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There is a tension of 3.7σ for the muon aµ = (gµ − 2)/2:

aEXP
µ − aSMµ = 27.4 (2.7)︸︷︷︸

HVP LO

(2.6)︸︷︷︸
HLbL

(0.1)︸︷︷︸
other

(6.3)︸︷︷︸
EXP

×10−10

HVP here is by RBC/UKQCD 2018 (compatible with equally precise KNT 2018), HLbL is the “Glasgow consensus”

HVP LO

HLbL ⇐ This talk

Experimental updates aim to reduce experimental errors by factor of 4 (Fermilab
update in spring 2019)
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Two new avenues for a model-independent value for the HLbL

�
����

H
HHHj

Dispersive analysis +
Experimental/lattice input Direct lattice calculation

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]

Q21,2 =
Σ

3

(
1 − r

2
cos φ ∓ r

2
√
3 sin φ

)
, Q23 =

Σ

3
(1 + r cosφ) . ���

There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −Fπ0γ∗γ∗

(−Q21,−Q22
)Fπ0γ∗γ∗

(−Q23, 0
)

Q23 + M2π
,

Π̄
π0-pole
2 = −Fπ0γ∗γ∗

(−Q21,−Q23
)Fπ0γ∗γ∗

(−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
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(−Q23, 0
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,
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where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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. . .

Truncation of cuts and states
7 quark-level topologies
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Dispersive analysis



JHEP 1509 (2015) 074: Colangelo, Hoferichter, Procura, Stoffer

I Start with four-point function

1 Introduction
The anomalous magnetic moment of the muon (g − 2)µ has been measured [1] and computed to
very high precision of about 0.5 ppm (see e.g. [2]). For more than a decade, a discrepancy has
persisted between the experiment and the Standard Model prediction, now of about 3σ. Forthcoming
measurements at FNAL [3] and J-PARC [4] will update the experimental value. The aim is to increase
the precision by a factor of 4 and check for systematic errors.
The main uncertainty of the theory prediction is due to strong interaction effects. At present, the

largest error arises from hadronic vacuum polarisation, which, however, forthcoming data from e+e−
experiments [2] may help reduce. Thus in a few years, the subleading1 hadronic light-by-light contri-
bution might dominate the theory error. In present calculations of the HLbL contribution, systematic
errors are difficult, if not impossible, to quantify, due to model dependence. A new strategy is required
to provide a solid estimate of the theory uncertainties and reduce them. Lattice QCD is making re-
markable progress in this direction, and may play a leading rROH LQ WKLV ¿HOG LQ WKH QHDU IXWXUH >�±��@�
,Q >��� ��@� ZH KDYH SUHVHQWHG WKH ¿UVW GLVSHUVLYH GHVFULSWLon of the HLbL tensor.2 By making use
of the fundamental principles of unitarity, analyticity, crossing symmetry, and gauge invariance, we
provide an approach that reduces model dependence and allows for a more data-driven determination
of the HLbL contribution to (g − 2)µ.
Here, we report on a several improvements of our dispersive fUDPHZRUN >��±��@� :H KDYH FRQ�

structed a generating set of Lorentz structures for the HLbL tensor that is free of kinematic singu-
ODULWLHV DQG ]HURV� 7KLV VLPSOL¿HV VLJQL¿FDQWO\ WKH FDOFXOation of the HLbL contribution to (g − 2)µ.
:LWKLQ RXU GLVSHUVLYH IRUPDOLVP� WKH GH¿QLWLRQV RI ERWK WKH pion-pole and pion-box topologies are
unambiguous. By constructing a Mandelstam representation for the scalar functions, we prove that
the box topologies coincide with the scalar-QED (sQED) contribution multiplied by pion vector form
factors. Here we present a numerical evaluation of the pion bR[ XVLQJ D IRUP IDFWRU ¿W WR KLJK�VWDWLVWLFV
data, in turn using a dispersive representation to analytically continue the time-like data into the space-
like region required for the (g − 2)µ integral and show that this contribution can be calculated with
QHJOLJLEOH XQFHUWDLQWLHV� :H WKHQ SUHVHQW D ¿UVW QXPHULFDO evaluation of S -wave ππ-rescattering ef-
fects, which unitarize the pion-pole contribution to γ∗γ∗ → ππ� 7KLV FRQVWLWXWHV WKH ¿UVW VWHS WRZDUGV
a full treatment of the γ∗γ∗ → ππ SDUWLDO ZDYHV >��±��@� ,Q SDUWLFXODU� RXU FDOFXODWLRQ VHWWles the role
of the pion polarizability, which enters at next-to-leading order in the chiral expansion of the HLbL
DPSOLWXGH >��±��@ DQG KDV EHHQ VXVSHFWHG WR SURGXFH VL]DEOH corrections in [24].

