Status and outlook of Lattice calculations for $R\left(D^{(*)}\right)$ and $R_{K^{(*)}}$

Elvira Gámiz

Centro Andaluz de Física de
Parículas Elementales

Workshop: Exotic Hadrons and Flavor Physics, SCGP, 1 June 2018 •

Introduction: Lattice QCD

$$
\text { Experiment }=(\text { known factors }) \times\left(V_{C K M}\right) \times \underbrace{(\text { matrix elements })}_{\text {lattice } \mathrm{QCD}}
$$

Parametrize MEs in terms of decay constants, form factors, bag parameters, ...
Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles) using Monte Carlo methods.

Phenomenology (in particular flavour physics) needs precise lattice QCD calculations \rightarrow

* Control and reliably estimate systematic errors.
* Not everything can be calculated precisely using lattice techniques, only some processes:
with estable (or almost stable) hadrons, masses and amplitudes with no more than one initial (final) state hadron

Introduction: Lattice QCD

Development of new methods is allowing to increase the scope of LQCD calculations:

* Baryons
* Nonleoptonic decays ($K \rightarrow \pi \pi \ldots$)
* Resonances
* Scattering
* Long-distance effects
* QED effects ...

Introduction: Lattice QCD

Combined chiral-continuum extrapolation

Many lattice collaborations doing now simulations with physical light-quark masses; PACS-CS, BMW,

MILC, RBC/UKQCD, ETM...

ChPT techniques still necessary to reduce errors and/or correct/estimate systematic effects: light and heavy quark discretization, finite volume, isospin-breaking, mass mistunings, ...

* For B, D processes use Heavy Meson ChPT: ChPT $+1 / M$ expansion
\# Next generation of gauge configurations: isospin-breaking $\left(N_{f}=1+1+1+1\right)$ and QED +QCD BMw, QCDSF, RBC, MILC \ldots

Charged-current b decays

Exclusive vs inclusive $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

Long-standing tension between exclusive and inclusive determinations of the CKM matrix elements $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ at the $\sim 3 \sigma$ level.

LQCD inputs

$$
\begin{aligned}
& * B \rightarrow \pi \ell \nu: f_{+}\left(q^{2}\right)\left(f_{0}\left(q^{2}\right)\right) \\
& * \Lambda_{b} \rightarrow p \mu \nu / \Lambda_{b} \rightarrow \Lambda_{c} \mu \nu:
\end{aligned}
$$

Six form factors for each channel

* $B \rightarrow D^{*} \ell \nu: \mathcal{F}(\omega=1)$
* $B \rightarrow D \ell \nu: \mathcal{G}(\omega)$ (related to $f_{+}\left(q^{2}\right)$)
$\left|V_{c b}\right|$ from exclusive B decays $\left(w=v_{B} \cdot v_{D}\right.$ velocity transfer to the leptonic pair)

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D^{*} l \nu\right)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{1 / 2}|\mathcal{F}(w)|^{2} \\
\frac{d \Gamma(B \rightarrow D l \nu)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{3 / 2}|\mathcal{G}(w)|^{2}
\end{aligned}
$$

Exclusive determination of $\left|V_{c b}\right|$

$\left|V_{c b}\right|$ extracted from exclusive B decays $\left(w=v_{B} \cdot v_{D}\right.$ is the velocity transfer to the leptonic pair)

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D^{*} l \nu\right)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{1 / 2}|\mathcal{F}(w)|^{2} \\
\frac{d \Gamma(B \rightarrow D l \nu)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{3 / 2}|\mathcal{G}(w)|^{2}
\end{aligned}
$$

* How to parametrize the ω dependence?

Model-independent z-expansion: map ω onto a complex variable z via the conformal transformation $z=\left(\sqrt{\omega+1}-\sqrt{\omega_{0}+1}\right) /\left(\sqrt{\omega+1}+\sqrt{\omega_{0}+1}\right)$

* Coefficients in the z-expansion are subject to unitarity bounds based on analyticity.

```
BCL (Bourrely-Caprini-Lellouch), 0807.2722
```

BGL (Boyd-Grinstein-Lebed), hep-ph/9504235, hep-ph/9508211, hep-ph/9705252
CLN (Caprini-Lellouch-Neubert), hep-ph/9712417: + model-dependent NLO HQET constraints to reduce the error:
heavy-quark corrections (neglecting $\left.\left(\Lambda / m_{c}\right)^{2}\right)$ underestimated?

