Kaon experiments: Status and outlook

Exotic Hadrons and Flavor PhysicsSimons Center for Geometry and Physics
Stony Brook NY, 1 June 2018

Matthew Moulson INFN Frascati

$K \to \pi \nu \bar{\nu}$ in the Standard Model

FCNC processes dominated by Z-penguin and box amplitudes:

Extremely rare decays with rates very precisely predicted in SM:

- Hard GIM mechanism + pattern of CKM suppression $(V_{ts}^*V_{td})$
- No long-distance contributions from amplitudes with intermediate photons
- Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

	SM predicted rates Buras et al, JHEP 1511*	Experimental status
$K^+ \rightarrow \pi^+ v \overline{v}$	$BR = (8.4 \pm 1.0) \times 10^{-11}$	BR = $(17.3^{+11.5}_{-10.5}) \times 10^{-11}$ Stopped K^+ , 7 events observed BNL 787/949, PRD79 (2009)
$K_L o \pi^0 v \overline{v}$	BR = $(3.4 \pm 0.6) \times 10^{-11}$	BR < 2600 × 10 ⁻¹¹ 90%CL KEK 391a, PRD81 (2010)

^{*} Tree-level determinations of CKM matrix elements

$K \to \pi \nu \bar{\nu}$ and the unitarity triangle

Dominant uncertainties for SM BRs are from CKM matrix elements

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407} \right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74}$$

Buras et al., JHEP 1511

$$BR(K_L \to \pi^0 v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}} \right]^2 \cdot \left[\frac{|V_{cb}|}{0.0407} \right]^2 \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}} \right]^2$$

Intrinsic theory uncertainties ~ few percent

Measuring both K^+ and K_L BRs can determine the CKM unitarity triangle independently from B inputs

Overconstrain CKM matrix → reveal NP?

$K \rightarrow \pi \nu \bar{\nu}$ and new physics

New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure
 - -Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - −*Z*/*Z*′ models with pure LH/RH couplings
 - Littlest Higgs withT parity
- Models without above constraints
 - -Randall-Sundrum

Re ε'/ε vs BR($K_L \to \pi^0 \nu \bar{\nu}$)

Re ε'/ε constrains UT in same way as BR($K_L \to \pi^0 \nu \nu$)

Scenario assumes:

- Lattice value for Im A₀ in agreement with expt
- $\delta(\operatorname{Im} A_0) = \sim 100\% \rightarrow 18\%$ $\rightarrow \delta(\operatorname{Re} \varepsilon'_{th}/\varepsilon) = 1.6 \times 10^{-4}$
- BR($K^+ \rightarrow \pi^+ vv$) = SM value with 10% error

Calculations: Re $\varepsilon'/\varepsilon \times 10^4$

RBC/UKQCD '15 $1.38 \pm 5.15 \pm 4.59$

Gisbert & Pich '17 15 ± 7

Measurements: Re $\varepsilon'/\varepsilon \times 10^4$

KTeV $19.2 \pm 1.1 \pm 1.8$

NA48 $14.7 \pm 1.7 \pm 1.5$

PDG fit $16.6 \pm 2.3 (S = 1.6)$

RBC/UKQCD value is 2.1σ lower than experimental value:

- Claim: Uncertainty ~10% of experimental value can be reached by ~2020
- In progress: Increased statistics, larger volumes, additional lattice spacings

Re ε'/ε vs BR($K_L \to \pi^0 \nu \bar{\nu}$)

Re ε'/ε constrains UT in same way as BR($K_L \to \pi^0 \nu \nu$)

Scenario assumes:

- Lattice value for Im A₀ in agreement with expt
- $\delta(\operatorname{Im} A_0) = \sim 100\% \rightarrow 18\%$ $\rightarrow \delta(\operatorname{Re} \varepsilon'_{th}/\varepsilon) = 1.6 \times 10^{-4}$
- BR($K^+ \rightarrow \pi^+ \nu \nu$) = SM value with 10% error

How does progress on Re ε'/ε impact experimental interest in BR($K_L \to \pi^0 vv$)?