2 Lorentz structure of the HLbL tensor
In order to study the HLbL contribution to (g−2)µ, we need a description of the HLbL tensor, namely
the hadronic Green’s function of four light-quark electromagnetic currents, evaluated in pure QCD:

Πµνλσ(q1, q2, q3) = −i
∫
d4x d4y d4z e−i(q1 ·x+q2·y+q3·z)⟨0|T { jµem(x) jνem(y) jλem(z) jσem(0)}|0⟩. (1)

Gauge invariance requires the HLbL tensor to satisfy the Ward-Takahashi (WT) identities

{qµ1, qν2, qλ3, qσ4 }Πµνλσ(q1, q2, q3) = 0, (2)

where q4 = q1 + q2 + q3. The HLbL tensor can be written a priori in terms of 138 basic Lorentz
structures built out of the metric tensor and the four-momenWD >��@� 2XU ¿UVW WDVN LV WR ZULWH WKH

1Even higher-order hadronic contributions have been considered in [5, 6].
2A different approach, which aims at a dispersive description of the muon vertex function instead of the HLbL tensor, has

been presented in [16].
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I A-priori 138 basic Lorentz structures (compare to 2 for HVP)

I Gauge invariance imposes 95 linear relations

I Special care needs to be taken (Tarrach) such that the resulting
scalar functions are free of kinematic singularities that would
complicate a dispersive discussion; a redundant basis satisfying this
following Bardeen, Tung, and Tarrach with 54 elements can be
chosen

I Crossing symmetry imposes additional constraints such that only 7
distinct structures remain
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Organizing principle: systematic cuts and state truncation

I Estimate of truncation of this procedure is crucial and still being
developed; ideas to use lattice for this are being explored (RBC
2018)

I Dominant contributions from pion-pole (needs π → γ∗γ∗ form
factors)

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]
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√
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −Fπ0γ∗γ∗

(−Q21,−Q22
)Fπ0γ∗γ∗

(−Q23, 0
)

Q23 + M2π
,

Π̄
π0-pole
2 = −Fπ0γ∗γ∗

(−Q21,−Q23
)Fπ0γ∗γ∗

(−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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I next leading contribution from two-pion states (box topologies)

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]
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)
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3
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −Fπ0γ∗γ∗

(−Q21,−Q22
)Fπ0γ∗γ∗

(−Q23, 0
)

Q23 + M2π
,

Π̄
π0-pole
2 = −Fπ0γ∗γ∗

(−Q21,−Q23
)Fπ0γ∗γ∗

(−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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Recent results

I PRD94(2016)074507 (Mainz): Pion-pole contribution

aπ−pole
µ = 6.50(83)× 10−10 using a model parametrization of the π → γ∗γ∗

form factor constrained by lattice data

4

Table I. Asymptotic behavior of the form factor for the di↵erent models (for LMD+V, eh1 = 0 is assumed). The last line
corresponds to the theoretical constraints discussed in the text.

F⇡0�⇤�⇤(0, 0) F⇡0�⇤�⇤(�Q2, 0) F⇡0�⇤�⇤(�Q2,�Q2)

VMD ↵ ↵M2
V /Q2 ↵M4

V /Q4

LMD ↵ ��/M2
V �2�/Q2

LMD+V ↵ �eh5/Q2 �2eh0/Q2

Eqs. (2) (4) (5) 1/(4⇡2F⇡) 2F⇡/Q2 2F⇡/(3Q2)

Again, one can set ↵ = 1/(4⇡2F⇡) to recover the anomaly constraint. The form factor behaves as 1/Q2 in the double-
virtual case and for � = �OPE = �F⇡/3 = �0.0308 GeV reproduces the leading OPE prediction, which is imposed
in the original LMD model by construction. On the other hand, the model does not reproduce the Brodsky-Lepage
behavior for the single-virtual form factor (4) but tends to a constant at large Euclidean momentum for the o↵-shell
photon. The original LMD model has no free parameters, but we will treat ↵,� and MV as free parameters in our
fits below.