Form factors for $B \rightarrow D \ell \nu$ with $\ell=e, \mu, \tau$

Exclusive $B \rightarrow D$ decays without disregarding lepton masses (SM)

$$
\frac{d \Gamma(B \rightarrow D l \nu)}{d w}=(\text { known }) \cdot\left|V_{c b}\right|^{2}\left|f_{+}^{2}\left(q^{2}\right)\right|^{2}+(\text { known }) \cdot\left|V_{c b}\right|^{2}\left|m_{\ell}^{2} f_{0}^{2}\left(q^{2}\right)\right|^{2}
$$

* Calculate the form factors f_{0} and f_{+}(also $f_{T}\left(q^{2}\right)$) at low recoil (high q^{2}).
* z-expansion: model-independent parametrization of q^{2} dependence.

Two LQCD calculations of f_{+}and f_{0}

FNAL/MILC 1503.07237
MILC $N_{f}=2+1$ asqtad ensembles:
14 ensembles
u, d, s valence quarks: asqtad
c, b valence quarks: clover (Fermilab)
z-expansion (BGL parametrization) to go to high recoil region.

HPQCD 1505.03925
MILC $N_{f}=2+1$ asqtad ensembles: 5 ensembles
u, d, s, c valence quarks: HISQ
b valence quarks: NRQCD
z-expansion (BCL parametrization) to go to high recoil region.

Both quote results as coefficients of the expansion + covariance matrix.

Form factors for $B \rightarrow D \ell \nu$ with $\ell=e, \mu, \tau$

FLAG global fit to lattice and experimental data with BCL parametrization.

$$
\left(\left|V_{c b}\right|=40.1(1.0) \cdot 10^{-3}\right)
$$

* Combined BGL fit to experimental and lattice data Bigi\&Gambino, 1606.08030

$$
\left|V_{c b}\right|=40.49(97) \cdot 10^{-3}
$$

* Lattice form factors uncertainties ($\sim 1.2 \%$) smaller than experiment.

$B \rightarrow D \ell \nu$: Lepton Flavor Universality tests

Lattice $f_{+}^{B \rightarrow D}\left(q^{2}\right)$ and $f_{0}^{B \rightarrow D}\left(q^{2}\right)$ form factors can be used to calculate:

$$
R(D) \equiv{\frac{\mathcal{B}\left(B \rightarrow D \tau \nu_{\tau}\right)}{\mathcal{B}(B \rightarrow D \ell \nu)}}_{\text {FLAG2016,only lattice }}=0.300(8)
$$

Theory results $\sim 2.3 \sigma$ lower than

Very sensitive to $f_{0}\left(q^{2}\right)$

Blacked dashed lines: no f_{0} contribution. experimental average
Critical to control reliability of form factor parametrization at low q^{2}

* Global fit experiment+lattice data with BGL parametrization: $R(D)=0.299(3), 2.4 \sigma$ Bigi \& Gambino 1606.08030. Similar results from Bernlochner, Ligeti, Papucci, Robinson 1703.05330

$B \rightarrow D \ell \nu$: Lepton Flavor Universality tests

2018: Soft-photon corrections to $R(D)$, could amplify $R\left(D^{+(0)}\right)$ by $\leq 5.5 \%(3.6 \%)$ Boer, Kitara, Nisandzic 1803.05881
Experimental uncertainty on $\left|V_{c b}\right|$ from $B \rightarrow D^{(*)} \ell \bar{\nu}$ expected to be $\leq 1 \%$ at Belle II. P.Urquijo talk at "Challenges in semileptonic B decays", MITP, 04/2018

