Fermilab **ENERGY** Office of Science

Muon g-2 Expt Status and Outlook

Chris Polly – Fermilab Exotic Hadrons and Flavor Physics 1 June 2018

Fermilab

Worldwide Effort in Precision Muon Physics

- Extensive effort underway to utilize muons as probes of new physics
 - Hunting for ultra-rare decays
 - Precision measurements
- Spans many muon sources
 TRIUMF, PSI, Fermilab, J-PARC
- Today's talk
 - Fermilab muon program
 - Muon g-2
 - Which aspects are the same as BNL
 - How the experiment differs
 - Outlook for first physics results

Fermilab Muon Program

Chris Polly | Exotic Hadrons and Flavor Physics

Fermilab Muon Campus Vision, circa 2012

Chris Polly | Exotic Hadrons and Flavor Physics

Fermilab Muon Campus Vision, circa 2012

Chris Polly | Exotic Hadrons and Flavor Physics

Muon Campus Reality, Oct 2016

Muon Campus Program Plan

FY18 FY23 FY24 FY25 FY26 **FY28** FY29 **FY30 FY19 FY20** FY21 FY22 FY27 LBNF / SANFORD DUNE LBNF LBNF PIP II FNAL LBNF LBNF LBNF LBNF LBN F LBNF LBNF OPEN OPEN DPEN **MINER**v **IINERv** OPEN OPEN NuMI MI NOvA NOvA NOvA NOvA NOvA NOV NOvA IBOONE **IBOONE** OPEN OPEN OPEN DPER OPEN OPEN OPEN OPEN uBooNI **ICARUS** CARUS ICARUS **ICARUS** DPEN OPEN BNB В CARUS **CARUS** OPEN OPEN OPEN SBND SBND SBND SBND SBND SBND DPEN OPEN OPEN OPEN OPEN g-2 g-2 g-2 OPEN **Muon Complex** ONG SHUTDOWN Mu₂e Mu₂e Mu2 OPEN Mu₂e Mu₂e Mu₂ Mu₂e Mu₂e Mu₂e Mu₂e FTBF FTBF **FTBF** FTBF FTBF FTBF FTBF FTBF FTBF FTBF FTBF MT FTBF FTBF FTBF FTBF FTBF FTBF SY 120 MC FTBF FTBF FTBF FTBF FTBF р DPEN E1039 E1039 OPEN OPEN OPEN NM4 OPEN E1039 E1039 OPEN OPEN FY18 FY19 FY20 FY21 **FY22 FY23 FY24** FY25 FY26 FY27 **FY28 FY29 FY30** Shutdown Construction / commissioning Run Subject to PAC review Capability ended Capability unavailable

LONG-RANGE PLAN

- Muon g-2 taking data 2018-2020
- Mu2e finish commissioning in 2021 for physic running in 2022
- Two experiments cannot take data simultaneously

Muon g-2

Chris Polly | Exotic Hadrons and Flavor Physics

FNAL Muon g-2 Goal

Reduce the experimental error on a_{μ} by 4 and resolve the long-standing BNL g-2 discrepancy

 Requires 21 x BNL statistics and better control of key systematics

If discrepancy persists, experiment improvement alone \rightarrow anomaly would grow to > 5 σ

Muon g-2 Theory

Chris Polly | Exotic Hadrons and Flavor Physics

🛟 Fermilab

See <u>Muon g-2 TDR</u> and references therein

Summary	(a _µ x 10 ⁻¹¹)
a _µ (EXP)	116 592 089(63)
$a_{\mu}^{(SM)}$	116 591 828(49)
$a_{\mu}^{(\text{EXP})}$ - $a_{\mu}^{(\text{SM})}$	261(80) → 3.3σ

- QED/EW uncertainties are tiny, e.g.
 - Recent calculation to 5th order in α contributes 5x10⁻¹¹ to a_{μ}
 - Known Higgs mass reduces error on EW from 2 to 1x10⁻¹¹
 - Error dominated by hadronic terms
 - HVP can be determined from e⁺e[−]
 → hadrons data
 - HLBL smaller overall error, but calculation model-dependent

Theoretical status of a_{μ}

- New e⁺e⁻ data for HVP continues to contribute
 - BESIII latest to map crucial 2π contributions
 - Multi-hadron final states from b-factories
 - CMD3 at VEPP2000
- Data driven approaches to HLBL
 - LE tagger at KLOE to measure $\gamma^*\gamma^*$ physics related to 70% of HLBL.
 - New data-driven evaluation of the pion-pole contribution spot on (Hoferichter et al. arXiv:1805.01471)
- Lattice progress looks very promising for both HVP and HLBL...see next talks...

http://arxiv.org/pdf/1311.2198v1.pdf

Projecting a factor of 2 reduction in theory error over course of experiment!

Muon g-2 @ FNAL... what's the same?