• Measurement of Re ε'/ε is dominated by systematics

$$R = \frac{\text{BR}(K_L \to \pi^0 \pi^0)}{\text{BR}(K_S \to \pi^0 \pi^0)} \cdot \frac{\text{BR}(K_S \to \pi^+ \pi^-)}{\text{BR}(K_L \to \pi^+ \pi^-)} \approx 1 - 6 \text{ Re } \varepsilon' / \varepsilon$$

- NA48 and KTeV measured R to 0.1%: Very difficult to improve! Small gains from statistics and from resolution of S = 1.6 in PDG fit
- $\delta BR(K_L \to \pi^0 vv) \sim 20\%$ gives tighter UT constraint than $\delta (Re \ \epsilon'/\epsilon) \sim 1 \times 10^{-4}$

$K \to \pi \nu \bar{\nu}$ and other kaon observables

Do constraints from Re ε'/ε , ε_K , Δm_K , $K_L \to \mu\mu$ limit size of effects on $K \to \pi \nu \nu$ BRs?

Model	Effect	Refs
Vector-like quarks	K_L suppressed, K^+ possibly enhanced	Bobeth et al. '16
Leptoquarks	Large effects for both K_L , K^+ : possibly ruled out?	Bobeth, Buras '17
Simplified Z	K_L suppressed 30%, K^+ enhanced up to 2x	Endo et al. '17
SUSY	K^+ and K_L enhanced 10-20% for $\Lambda_{\rm SUSY} \sim$ 3 TeV	Kitahara et al. '16

Endo et al. PLB771 (2017)

General Z scenario with modified couplings, $\Lambda = 1 \text{ TeV}$

Because of interference between SM and NP amplitudes, if all constraints satisfied including "discrepancy" in Re ε'/ε:
 BR(K_I → π⁰νν) ~ 0.5 SM BR

- Particularly in simplified scenarios: LH, RH, LRS
- With moderate tuning (cancellation of interference terms to 10%), large values for $BR(K \to \pi \nu \nu)$ are possible

$K \to \pi \nu \bar{\nu}$ and other flavor observables

New ideas relating $K \to \pi vv$ to B-sector LFU anomalies:

$$R_K$$
, P_5 ': μ / e LFU in $B \to K\ell\ell$, $B \to K^*\ell\ell$
 $R_{D(*)}$: τ / (μ, e) LFU in $B \to D^{(*)}\ell v$

Coherent explanation from NP coupled predominantly to 3rd generation LH quarks and leptons, e.g., mediated by vector leptoquark

- Di Luzio et al. PRD 96 (2017)
- Buttazzo et al. JHEP 1711

EFT studies suggest large effect for $K \rightarrow \pi vv$

• Bordone et al. EPJC77 (2017)
$$\mathcal{B}(B \to D^{(*)} \tau \bar{\nu}) = \mathcal{B}(B \to D^{(*)} \tau \bar{\nu})_{\text{SM}} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2 \qquad R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2} G_F}$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{\text{SM}} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{\text{SM}} \left| 1 - \frac{R_0 \, \theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_t/s_W^2)} \right|^2$$

Rare kaon decays besides $K \to \pi \nu \bar{\nu}$

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR × 10 ¹¹	Exp. BR × 10 ¹¹
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28 [†]
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38 [†]
$K^+ \to \pi^+ u \overline{ u}$	90%	4%	8.4 ± 1.0	17 ± 11
$K_L o \pi^0 u \overline{ u}$	>99%	2%	3.4 ± 0.6	< 2600 [†]

^{*}Approx. error on LD-subtracted rate excluding parametric contributions †90% CL