In progress

* fNAL/MILC, HPQCD: $N_{f}=2+1+1$ HISQ ensembles, HISQ light quarks, Fermilab b, c (FNAL/MILC), NRQCD b and HISQ c (HPQCD).
** Longer term: Going to smaller q^{2}
E. McLean, C. Davies, B. Colquhoun, A. Lytle 1711.03487
* LANL/SNU: $N_{f}=2+1+1$ HISQ ensembles, HISQ light quarks, Oktay-Kronfeld (OK) b, c. J. Bailey, J. Leem, W. Lee, Y. Jang 1612.09081
* RBC/UKQCD: Domain wall $N_{f}=2+1$ configurations, domain wall light and c, RHQ b. J. Flynn et al. 1612.05112

$B \rightarrow D^{*} \ell \nu$ at zero recoil

$$
\frac{d \Gamma\left(B \rightarrow D^{*} l \nu\right)}{d w}=(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{1 / 2}|\mathcal{F}(w)|^{2}
$$

Until now, lattice data for $\mathcal{F}(\omega)$ only available at zero recoil $\omega=1\left(q_{\max }^{2}\right)$

* One form factor needed $\mathcal{F}(1)=h_{A_{1}}(1)$, extracted from double ratio

$$
R_{A_{1}}(1)=\frac{\left\langle D^{*}\right| A_{1}|\bar{B}\rangle\langle\bar{B}| A_{1}\left|\bar{D}^{*}\right\rangle}{\left\langle D^{*}\right| V_{0}\left|D^{*}\right\rangle\langle\bar{B}| V_{0}|\bar{B}\rangle}=\left|h_{A_{1}}(1)\right|^{2}
$$

Luke's theorem: result protected from NLO power corrections.

* Suppression factor at zero recoil limits experimental measurements: Experimental data extrapolated to $\omega=1$ using CLN parametrization

$$
\rightarrow \bar{\eta}_{E W}\left|V_{c b}\right| \mathcal{F}(\omega=1)
$$

$B \rightarrow D^{*} \ell \nu$ at zero recoil

FNAL/MILC 1403.0635

MILC $N_{f}=2+1$ asqtad ensembles
u, d, s valence quarks: asqtad
c, b valence quarks: clover (Fermilab)

$$
\mathcal{F}(1)=0.906(4)(12)
$$

Dominant error: Discretization
$a \Lambda^{2} / m_{c}, a^{2} \Lambda^{2}$

Two LQCD calculations (stat. independent)
HPQCD 1711.11013

MILC $N_{f}=2+1+1$ HISQ ensembles u, d, s, c valence quarks: HISQ
b valence quarks: NRQCD

$$
\mathcal{F}(1)=0.895(10)(24)
$$

Dominant error: matching α_{s}^{2}

$$
\mathcal{F}^{B_{s} \rightarrow D_{s}^{*}}(1)=0.883(12)(28)
$$

** Cusp at the physical point due to $D^{*} \rightarrow D \pi$ and $m_{D^{*}}-m_{D} \sim m_{\pi}$ included using ChPT with $D^{*} D \pi$ coupling as input.

$B \rightarrow D^{*} \ell \nu$ at zero recoil

2017: For the first time, Belle 1702.01521 provided unfolded fully-differential decay rate and associated covariance matrix.

Intrinsic uncertainties of CLN parametrization can no be neglected.

Bigi, Gambino \& Schacht 1703.06124

CLN underestimates low recoil points

HPQCD 1711.11013

$\left|\bar{\eta}_{E W} V_{c b}\right| h_{A_{1}}(1)$

Bigi, Gambino \& Schacht 1703.06124,1707.09509, Grinstein \& Kobach 1703.08170
Belle+LQCD: $\left|V_{c b}\right|_{C L N}=38.2(1.5) \cdot 10^{-3} \rightarrow\left|V_{c b}\right|_{B G L}=41.7(2.0) \cdot 10^{-3}$
Belle+LQCD+LCSR: $\left|V_{c b}\right|_{C L N}=38.2(1.4) \cdot 10^{-3} \rightarrow\left|V_{c b}\right|_{B G L}=40.4(1.6) \cdot 10^{-3}$

BGL fits agree with inclusive $\left|V_{c b}\right|$

* Large difference not necessarily true for other exp. data sets.