Chris Polly | Exotic Hadrons and Flavor Physics

Using the same container – disassembly at BNL

- The big pieces of steel (return yoke) come apart
 - Ship one 26T piece/flatbed
- The superconducting coils do not
 - Can't be cut and can't be unwound
 - \$20M and 2 year delay to make from scratch

🛟 Fermilab

Moving 50 ft diameter Al rings without flexing by >1/8"

Chris Polly | Exotic Hadrons and Flavor Physics

Journey by barge

Traveling around Chicago...

Arrival at Fermilab (July 2013)

Magnet moved into hall (Summer 2014)

Chris Polly | Exotic Hadrons and Flavor Physics

Muon g-2 storage ring today

1) Inject polarized muon source

h = 1

Fermilab

h = 1

1) Inject polarized muon source $\frac{s_{\overline{v}}}{\sqrt{\pi}}$

Fermilab

2) y=29.3 muons allow E-field vert. focusing

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \left(\frac{\vec{\beta} \times \vec{E}}{c} \right) \right]$$

3) Muon spin precession relative to momentum in cyclotron is directly proportional to a_{μ}

$$\omega_a = \omega_S - \omega_C = \left(\frac{g-2}{2}\right) \frac{eB}{mc} = a \frac{eB}{mc}$$

1) Inject polarized muon source

Fermilab

2) y=29.3 muons allow E-field vert. focusing

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]'$$

3) Muon spin precession relative to momentum in cyclotron is directly proportional to a_{μ}

$$\omega_a = \omega_S - \omega_C = \left(\frac{g-2}{2}\right)\frac{eB}{mc} = a\frac{eB}{mc}$$

1) Inject polarized muon source

Fermilab

2) y=29.3 muons allow E-field vert. focusing

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

4) Highest energy decay electrons emitted when spin and momentum vectors parallel

3) Muon spin precession relative to momentum in cyclotron is directly proportional to a_{μ}

$$\omega_a = \omega_S - \omega_C = \left(\frac{g-2}{2}\right) \frac{eB}{mc} = a \frac{eB}{mc}$$

Measure 2 quantities in Muon g-2

1) Inject polarized muon source

Fermilab

2) y=29.3 muons allow E-field vert. focusing

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

4) Highest energy decay electrons emitted when spin and momentum vectors parallel

Extracting a_{μ}

2017 CODATA

7 Fermilab

Insanity: doing the same thing over and over again and expecting different results.

Albert Einstein

Picture Quotes.com

Muon g-2 @ FNAL... what's different?

Chris Polly | Exotic Hadrons and Flavor Physics

Delivers 10^{12} 8-GeV proton batches to the Main Injector Recycler.

Batches are split into four bunches.

Each bunch collides with a fixed target.

3.1 GeV pions are selected and focused to the delivery ring as they decay to muons.

Several passes around Delivery Ring to remove protons by time-of-flight.

Muons are focused and injected into the Muon g-2 storage ring.

Relative to BNL E821:

- Rep rate x 3
- Overall muon rate x6
- No hadronic flash
 - π all decay
 - protons removed

‡ Fermilab

Improvements to field systematics

E821 Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
Absolute field	0.05	Special 1.45 T calibration magnet with thermal	
calibrations		enclosure; additional probes; better electronics	0.035
Trolley probe	0.09	Absolute cal probes that can calibrate off-central	
calibrations		probes; better position accuracy by physical stops	
		and/or optical survey; more frequent calibrations	0.03
Trolley measure-	0.05	Reduced rail irregularities; reduced position uncer-	
ments of B_0		tainty by factor of 2; stabilized magnet field during	
		measurements; smaller field gradients	0.03
Fixed probe	0.07	More frequent trolley runs; more fixed probes;	
interpolation		better temperature stability of the magnet	0.03
Muon distribution	0.03	Additional probes at larger radii; improved field	
		uniformity; improved muon tracking	0.01
Time-dependent	—	Direct measurement of external fields;	
external B fields		simulations of impact; active feedback	0.005
Others	0.10	Improved trolley power supply; trolley probes	
		extended to larger radii; reduced temperature	
		effects on trolley; measure kicker field transients	0.05
Total	0.17		0.07

70 ppb error budget!!