- $K_{L,S} \rightarrow \ell\ell$ and $K_{L,S} \rightarrow \pi^0\ell\ell$ modes have larger theoretical uncertainties from LD physics
- Need information for both K_L and K_S to separate CPC and CPV amplitudes
- $K_{L,S} \rightarrow \pi^0 \ell^+ \ell^-$ can be used to explore helicity suppression in FCNC decays

Rare K_L and K_S decays

$$K_{L,S} o \pi^0 \ell \ell$$
 $K = \mathcal{K}_{L,S} o \pi^0 \ell \ell$

CPC LD 2γ exchange amplitude for $K_L o \pi^0 \ell \ell$

LD amplitude from 2γ exchange dominant

$$BR_{SM}(K_S \to \mu^+ \mu^-) = (5.2 \pm 1.5) \times 10^{-12}$$

- Significant uncertainty from unknown sign of interference between K_L and K_S amplitudes
- Measurement of K_S BR improves accuracy of theory prediction for K_L BR
- NP contribution to BR($K_S \rightarrow \mu^+ \mu^-$) could be as high as 10⁻¹¹

See e.g., Chobanova et al., 1711.11030

Theoretical uncertainties from LD physics

- SD CPV amplitude: γ/Z exchange
- LD CPC amplitude from 2γ exchange
- LD indirect CPV amplitude: K_L → K_S

Probes helicity suppression in FCNC decays

Can look for LFU violation, like for $B \to K\ell\ell$

Rare K_S decays with LHCb

- 10¹³ K_S/fb⁻¹ produced in LHCb acceptance
- Use only "long tracks" to reconstruct K_S

40% decay in VELO region

- Good μ identification and $\mu\mu$ mass resolution
- Main limitation:HW trigger eff = 2.5%

$$K_S \rightarrow \pi^0 \mu \mu$$

LHCb Pub 2016-017 Sensitivity study:

- TIS selection
- π^0 not required

Improvement on NA48/1 result is possible in Run 3

NA48/1 PLB599 (2004)

BR(
$$K_S \to \pi^0 \mu \mu$$
) = (2.9^{+1.5}_{-1.2} ± 0.2) × 10⁻⁹

The NA62 experiment at the CERN SPS

$K^+ \rightarrow \pi^+ \nu \nu$ with decay in flight

Signal:

- π track out
- No other particles in final state
- $M^2_{\text{miss}} = (p_K p_\pi)^2$

Main backgrounds:

$$K^{+} \rightarrow \mu^{+} \nu(\gamma)$$
 BR = 63.5%
 $K^{+} \rightarrow \pi^{+} \pi^{0}(\gamma)$ BR = 20.7%

Selection criteria:

- *K*⁺ beam identification
- Single track in final state
- π^+ identification ($\varepsilon_u \sim 1 \times 10^{-8}$)
- γ rejection ($\varepsilon_{\pi 0} \sim 3 \times 10^{-8}$)

The NA62 experiment at the SPS

2016 results for $K^+ \rightarrow \pi^+ \nu \nu$

NA62 preliminary – 2016 data

$$1.2 \times 10^{11} \, K^{+} \, \text{decays}$$

SES =
$$(3.15 \pm 0.24) \times 10^{-10}$$

Expected signal
$$0.267 \pm 0.038$$

Expected background 0.15 ± 0.09

1 event observed in R2

BR(
$$K^+ \to \pi^+ \nu \nu$$
)
< 14 × 10⁻¹⁰ (95%CL)
< 10 × 10⁻¹⁰ (90%CL)
= 28⁺⁴⁴₋₂₃ × 10⁻¹¹ (68% CL)