$B \rightarrow D^{*} \ell \nu$: Lepton Flavor Universality tests

No lattice inputs avaliable to calculate $R\left(D^{*}\right) \equiv \frac{\mathcal{B}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)}$

* SM calculation in Fajfer et al 1203.2654 based on $\exp . B \rightarrow D^{*}$ measurements which use CLN parametrization.
* Bigi, Gambino \& Schacht 1707.09509 use BGL param. instead with Belle data

$$
R\left(D^{*}\right)=0.260(8)(3.4 \rightarrow 2.6 \sigma)
$$

Systematic errors larger due to accounting for unknown NNLO corrections.

A LQCD calculation of the form factor $P_{1}(\omega=1)$ (function of $h_{A_{1}, A_{2}, A_{3}}$) could reduce error by a factor of 2 Bigi, Gambino \& Schacht 1707.09509
$\sim 3.4 \sigma$ SM-experiment disagreement

Needs reliable LQCD form factors at non-zero recoil

Stabilize fits and reduce errors of $\left|V_{c b}\right|$ and $R\left(D^{*}\right)$

$B \rightarrow D^{*} \ell \nu$ beyond zero recoil

In general, the form factors needed for $\omega \neq 1$ are

$$
\begin{aligned}
& \frac{\left\langle D^{*}\left(p_{D^{*}}, \varepsilon^{\nu}\right)\right| \mathcal{V}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}=\frac{1}{2} \varepsilon^{\nu *} \epsilon_{\rho \sigma}^{\mu \nu} v_{B}^{\rho} v_{D^{*}}^{\sigma} h_{V}(\omega) \\
& \frac{\left\langle D^{*}\left(p_{D^{*}}, \varepsilon^{\nu}\right)\right| \mathcal{A}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}=\frac{i}{2} \varepsilon^{\nu *}\left[g^{\mu \nu}(1+\omega) h_{A_{1}}(\omega)-v_{B}^{\nu}\left(v_{B}^{\mu} h_{A_{2}}(\omega)+v_{D^{*}}^{\mu} h_{A_{3}}(\omega)\right)\right]
\end{aligned}
$$

$h_{A_{1}}(\omega)$ (and its error) will still dominate extraction of $\left|V_{c b}\right|$ and $R\left(D^{*}\right)$

In progress: FNAL/MILC 1710.09817

$N_{f}=2+1$ asqtad (same ensembles, statistics and actions as for the zero recoil
2014 FNAL/MILC calculation)
Use double ratios

$$
\begin{aligned}
& \frac{\left\langle D^{*}\left(p_{\perp}\right)\right| A_{1}|\bar{B}(0)\rangle\langle\bar{B}(0)| A_{1}\left|\bar{D}^{*}\left(p_{\perp}\right)\right\rangle}{\left\langle D^{*}(0)\right| V_{0}\left|D^{*}(0)\right\rangle\langle\bar{B}(0)| V_{0}|\bar{B}(0)\rangle}=\left(\frac{1+\omega}{2}\right)^{2}\left|h_{A_{1}}(\omega)\right|^{2} ; \quad \frac{\left\langle D^{*}\left(p_{\|}\right)\right| V_{1}|\bar{B}(0)\rangle}{\left\langle D^{*}\left(p_{\perp}\right)\right| A_{1}|\bar{B}(0)\rangle}=\sqrt{\frac{\omega-1}{\omega+1}} \frac{h_{V}(\omega)}{h_{A_{1}}(\omega)} \\
& \frac{\left\langle D^{*}\left(p_{\|}\right)\right| A_{4}|\bar{B}(0)\rangle}{\left\langle D^{*}\left(p_{\perp}\right)\right| A_{4}|\bar{B}(0)\rangle}=\frac{\sqrt{\omega^{2}-1}\left(1-h_{A_{2}}(\omega)+\omega h_{A_{3}}(\omega)\right)}{(1+\omega) h_{A_{1}}(\omega)} ; \quad \frac{\left\langle D^{*}\left(p_{\|}\right)\right| A_{1}|\bar{B}(0)\rangle}{\left.D^{*}\left(p_{\perp}\right)\left|A_{1}\right| \bar{B}(0)\right\rangle}=\omega-\frac{\left(\omega^{2}-1\right) h_{A_{3}}(\omega)}{(1+\omega) h_{A_{1}}(\omega)}
\end{aligned}
$$