Finally, in Ref. [40] the LMD+V model has been proposed as a refinement of the LMD model where a second
vector resonance (⇢0) is considered, see Ref. [17] for a recent brief review of the model. The LMD+V model can
simultaneously fulfill the Brodsky-Lepage and the leading OPE behavior. Using a slightly di↵erent parametrization
from Ref. [40], it can be written as

FLMD+V
⇡0�⇤�⇤ (q2

1 , q2
2) =

eh0 q2
1q2

2(q2
1 + q2

2) + eh1(q
2
1 + q2

2)2 + eh2 q2
1q2

2 + eh5 M2
V1

M2
V2

(q2
1 + q2

2) + ↵M4
V1

M4
V2

(M2
V1

� q2
1)(M2

V2
� q2

1)(M2
V1

� q2
2)(M2

V2
� q2

2)
. (8)

We have the relation eh1 = �(F⇡/3)h1, eh2 = �(F⇡/3)h̄2 and eh5 = �(F⇡/(3M2
V1

M2
V2

))h̄5 between the above

parametrization and the original model parameters hi (defined in the chiral limit) and h̄i (the latter parameters
include corrections proportional to powers of the pion mass). In the LMD+V model proposed in Ref. [40] only the
parameters hi (or h̄i) are treated as free parameters while the masses MV1

and MV2
are set equal to the physical masses

of the ⇢ and ⇢0 mesons. Furthermore the anomaly constraint is imposed, ↵ = 1/(4⇡2F⇡), as is the Brodsky-Lepage

behavior which leads to eh1 = 0. The form factor also has by construction the correct leading OPE behavior in the

double-virtual case when both photons carry large Euclidean momenta by setting eh0 = ehOPE
0 = �F⇡/3. As pointed

out in Ref. [41], the parameter h̄2 can be fixed by comparing with the subleading term in the OPE in Eq. (5). Finally
the parameter h̄5 has been determined in Ref. [40] by a fit to the CLEO data [19] for the single-virtual form factor.
One then obtains the model parameters

eh2 = 0.327 GeV3, [h̄2 = �4(M2
V1

+ M2
V2

) + (16/9)�2 = �10.63 GeV2], (9)

eh5 = (�0.166 ± 0.006) GeV, [h̄5 = (6.93 ± 0.26) GeV4]. (10)

Following Ref. [32], information on h̄5 can also be obtained from the decay ⇢+ ! ⇡+� (assuming octet symmetry)
which leads to the less precise determination h̄5 = (6.3 ± 0.9) GeV4 [40]. In our fits below, we will in principle treat

the parameters ↵,ehi and the masses MV1
and MV2

as free parameters. The additional factors M2
V1

M2
V2

in the term

with eh5 in the numerator in Eq. (8) will lead to more stable fits later.

A summary of the di↵erent asymptotic limits for each model and from the theory is given in Table. I.

III. METHODOLOGY

From this section on, we use Euclidean notation by default. In particular, time evolution is governed by e�H⌧

rather than e�iHt, and (Jµ)Minkowski = (J0,�iJk)Euclid. However the four-vectors q1 and q2 are always understood to

be Minkowskian, i.e. q2
1 = (q0

1)2 �P3
k=1(q

k
1 )2.

I JHEP1704(2017)161 (Colangelo et al.): Pion-box plus S-wave rescattering

aπ−box
µ + aππ,π−pole LHC ,J=0

µ = −2.4(1)× 10−10

I arXiv:1805.01471 (Hoferichter et al.): Pion-pole contribution

aπ−pole
µ = 6.26(30)× 10−10 reconstructing π → γ∗γ∗ form factor from

e+e− → 3π, e+e−π0 and π0 → γγ width

Combining these results one finds: aπ−pole
µ + aπ−box

µ + aππµ = 3.9(3)× 10−10

Compare to Glasgow consensus of aHLbL
µ = 10.5(2.6)× 10−10 which also models

contributions of heavier states and includes a matching with an high-energy quark
picture. Control of truncation error very important.
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Direct lattice calculation



Hadronic contributions from lattice QCD

I Simulate QFT in terms of fundamental quarks and gluons
(QCD) on a supercomputer with discretized four-dimensional
space-time lattice

I Hadrons are emergent phenomena of statistical average over
background gluon configurations to which quarks are coupled

I In this framework draw diagrams only with respect to quarks,
photons, and leptons; gluons and their effects are generated
by the statistical average.

