per crossing

Upgrade II

- Run at higher luminosity, maybe up to x10
- Chambers on magnet faces to capture more tracks, especially from higher multiplicity decays
- Improved central tracking, Silicon close to beam near the fiber tracker
- Vastly improved EM calorimeter. Smaller cells, timing to pick out primary vertex.

The End

Backup slides

$B \rightarrow X_s \ell^+ \ell^-$

- Define two q² regions: low 1-6, high >14.4 GeV²
- Low again probes C₇, while high C₉ & C₁₀
- Data

- High q²:
 - $\mathcal{E}(B \to X_s \ell^+ \ell^-) = (4.3 \pm 1.2) \times 10^{-7}$, SM 2.3×10⁻⁷
- Low q²: $\mathcal{E}(B \to X_s \ell^+ \ell^-) = (1.63 \pm 0.50) \times 10^{-6}$, SM 1.59×10⁻⁷
- B^o→K*^oℓ⁺ℓ⁻, is also sensitive to C₇ at low q², C₉ & C₁₀ at high q²

Another fit

arXiv:1704.05446

FIG. 5: Fit results for LUV data, $\overline{BR}(B_s \to \mu\mu)$, and $b \to s\mu\mu$ angular observables, as described in the text.

Seeking New Physics

- Flavor Physics as a tool for NP discovery
 - The main purpose of FP is to find and/or define the properties of physics beyond the Standard Model (SM)
 - FP probes large mass scales via virtual quantum loops. An example, of the importance of such loops is the Lamb shift in atomic hydrogen
 - A small difference in energy between 2S_{1/2} &
 2P_{1/2} levels that should be of equal energy at lowest order