$B \rightarrow D^{*} \ell \nu$ beyond zero recoil

More in progress:

* At zero recoil LANL/SNu: $N_{f}=2+1+1$ HISQ ensembles, HISQ light quarks, Oktay-Kronfeld (OK) b, c. J. Bailey et al 1711.01777, 1711.01786
** Can reduce c discretization error in fnal/milc calculation (dominant) $1 \% \rightarrow 0.4 \%$
* RBC/UKQCD: Domain wall $N_{f}=2+1$ configurations, domain wall light and c, RHQ b.
* fnal/milc: $N_{f}=2+1+1$ HISQ ensembles, HISQ light quarks, Fermilab b, c

More $b \rightarrow c l \nu$ decays

$$
B_{s} \rightarrow D_{s} \ell \nu \text { New HPQCD 1703.09728 }
$$

$$
\begin{aligned}
& N_{f}=2+1 \text { MILC configurations }+ \text { HISQ } \\
& c+\text { NRQCD } b
\end{aligned}
$$

$$
R\left(D_{s}\right)=0.301(6)
$$

* No sensitivity to spectator quark $(R(D)=0.300(8)$
* + Previous $B \rightarrow D$ results \rightarrow Ratios used for fragmentation fractions f_{q} / f_{s}

Consistent with previous results by FNAL/MILC1703.09728 1202.6346 and ETMC 1310.5238

More $b \rightarrow c l \nu$ decays

$B_{s} \rightarrow D_{s} \ell \nu \& B_{s} \rightarrow K \ell \nu$ In progress: RBC/UKQCD
Domain wall $N_{f}=2+1$ configurations, domain wall light and $c, \operatorname{RHQ} b$.

Experimental data from LHCb expected for (M. Calvi talk at Challenges in semileptonic B decays, MITP, 2018) $\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}$
Plus LQCD form factors will provide another determination of $\left|V_{u b}\right| /\left|V_{c b}\right|$.
In progress: FNAL/MILC 1711.08085, ALPHA, JLQCD

More $b \rightarrow c \ell \nu$ decays

$B_{c} \rightarrow J / \psi \ell \nu 4$ independent form factors
In progress/future plans: HPQCD, A. Lytle "Instant workshop on B-mesons anomalies"

Test lepton universality LHCb 1711.05623

$$
R\left(B_{c}\right)_{\exp }=\frac{\mathcal{B}\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\mathcal{B}\left(B_{c} \rightarrow J / \psi \mu \nu\right)}=0.71 \pm 0.25
$$

Help to shed light on the existing anomalies

Two approaches (on $N_{f}=2+1+1$ MILC ensembles), also for $B \rightarrow D\left(D^{*}\right)$:

* Relativistic (HISQ) on finer lattices with $m_{h} \leq m_{b}$
* NRQCD directly at m_{b}
* Can cover full q^{2} range accurately and compare relativistic and non relativistic approaches A. Lytle, B. Colquhoun et al (HPQCD)

Good agreement of both approaches

More $b \rightarrow c \neq$ decays

$\Lambda_{b} \rightarrow \Lambda_{c} \ell \nu \mathrm{~W}$. Detmold, C. Lehner,S. Meinel 1503.01421,
A. Datta, S. Kamali, S. Meinel, A. Rashed 1702.02243

* $N_{f}=2+1$ calculation on RBC/UKQCD ensembles. Domain wall light + anisotropic clover c, b.
* Ten form factors in total.