Lattice QCD action density, Leinweber, CSSM,
Adelaide, 2003
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Computing resources

The RIKEN-BNL-Columbia (RBC) g − 2 project has used on the order of
109 core hours (100k years on a single core) on the Mira supercomputer
at Argonne, USQCD clusters at JLab and BNL, the BNL CSI KNL
cluster, and the Oakforest and Hokusai supercomputers in Japan.

We have processed on the order of 5 petabytes of QCD data related to
this project.
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7 quark-level topologies of direct lattice calculation

Hierarchy imposed by QED charges of dominant up- and down-quark contribution

Q4
u + Q4

d = 17/81 (Q2
u + Q2

d )2 = 25/81

(Q3
u + Q3

d )(Qu + Qd ) = 9/81

(Q2
u + Q2

d )(Qu + Qd )2 = 5/81

(Qu + Qd )4 = 1/81

Further insight for magnitude of individual topologies can be gained by studying
long-distance behavior of QCD correlation functions (Bijnens, RBC, . . .)
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7 quark-level topologies of direct lattice calculation

Hierarchy imposed by QED charges of dominant up- and down-quark contribution

Q4
u + Q4

d = 17/81 (Q2
u + Q2

d )2 = 25/81

(Q3
u + Q3

d )(Qu + Qd ) = 9/81

(Q2
u + Q2

d )(Qu + Qd )2 = 5/81

(Qu + Qd )4 = 1/81

Dominant diagrams in top row: connected and leading disconnected diagram

Further insight for magnitude of individual topologies can be gained by studying
long-distance behavior of QCD correlation functions (Bijnens, RBC, . . .)
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Finite-volume and infinite-volume formulations

I aHLbL
µ in finite-volume QCD and QED:

I PRD93(2016)014503 (RBC/UKQCD): Connected diagram with
mπ = 171 MeV; aHLbL

µ = 13.21(68)× 10−10

I PRL118(2017)022005 (RBC/UKQCD): Connected and leading
disconnected diagram with mπ = 139 MeV; aHLbL

µ = 5.35(1.35)× 10−10

(potentially large finite-volume systematics)

Strategy: extrapolate away 1/Ln (n ≥ 2) errors

I aHLbL
µ in finite-volume QCD and infinite-volume QED:

I Method proposed and successfully tested against the lepton-loop analytic
result: arXiv:1510.08384 (Mainz), arXiv:1609.08454 (Mainz)

I Similar method plus subtraction scheme to reduce systematic errors;
successfully tested against lepton-loop analytic result:
PRD96(2017)034515 (RBC/UKQCD)

Strategy: FV errors exponentially suppressed but still may be significant, effect
on noise?
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Finite-volume QED (PRD93(2016)014503 (RBC/UKQCD))

HLbL point source method [L. Jin et al. 1510.07100]

• Anomalous magnetic moment, F2(q
2) at q2 ! 0 limit

F cHLbL
2 (q2 = 0)

m

(�s0,s)i

2
=

P
x,y,z,xop

2V T
✏i,j,k (xop � xref)j · iūs0(~0)FC

k (x, y, z, xop) us(~0),

• Stochastic sampling of x and y point pairs. Sum over x and z.

FC
⌫ (x, y, z, xop) = (�ie)

6G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop),

xsrc xsnk↵, ⇢ ⌘, �,�

xop, ⌫

z,

x, ⇢ y,�

tsrc tsnk↵, ⇢ ⌘, �,�

z

x y
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I The finite-volume QEDL prescription uses the photon propagator

GµνL (x) =
δµν

V

′∑

k

1

k̂2
e ikx , (1)

where k̂2 =
∑
µ 4 sin2(kµ/2) and V =

∏
µ Lµ with lattice dimensions Lµ. The

sum is over all momenta with components kµ = 2πnµ/Lµ with
nµ ∈ [0, . . . , Lµ − 1] and the restriction that k2

0 + k2
1 + k2

2 6= 0.