Background source

$K^+ \rightarrow \pi^+ vv$ (SM)

$$K^+ \rightarrow \pi^+ \pi^0 (\gamma_{\rm IB})$$

$$K^+ \rightarrow \mu^+ \nu (\gamma_{\mathsf{IB}})$$

$$K^+ \rightarrow \pi^+ \pi^- e^+ v$$

$$K^+ \rightarrow \pi^+ \pi^- \pi^+$$

Upstream background

Total background

Expected events R1 + R2

$$0.267 \pm 0.001_{\text{stat}} \pm 0.029_{\text{sys}} \pm 0.032_{\text{ext}}$$

$$0.064 \pm 0.007_{\rm stat} \pm 0.006_{\rm sys}$$

$$0.020 \pm 0.003_{\text{stat}} \pm 0.003_{\text{sys}}$$

$$0.018^{+0.024}_{-0.017 \text{ stat}} \pm 0.009_{sys}$$

$$0.002 \pm 0.001_{\text{stat}} \pm 0.002_{\text{sys}}$$

$$0.050 \pm {}^{+0.090}_{-0.030}$$

$$0.15 \pm 0.09_{\text{stat}} \pm 0.01_{\text{sys}}$$

NA62 status and timeline

2014-2015	Pilot/commissioning runs
2016	Commissioning + 1 st physics run First result presented in March 2018 1 event observed BR($K^+ \to \pi^+ \nu \nu$) < 14 × 10 ⁻¹¹ (95%CL)
2017	Physics run (23 weeks) 20x more data than 2016 result Data processing in progress
2018	Physics run (31 weeks, started 9 April)
2019-2020	LS2 (LHC Long Shutdown 2)

By end of 2018 NA62 will reach a sensitivity of 20 SM $K^+ \to \pi^+ \nu \nu$ events

- Input to the European Strategy for Particle Physics
- Solid extrapolation to ultimate sensitivity of NA62 achievable after LS2

Fixed target runs at the SPS

2021 (Run 3): Intention to continue data taking with NA62

- Measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with ultimate sensitivity
- Search for hidden particles in beam-dump mode

2026 (Run 4): Turn focus to measurement of BR($K_L \to \pi^0 \nu \nu$) \rightarrow $K_L EVER$

F. Bordry, presentation to HEPAP, Dec 2015

$K_L \to \pi^0 \nu \bar{\nu}$: Experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have ≥ 2 extra γ s or ≥ 2 tracks to veto

Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_{\perp} = 0$

K_L momentum generally is not known $M(\gamma\gamma)=m(\pi^0)$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position

$m_{\pi^0}^2 = 2E_1 E_2 (1 - \cos \theta)$ $R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$

Main backgrounds:

Mode	BR	Methods to suppress/reject
$K_L ightarrow \pi^0 \pi^0$	8.64×10^{-4}	γ vetoes, π^0 vertex, p_\perp
$K_L o \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \to \pi e v(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC

Primary beam: 30 GeV p 100 kW = 1.2 × 10¹⁴ p/6 s

Neutral beam (16°)

 $\langle p(K_L) \rangle = 2.1 \text{ GeV}$

50% of K_L have 0.7-2.4 GeV 8 µsr "pencil" beam

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC

Hadron facility was stopped

> 2014 2015 Jul

Jan Jul

Dec

20

10

KOTO is based on KEK-E391a

E391a result = current exp. value:

$$BR(K_L \to \pi^0 vv) \le 2.6 \times 10^{-8} \text{ (90\%CL)}$$

KOTO run history:

2013 pilot run (100 hrs)

$$BR(K_L \to \pi^0 vv) \le 5.1 \times 10^{-8} (90\%CL)$$

2015 run (result coming soon)

- 40 kW slow-extracted beam power
- 3e19 pot collected

2016-2017

- Beam power increased to 50 kW
- 3e19 pot collected (6e19 total)
- With all 2015-2017 data, expected sensitivity below Grossman-Nir limit