Black points: decay rate measured by LHCb 1709.01920

Gray rectangles: Lattice prediction w. Detmold,
C. Lehner,S. Meinel 1503.01421
$R\left(\Lambda_{c}\right) \equiv \frac{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \tau^{-} \bar{\nu}_{\tau}\right)}{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu}\right)}=$
$0.3328 \pm 0.0074_{\text {stat. }} \pm 0.0070_{\text {syst }}$.
(3.1\% error)

A measurement of $R\left(\Lambda_{c}\right)$ can add strong constraints to NP models (correlations with $R\left(D^{(*)}\right)$) A. Datta, S. Kamali, S. Meinel, A. Rashed 1702.02243

More $b \rightarrow c l \nu$ decays

$\Lambda_{b} \rightarrow \Lambda_{c}^{*} \ell \nu$ s. Meinel, G. Rendon In progress.
Also in progress: $\Lambda_{b} \rightarrow \Lambda_{c}$ results with errors a factor of 2 smaller expected for 2020 s. Meinel Challenges in semileptonic B decays workshop, Mainz 2018

Neutral-current b decays

Form factors for $B \rightarrow K(\pi) \ell^{+} \ell^{-}$

Flavor-changing neutral currents $b \rightarrow q$ transitions are potentially sensitive to NP effects $B \rightarrow K^{*} \gamma, B \rightarrow K^{(*)} \ell^{+} \ell^{-}, B \rightarrow \pi \ell^{+} \ell^{-}$

For $B \rightarrow P \ell \ell$, hadronic contributions are parametrized in terms of matrix elements of current (vector, axial and tensor) operators through three form factors

$$
f_{+}, f_{0}\left(\text { for } m_{\ell} \neq 0\right) \text { and } f_{T}
$$

+ non-factorizable contributions J. Martín Camalich \& G. Hiller talks
* Determine CKM matrix elements $V_{t d, t s}$ or constrain Wilson coeff. C_{9} and C_{10}.

Form factors for $B \rightarrow K \ell^{+} \ell^{-}$

$B \rightarrow K \ell^{+} \ell-\quad H P Q C D$ 1306.0434, 1306.2384, FNAL/MILC, 1509.06235

Overlapping ensemble sets (asqtad MILC $N_{f}=2+1$) but different lattice actions:

HPQCD: NRQCD $b+\operatorname{HISQ} u, d, s$
FNAL/MILC: Fermilab $b+\operatorname{asq} \operatorname{tad} u, d, s$
Consistent results for $f_{0,+, T}$, and with LCSR
Khodjamarian et al 1006.4945

From D. Du et al 1510.02349, FNAL/MILC 1509.06235 (non-factorizable contributions under control?)

$1-2 \sigma$ experiment-SM tensions.

focus on large bins above and below charmoninum resonances

$B \rightarrow K \ell^{+} \ell^{-}$: Lepton Flavor Universality Tests

D. Du et al. 1510.02349 with FNAL/MILC form factors

$$
R_{P}^{\ell_{1} \ell_{2}}\left(q_{\text {min }}^{2}, q_{m a x}^{2}\right)=\frac{\int_{q_{m i n}^{2}}^{q_{\text {max }}^{2}} d q^{2} d \mathcal{B}\left(B \rightarrow P \ell_{1}^{+} \ell_{1}^{-}\right)}{\int_{q_{\text {min }}^{2 m a x}}^{q_{\text {max }}} d q^{2} d \mathcal{B}\left(B \rightarrow P \ell_{2}^{+} \ell_{2}^{-}\right)}
$$

2.6σ tension LHCb-SM
for $\left[q_{\min }^{2}=1 \mathrm{GeV}^{2}, q_{\max }^{2}=6 \mathrm{GeV}^{2}\right]$
$\left(1-R_{K}\right)^{\mathrm{HPQCD}}=0.00074 \pm 0.00035, \quad\left(1-R_{K^{+}}\right)^{\mathrm{FNAL} / \mathrm{MILC}}=0.00050 \pm 0.00043$

$$
\left(1-R_{K^{+}}\right)^{\mathrm{LHCb}}=0.255_{-0.074}^{+0.090} \pm 0.036
$$

SM predictions for these ratios pretty insensitive to form factors and non-factor. contributions.