I For fixed x and y can get result for all z in O(V log V ) time using convolutions
starting at tsrc and tsnk; has statistical advantage for leading disconnected
diagram (M2 trick)
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L/fm F2(0)/(α/π)3

5.9 0.2030(8) − 0.0357(6)(a GeV)2

8.9 0.2773(9) − 0.0432(5)(a GeV)2

11.9 0.3138(12) − 0.0515(9)(a GeV)2

Table XII. Functions linear in a2 which can be used to extrapolate the data shown in Fig. 10 to

a2 = 0. The results from these fits at a2 = 0 are plotted in Fig. 11.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

F
2
(0
)/
(α

/π
)3

1/(mµL)2

Figure 11. Results for F2(0) from QED connected light-by-light scattering. These results have

been extrapolated to the a2 → 0 limit using two methods. The upper points use the quadratic fit

to all three lattice spacings shown in Fig. 10 while the lower point uses a linear fit to the two left

most points in that figure. Here we extrapolate to infinite volume using the linear fits shown to

the two, left-most of the three points in each case.

IV. CONCLUSION AND OUTLOOK

In this paper we have extended the lattice field theory methods introduced in Ref. [17],

increasing the computational efficiency by more than two orders of magnitude and allowing

the calculation of the q2-dependent form factor F2(q
2) directly at q2 = 0 instead of at

(2π/L)2, the smallest, non-zero momentum accessible in finite volume. To demonstrate

the correctness of our methods we have studied the light-by-light scattering contribution

42

Lepton loop with
mlepton = mµ
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PRD93(2015)014503 (RBC/UKQCD):

New sampling strategy with 10x reduced noise for same cost (red versus black):

Mµ
LbL(q) remains constant, if we try to extract F2(q2) using Eq ???, the noise for F2(q2) would still

go like 1/ q. This can be a serious problem because we are really interested in the value of F2(q
2)

in the q→0 limit. Since we always evaluate the amplitude at q =2π/L, the noise for F2(q2) would
be proportion to L.

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

Figure 22. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. Just like Fig ???, 5 other possible permutations of the three internal photons are
not shown. (L) This is the diagram that we have already calculated. (M) We need to compute sequential
source propagators at xop for each polarizations of the external photon. (R) We also need to compuate
sequential source propagators at xop, but with the external photon momentum in opposite direction, since
we need use γ5-hermiticity to reverse the direction of the propagators, which reverses the momentum of the
external photon as well.

The reason that amplitude is proportion to q is the external photon is couple to a conserved
current of a quark loop. Current conservation ensures that the amplitude vanishes if the external
momentum is zero. Although we implemented exact conserved current at xop and sum it over the
entire space time in the method described above, we didn’t compute all three possible insertions for
the external photon. So the current is only truly conserved after stochastic average over x and y. As
a result, the noise would not be zero when q =0. To fix this, we just need to compute all diagrams
in above figure, then the noise would be proportion to q as well.1 These additional diagrams are
also computationally accessible. We only need to compute sequential propagators for each possible
polarizations and momentums of the external photon. We normally compute three polarization
directions x, y, and t, which are perpendicular to the direction of the external momentum z. This
would be six times more work for the quark loop part of the computation, but the cost for the
muon part remains unchanged. We can adjust M to rebalance the cost, so the over all cost increase
might not be significant but the potential gain can be large especially in a large volume.

There is also another trick. When we sum over z to get the exact photon, we don’t have to sum over
the entire volume, instead, we only sum over the region where |x− y |< |x−z | and |x− y |< |y −z |.2
This trick will enhance the signal in short distance but suppress signal and noise in long distance
where the distance. This trick is called MinDis in the tables blow.

4.1 Zero Total Current Prove

Here we try to prove that the sum of a conserved current is zero if it vanishes at the boundary.

Given:

∂µjµ = 0, (19)

1. Although the current conservation is exact, in finite lattice with periodic boundry condition, around the world
effects will contribute to the noise even when the external momentum is zero. But this noise is suppressed expo-
nentially in the large volume limit. In summary, in the small q and large volume limit, the noise is roughly
O(q)+ O

(
e−mπL/2

)
.

2. We need multiply some different factors when two edges happened to have the same length.

19

Figure 9. A comparison of the results for F2(q
2)/(α/π)3 obtained in the original lattice QCD

cHLbL calculation [17] (diamonds) with those obtained on the same gauge field ensemble using the

moment method presented here (circles). The points from the original subtraction method with

q2 = (2π/24)2 = (457MeV)2 were obtained from 100 configurations and the evaluation of 81,000

point-source quark propagators for each value of the source-sink separation tsep. In contrast, the

much more statistically precise results from the moment method required a combined 26,568 quark

propagator inversions for both values of tsep and correspond to q2 = 0. The moment method value

for tsep = 32 is listed in Tab. IX.

make use of the most effective of the numerical strategies discussed above: the use of exact

photon propagators and the position-space moment method to determine F2 evaluated at

q2 = 0. Since these calculations are less computationally costly than those for QCD we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [33, 34]. This QED calculation both

serves as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and non-zero-lattice-

spacing errors.