- Environment
 - Improved floor stability
 - Temperature control of hall to +/- 1C

g-2 Magnet in Cross Section

‡ Fermilab

Improvements to field systematics – shimming

Starting with field as uniform as possible is key to 70 pph

Chris Polly | Exotic Hadrons and Flavor Physics

Improvements to field systematics – field tracking

- Map the storage field regularly during beam off periods with trolley
 - Increase frequency of trolley runs to reduce interpolation errors
- Monitor the field with 400 fixed NMR probes around the ring
 - Only about half of the probes were operational at BNL

*

🛟 Fermilab

Chris Polly | Exotic Hadrons and Flavor Physics

‡ Fermilab

Improvements to field systematics – absolute calibration

- At BNL one historical H₂O probe was used
 - Same probe used in LANL muonium hyperfine
- Developed new probe
 - Holder has less magnetic impurities
 - More spherical, easier to correct for diamagnetism of H₂O (26 ppm correction!)
- Developing He3 as new standard
- Dedicate facility at ANL for cross-calibration

Improved H₂O probe

Developing He3 as a new standard

Chris Polly | Exotic Hadrons and Flavor Physics

Improving ω_a systematic

Category	E821	E989 Improvement Plans	Goal		
	[ppb]		[ppb]		² 10 ⁸ []
Gain changes	120	Better laser calibration		Ī	
		low-energy threshold	20		
Pileup	80	Low-energy samples recorded			8 110 ⁵
		calorimeter segmentation	40		10
Lost muons	90	Better collimation in ring	20		103
CBO	70	Higher n value (frequency)			102
		Better match of beamline to ring	< 30		10 Fermilab Muon g-2 Collaboration
E and pitch	50	Improved tracker			Production Run 1, 22-25 Apr 2018
		Precise storage ring simulations	30		10 ⁻¹
Total	180	Quadrature sum	70		0 10 20 30 40 50 60 70 80 90 time modulo 100 μ s

$$N(t) = N_0 e^{-t/\tau} [1 + A_\mu \cos(\omega t + \phi)]$$

Any systematics that
change the g-2 phase
during the fit period are
very dangerous
$$N(t) = N_0 e^{-t/\tau} [1 + A_\mu \cos(\omega t + \phi)]$$

Chris Polly | Exotic Hadrons and Flavor Physics

🛟 Fermilab

Changes in E scale during muon lifetime \rightarrow phase change

31 May 2018

Chris Polly | Exotic Hadrons and Flavor Physics

Upgrades to control phase systematics– segmented calos

- Segmented calorimetry allows for spatial separation of pileup
 - PbWO4 with SiPM readout
 - 6x9 array for each of 24 calorimeters
- No segmentation at BNL

‡ Fermilab

‡ Fermilab

Decay e+ energy spectrum in each calorimeter

3000 Energy MeV

3000 Energy [MeV]

Energy [MeV]

Chris Polly | Exotic Hadrons and Flavor Physics

3000 Energy [MeV]

Fermilab

Upgrades to control phase systematic – laser calibration

- State-of-the-art laser calibration
 system from INFN
- Shown to achieve 10⁻⁴ gain correction
- BNL relied on end point spectrum of decay electrons

JINST 12 (2017) no.01, P01009, arXiv:1611.03180

🛟 Fermilab

Major improvements to tracking

- In situ straw trackers installed at two locations around ring
- Useful diagnostic for many systematic
 - Muon convolution with B-field
 - Beam dynamics in ring, e.g. CBO
- BNL had one tracker outside vacuum volume with smaller acceptance w/ a number of issues

Chris Polly | Exotic Hadrons and Flavor Physics

🛟 Fermilab

Trackers also provide E-field and pitch corrections

$$\vec{\omega}_{a} = -\frac{e}{mc} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right]$$

E-field Pitch

- E-field and pitch corrections arise from additional spin precession terms in the BMT equation
 - E-field arise due to momentum spread of injected muons
 - Pitch correction is due vertical oscillations of beam
- Both come down to having to know physical properties of the stored beam

$$C_E = \frac{\Delta\omega}{\omega} = -2n(1-n)\beta^2 \frac{\langle x_e^2 \rangle}{R_0^2}$$

$$C_p = -\frac{n}{4} \frac{\langle y^2 \rangle}{R_0^2}$$

BNL	Value	Error
E-field	470 ppb	54 ppb
Pitch	270 ppb	36 ppb

Muon g-2 outlook

Chris Polly | Exotic Hadrons and Flavor Physics

We are burning up the tape farm with new data!

- After spending most of year finalizing commissioning, started physics production running in early April
- Have > 1.2 x BNL on tape
- Collecting a BNL-sized data sample every 6 weeks!
 - 5 weeks left in this run
- Aiming to publish results exceeding BNL precision by Summer 2019

😤 Fermilab

60-hour data challenge

- Analyzers encourage to complete full analysis of 60 hour data set as large sample (~2PB) is reprocessed
- Analysis comparable to BNL sophistication level is nearly complete
 - still needs gain correction and final DQ cuts

- Results already very encouraging
 - 1.2 ppm stat error
 - $-\chi^2/ndf = 3797/3785$
- Still much work to be done before unblinding, but so far no obvious showstoppers

Conclusions

- After 5 years of design, construction, and commissioning Muon g-2 at Fermilab is up and running
- Aiming for statistics 20 x BNL with a significantly upgraded experiment
- Expecting published results surpassing BNL precision no later than Summer 2019 conferences...pushing for Winter