Form factors for $B \rightarrow K \ell^{+} \ell^{-}$: In progress

Necessary to reduce form factors uncertainties

fNAL/milc on $N_{f}=2+1+1$ HISQ ensembles, HISQ light quarks, Fermilab b, c.
Form factors for $B \rightarrow \pi(K)$ and $B_{s} \rightarrow K$ z. Gelzer et al 1710.09442

Preliminary and missing renorm. factors
\$ $a \approx 0.15 \mathrm{fm}, m_{l}^{\prime} / m_{s}^{\prime}=$ phys
I $a \approx 0.12 \mathrm{fm}, m_{l}^{\prime} / m_{s}^{\prime}=0.2$
重 $a \approx 0.12 \mathrm{fm}, m_{l}^{\prime} / m_{s}^{\prime}=0.1$
$\Phi \quad a \approx 0.12 \mathrm{fm}, m_{l}^{\prime} / m_{s}^{\prime}=$ phys
\$ $\quad a \approx 0.088 \mathrm{fm}, m_{l}^{\prime} / m_{s}^{\prime}=$ phys

Compared to previous FNAL/MILC:
Similar $a \rightarrow$ similar statistics, smaller discretization (HISQ)

Physical m_{l}^{\prime} ensembles \rightarrow remove chiral extrapolation error

$B \rightarrow K^{*} \ell^{+} \ell^{-}:$Lepton Flavor Universality Tests

LHCb will reach $\sim 1.5 \%$ precision for the branching fractions at both low and high q^{2}. J. Albrecht et al 1709.10308

* Low K^{*} recoil: Lattice QCD form factors

Lнсь measurement of $R_{K^{*}}$, R. Ajai et
al 1705.05802: $2-2.5 \sigma$ tension with $S M$.
$B \rightarrow K^{*} \ell^{+} \ell^{-}$(and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$) provide richer set of observables but additional challenges for LQCD: $K^{*}(\phi)$ unstable, more (7) form factors ...

Form factors for $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$

So far, K^{*} and ϕ treated as stable mesons on the lattice

* First unquenched LQCD results Horgan, Liu, Meinel and Wingate, 1310.3722, 1310.3887, 1501.00367 $N_{f}=2+1$ calculation with NRQCD $b+$ asqtad light at low recoil (high q^{2})

differential branching fractions $\sim 1-2 \sigma$ larger than experiment

In progress: RBC/UKQCD $1612.05112 N_{f}=2+1$ form factors for $B_{s} \rightarrow \phi$ with DW light and RHQ b quarks (include phys. mass and 3 different lattice spacings).

Form factors for $B_{(s)} \rightarrow V \ell^{+} \ell^{-}$

Need a proper treatment of K^{*} : requires $B \rightarrow K \pi$ matrix elements

* Finite-volume methods to include the width of an unstable final state hadron exist, but not implemented yet.

Briceño, Hansen, Walker-Loud 1406.5965, 1502.04314

```
** Pioneering work on B}->\mp@subsup{K}{}{*}->K\pi\mathrm{ : Leskovec, Meinel
** Pilot study: Agadjanov et al 1605.03386
** New ideas: Hansen, Meyer, Robaina 1704.08993
```

More $b \rightarrow s \ell^{+} \ell^{-}$processes: $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$
Tensions $(1-3) \sigma$ also observed in the channel $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

(focus on regions below and above charmonium resonances)

* LHCb 1503.07138 data vs SM LQCD calculation Detmold \& Meinel 1602.01399 (10 form factors)
* Deviation in opposite direction compared to mesonic decays?

Improvements underway Results with errors a factor of 2 smaller expected for 2020 S. Meinel Challenges in semileptonic B decays workshop, Mainz 2018

Form factors for $B \rightarrow \pi \ell^{+} \ell^{-}$
$B \rightarrow \pi \ell^{+} \ell^{-}$: FNAL/MILC, 1507.01618, D. Du et al. 1510.02349. Take f_{+}and f_{0} from combined fit of lattice + experimental data for $B \rightarrow \pi \ell \nu$ (assume not significant NP effects at tree level).