In Fig. 10 we show results for F2(0) computed for three different lattice spacings, i.e.

39

�
�
���

A
A
AAU

Stochastically evaluate the sum over vertices x and y :

I Pick random point x on lattice

I Sample all points y up to a specific distance r = |x − y |
I Pick y following a distribution P(|x − y |) that is peaked at short distances
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PRL118(2016)022005 (RBC/UKQCD):

I Calculation at physical pion mass with finite-volume QED prescription (QEDL)
at single lattice cutoff of a−1 = 1.73 GeV and lattice size L = 5.5 fm.

I Connected diagram:

acHLbL
µ = 11.6(0.96)× 10−10

I Leading disconnected diagram:

adHLbL
µ = −6.25(0.80)× 10−10

I Large cancellation expected from pion-pole-dominance considerations is realized:
aHLbL
µ = acHLbL

µ + adHLbL
µ = 5.35(1.35)× 10−10

Potentially large systematics due to finite-volume QED!

13 / 20



Infinite-volume QED prescription (QED∞)

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ

z, �

y, � x, ⇢

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ
z, �

y, � x, ⇢

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ
z, �

y, � x, ⇢

Figure 5. The three di�erent possible insertions of the external photon in the connected light-by-

light diagram. While the location of the external photon vertex xop may be fixed, the other three

positions where the internal photons are connected to the quark line x, y and z must be integrated

over space-time.

z must remain close to the fixed position xop. Thus, up to exponentially small corrections

Eq. (4) can also be evaluated in a large but finite volume.

Starting with Eq. (4) we exploit the translational symmetry discussed above, and dis-

place the four arguments x, y, z and xop of the function F� by the four-vector (x + y)/2,

transforming that equation into

G�(pf , xop, pi) =

Z
d4x

Z
d4y

Z
d4z F�

�
x � y

2
, �x � y

2
, z � x + y

2
, xop � x + y

2

�

ei�q·(�x+�y)/2. (5)

=

Z
d4w

Z
d4�z

Z
d4�xop F�

�w

2
, �w

2
, �z, �xop

�
ei�q·�xope�i�q·��xop , (6)

where we have defined q = pi � pf and in the final equation we have adopted the three new

integration variables:

w = x � y, �z = z � x + y

2
, �xop = xop � x + y

2
. (7)

The critical step in our derivation replaces the factor e�i�q·��xop in Eq. (6) by (e�i�q·��xop � 1)

giving:

G�(pf , xop, pi) =

Z
d4w

Z
d4�z

Z
d4�xop F�

�w

2
, �w

2
, �z, �xop

�
ei�q·�xop

�
e�i�q·��xop � 1

�
, (8)

The extra ‘1’ term introduced into the integrand over �xop will vanish if

�

�(�xop)�
F�

�w

2
, �w

2
, �z, �xop

�
= 0 (9)

2

For this diagram separate QCD and QED expectation values are
not zero hence category two and we need to sum over all
displacements between QCD and QED part to control FV errors.
Class b.
Proposal of stochastic sampling ... in the process ... no data yet

25 / 26

Remove power-law like finite-volume
errors by computing the muon-
photon part of the diagram in infi-
nite volume (C.L. talk at lattice 2015 and Green

et al. 2015, PRL115(2015)222003; Asmussen et al. 2016,

PoS,LATTICE2016 164)

Now completed PRD96(2017)034515 (RBC/UKQCD) with
improved weighting function.
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Details:

HLbL point source method [L. Jin et al. 1510.07100]

• Anomalous magnetic moment, F2(q
2) at q2 ! 0 limit

F cHLbL
2 (q2 = 0)

m

(�s0,s)i

2
=

P
x,y,z,xop

2V T
✏i,j,k (xop � xref)j · iūs0(~0)FC

k (x, y, z, xop) us(~0),

• Stochastic sampling of x and y point pairs. Sum over x and z.

FC
⌫ (x, y, z, xop) = (�ie)

6G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop),

xsrc xsnk↵, ⇢ ⌘, �,�

xop, ⌫

z,

x, ⇢ y,�

tsrc tsnk↵, ⇢ ⌘, �,�

z

x y
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We define
QED1 weight function

i3G⇢,�,(x, y, z) = G⇢,�,(x, y, z) + G�,,⇢(y, z, x) + other 4 permutations .

• Take hermitian part and using permutation,

G
(1)
⇢,�,(x, y, z) =

1

2
G⇢,�,(x, y, z) +

1

2
[G,�,⇢(z, y, x)]

†

gives same F2 but infrared finite.

• In mµ = 1 unit,

G
(1)
�,,⇢(y, z, x) =

�0 + 1

2
i�� (� 6 @y + �0 + 1) i� ( 6 @x + �0 + 1) i�⇢

�0 + 1

2

⇥ 1

4⇡2

Z
d

4
⌘

1

(⌘ � z)2
f(⌘ � y)f(x � ⌘).

tsrc tsnk↵, ⇢ ⌘, �,�

z

x y
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and add the Hermitian conjugate with permuted indices (does not alter
F2 but makes this kernel infrared finite)

QED1 weight function

i3G⇢,�,(x, y, z) = G⇢,�,(x, y, z) + G�,,⇢(y, z, x) + other 4 permutations .

• Take hermitian part and using permutation,

G
(1)
⇢,�,(x, y, z) =

1

2
G⇢,�,(x, y, z) +

1

2
[G,�,⇢(z, y, x)]

†

gives same F2 but infrared finite.

• In mµ = 1 unit,

G
(1)
�,,⇢(y, z, x) =

�0 + 1

2
i�� (� 6 @y + �0 + 1) i� ( 6 @x + �0 + 1) i�⇢

�0 + 1

2

⇥ 1

4⇡2

Z
d

4
⌘

1

(⌘ � z)2
f(⌘ � y)f(x � ⌘).

tsrc tsnk↵, ⇢ ⌘, �,�

z

x y
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For mline = 1 this yields the kernel

QED1 weight function

i3G⇢,�,(x, y, z) = G⇢,�,(x, y, z) + G�,,⇢(y, z, x) + other 4 permutations .

• Take hermitian part and using permutation,

G
(1)
⇢,�,(x, y, z) =

1

2
G⇢,�,(x, y, z) +

1

2
[G,�,⇢(z, y, x)]

†

gives same F2 but infrared finite.

• In mµ = 1 unit,

G
(1)
�,,⇢(y, z, x) =

�0 + 1

2
i�� (� 6 @y + �0 + 1) i� ( 6 @x + �0 + 1) i�⇢

�0 + 1

2

⇥ 1

4⇡2

Z
d

4
⌘

1

(⌘ � z)2
f(⌘ � y)f(x � ⌘).

tsrc tsnk↵, ⇢ ⌘, �,�

z

x y
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Due to current conservation, we can also devise a subtraction scheme
that we found suppresses significantly finite-volume and discretization
errors (demonstrated in the lepton loop case)

Subtraction using current conservation

• From current conservation, @⇢V⇢(x) = 0, and mass gap, hxV⇢(x)O(0)i ⇠
|x|n exp(�m⇡|x|)

X

x

HC
⇢,�,,⌫(x, y, z, xop) =

X

x

hV⇢(x)V�(y)V(z)V⌫(xop)i = 0

X

z

HC
⇢,�,,⌫(x, y, z, xop) = 0

at V ! 1 and a ! 0 limit (we use local currents).

• We could further change QED weight

G
(2)
⇢,�,(x, y, z) = G

(1)
⇢,�,(x, y, z) � G

(1)
⇢,�,(y, y, z) � G

(1)
⇢,�,(x, y, y) + G

(1)
⇢,�,(y, y, y)

without changing sum
P

x,y,z G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop).

• Subtraction changes discretization error and finite volume error.

• Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.

• Also now G(2)
�,,⇢(z, z, x) = G(2)

�,,⇢(y, z, z) = 0, so short distance O(a2) is suppressed.