D. Du et al. 1510.02349 SM prediction for $R_{\pi}=\frac{\mathcal{B}\left(B \rightarrow \pi \tau \nu_{\tau}\right)}{\mathcal{B}(B \rightarrow \pi \ell \nu)}=0.641(17)$.

Expected to be measured at Belle-II

Rare semileptonic B decays to $\nu \bar{\nu}$ states

D. Du et al. 151.0 .02399 with $\operatorname{FNAL} / M i L C$ form factors

Predictions for both neutral and charged channels: complementary information (also $V_{t d, t s}$)

* Theoretically clean (no problem with charm LD contributions)
* Difficult to measure experimentally, Belle-II expected precision $\sim 10 \%$ for $B \rightarrow K$

$$
\begin{gathered}
\mathcal{B}\left(B^{0} \rightarrow \pi^{0} \nu \bar{\nu}\right) \cdot 10^{7}=0.668(41)(49)(16) \\
\mathcal{B}\left(B^{0} \rightarrow K^{0} \nu \bar{\nu}\right) \cdot 10^{7}=40.1(2.2)(4.3)(0.9) \\
\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right) \cdot 10^{6}=9.62(1)(92) ; \mathcal{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right) \cdot 10^{6}=4.94(52)(6)
\end{gathered}
$$

Summary and outlook

Charged-current b decays

\# LQCD calculations for complete set of form factors needed for $R(D)$ (several lattice collaborations) errors commesurate with experiment

* Expect new results with reduced errors ($N_{f}=2+1+1$ and physical quark masses) soon fNAL/MILC,HPQCD,LNAL/SNU
\# LQCD form factor for $B \rightarrow D^{*}$ only at zero recoil (several coll.), but new results forcomplete set of form factor at all values of ω soon
* Settle the value of $\left|V_{c b}\right|$?
* Provide an improved determination of $R\left(D^{*}\right)$
* Also, new results soon at zero recoil: LNAL/SNU
\# LQCD predictions (and more work on-going) for $R\left(D_{s}\right), R\left(\Lambda_{b} \rightarrow \Lambda_{c}\right)$
\# On-going work for $R\left(B_{c} \rightarrow J / \psi\right), R\left(\Lambda_{b} \rightarrow \Lambda_{c}^{*}\right)$

Summary and outlook

Neutral-current b decays

\# LQCD calculations for complete set of form factors needed for R_{K} (several lattice collaborations)

* New results with reduced errors ($N_{f}=2+1+1$ and physical quark masses) before the end of the year (also for $B \rightarrow \pi$ and $B_{s} \rightarrow K$)
\# Form factors for $R_{K^{*}}$ (also for $B_{s} \rightarrow \phi$) available at low recoil with stable $K^{*}(\phi)$
* Theoretical framework for semileptonic B decays to vector meson final states exists Briceño et al 1406.5965, Agadjanov et al 1605.03386
** Pilot studies of form factors for $B_{s} \rightarrow K^{*} \ell \nu, B \rightarrow K^{*} \ell \ell, \ldots$ underway
* On-going work for $B_{s} \rightarrow \phi$
\# LQCD predictions for related quantities: R_{π}, $\mathcal{B}(B \rightarrow K(\pi) \nu \bar{\nu}), B_{s} \rightarrow K \ell \nu, \ldots$
\# First complete calculation of $\Lambda_{b} \rightarrow \Lambda$ form factors (some tension with experiment)

Summary and outlook

Goal: Semileptonic decay form factors with (sub)percent level precision

* Growing number of results on ensembles of configurations with physical quark masses
** Including charm on the sea $\sqrt{ }$
* Subdominant effects: isospin breaking effects $\sqrt{ }$, structure-dependent QED corrections ...
* Future: Use the same (relativistic) action for all heavy and light quarks
* Extend range in q^{2}