• The 4 dimensional integral is calculated numerically with the CUBA library cubature
rules. (x, y, z) is represented by 5 parameters, compute on N5 grid points and
interpolates. (|x � y| < 11 fm).
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Test of lepton-loop for infinite-volume method

8

non-zero lattice spacing e�ects are much reduced by using G(2) instead of G(1), and the curves for di�erent volumes
appear to be quite parallel. Note that in the latter case some points even have the wrong sign. The di�erence between
the ma = 0.1 and ma = 0.2 results is a good indicator of the non-zero lattice spacing e�ects. Since we have obtained
results for ma = 0.1 and 0.2 for three volumes, this di�erence demonstrates the volume dependence of the non-zero
lattice spacing e�ects. We show this comparison in Tab. III. The mL = 4.8 and 6.4 points agree within errors for
both loop masses. The volume mL = 3.2 shows similar e�ects, but in some cases, given our high statistical precision,
we observe a small di�erence. This is expected since the non-zero lattice spacing e�ects become independent of
volume in the large volume limit. We also study the lattice spacing dependence of the finite volume e�ects in Tab.
IV. It can be seen from the table that the finite volume e�ects are roughly independent of lattice spacing. The finite
volume e�ects at fixed lattice spacing ma = 0.2 are shown in Tab. V, and we expect that the finite volume e�ects in
the continuum limit are similar. With this table, we can see that the finite volume e�ect, falling exponentially with
the linear size of the lattice, becomes negligible for mL = 9.6.
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Figure 3. Leptonic light-by-light contribution to the muon anomaly, with the lepton loop mass m = mµ (upper) and m = 2mµ

(lower). The continuum, infinite volume, result is 0.371 � (�/�)3 for m = mµ [19] and 0.120 � (�/�)3 for m = 2mµ [20, 21].

The lefthand plots correspond to G
(1)
�,�,�(y, z, x) and the righthand to G

(2)
�,�,�(y, z, x). For each volume, we draw a second-order

line which exactly passes through the three points with ma = 0.1, 0.12 or 0.133333, and 0.2 to guide the eye. Note that the
vertical scales between the plots on the left and right are di�erent. The discretization error observed on the left is larger than
on the right by a factor of four, or more, while the finite volume errors are larger by a factor of two, or more. The parameters
for these curves are given in Tab. II.

Since the finite volume e�ects are exponentially suppressed with lattice size L and the non-zero lattice spacing
e�ects are of order a2, the lepton anomaly scales like

F2(L, a) = F2 + O(e�mL) + O((ma)2). (39)

mloop = mµ (top), mloop = 2mµ (bottom)
Without subtraction (left), with subtraction (right)
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Lepton loop with
mlepton = mµ

Without subtraction (left), with subtraction (right)
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Preliminary QCD results for infinite-volume extrapolation
(RBC/UKQCD 2018)

 0

 5

 10

 15

 20

 25

 30

 35

-0.05  0  0.05  0.1  0.15  0.2

a µ
cH

Lb
L  x

 1
010

1/(mµ L)2

QED∞, 48I
QEDL, 24D
QEDL, 48I

QEDL, 32D
QEDL, 48D

-14

-12

-10

-8

-6

-4

-2

 0

-0.05  0  0.05  0.1  0.15  0.2

a µ
dH

Lb
L  x

 1
010

1/(mµ L)2

QEDL, 24D
QEDL, 48I

QEDL, 32D

18 / 20



Preliminary QCD results for infinite-volume extrapolation
(RBC/UKQCD 2018)
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Data used for finite-volume result in PRL118(2016)022005
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Roadmap to complete first-principles light-by-light
calculation with all errors controlled (RBC/UKQCD 2018)

I Calculation of connected plus leading disconnected diagram at
physical pion mass completed

I Infinite-volume extrapolation done (to be published)

I Discretization errors are now controlled for (four different lattice
spacings over two different actions, to be published)

I Calculation of sub-leading disconnected diagrams, starting with 3-1
topology started within next month or so

I Crosscheck of dispersive versus lattice (see, e.g., arXiv:1712.00421)
desirable
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Summary



Summary

I Hadronic light-by-light contribution precision needs to be improved
for Fermilab E989 target precision

I A model-independent first-principles calculation is needed:
dispersive methods or lattice QCD

I Dispersive one and two-pion intermediate states essentially done

I Truncation error of dispersive method challenging to estimate;
lattice methods for this estimate under development

I Pure lattice calculation at physical pion mass of connected and
leading disconnected contribution completed, publication of
infinite-volume and continuum limit imminent (RBC/UKQCD 2018)

I 5 sub-leading disconnected contributions need to be controlled as
well, will be started in next month or so
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