Sensitivity from 2015 data

J-PARC PAC, Jan 2018

Background	Expected counts
$K_L \rightarrow 2\pi^0$	0.07 ± 0.07
$K_L \to \pi^+\pi^-\pi^0$	0.18 ± 0.05
$K_L \rightarrow 3\pi^0$	0.17 ± 0.12
$K_L \rightarrow 2\gamma$	0.02 ± 0.02
Hadron cluster	0.26 ± 0.08
π^0 from NCC	0.13 ± 0.07
η from CV	0.05 ± 0.02
Total	0.88 ± 0.18

Preliminary sensitivity, all 2015 data:

$$SES = 1.2 \times 10^{-9}$$

Expected bkg = 0.88 ± 0.18 events

Signal box to be opened summer 2018

 K_L flux from $K_L \to 2\pi^0 = 4.62 \times 10^{12}$

 $\pi^0 vv$ acceptance from MC:

Decay in FV: 3.8%

Overall acceptance: 1.8×10^{-4}

Upgrades to improve sensitivity

Signal: Need ~40x more flux × acceptance for 1 expected SM $\pi^0 vv$ event

- Beam power expected to increase 50 → 100 kW gradually by 2021
- 20+ months of additional running planned in 2018-2021

Background: Need ~40x more background rejection for S/B ~ 1

Continuing program of detector upgrades

Inner barrel veto

Increase barrel thickness $13.5 + 5 X_0$

3x better rejection for

 $K_L \rightarrow 2\pi^0$

Installed April 2016

Dual side readout for Csl modules

Resolve γ/n interaction depth by reading light from front CsI face with SiPM SiPMs to be installed summer 2018

Expect to reach SM sensitivity by 2021

$K_L \to \pi^0 \nu \bar{\nu}$: Long-term plans

KOTO Step-2 upgrade:

- Increase beam power to >100 kW
- New neutral beamline at 5° $\langle p(K_L) \rangle = 5.2 \text{ GeV}$
- Increase FV from 2 m to 11 m
 Complete rebuild of detector
- Requires extension of hadron hall

Strong intention to upgrade to O(100) event sensitivity over long term:

- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling KOTO performance for smaller beam angle & larger detector:
 ~10 SM evts/year at 100 kW beam power?
- Exploring possibilities for machine & detector upgrades to further increase sensitivity

A $K_L \rightarrow \pi^0 \nu \bar{\nu}$ experiment at the SPS?

- High-energy experiment: Complementary to KOTO
- Photons from K_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62

A $K_L \rightarrow \pi^0 \nu \bar{\nu}$ experiment at the SPS

130 m

K_LEVER target sensitivity:

5 years starting Run 4

60 SM $K_L \rightarrow \pi^0 vv$ $S/B \sim 1$

80 m from target

 δ BR/BR($\pi^0 vv$) ~ 20%

Main detector/veto systems:

170 m

UV/AFC Upstream veto/Active final collimator

LAV1-25 Large-angle vetoes (25 stations)

MEC Main electromagnetic calorimeter

SAC Small-angle vetoes

CPV Charged particle veto

PSD Pre-shower detector 241.5 m

Beam and intensity requirements

K_L and Λ fluxes in beam

FLUKA simulation

- 400 GeV p on 400 mm Be target
- Production at $\theta = 8.0$ mrad:
 - As much K_L production as possible
 - Low ratio of n/K_L in beam ~ 3
 - Reduce \(\Lambda \) production and soften momentum spectrum
- Solid angle $\Delta\theta$ = 0.4 mrad
 - Large $\Delta \theta = \text{high } K_L \text{ flux}$
 - Maintain tight beam collimation to improves p_{\perp} constraint for background rejection
- 2.1 × 10⁻⁵ K_L in beam/pot
- Probability for decay inside FV ~ 2%
- Acceptance for $K_L \rightarrow \pi^0 vv$ decays occurring in FV ~ 10%

10¹⁹ pot/year (= 100 eff. days) E.g.: 2×10^{13} ppp/16.8 s

× 5 years

60 $K_L \rightarrow \pi^0 vv$ events

Neutral beamline layout

- Compact primary beam sweeping
- Photon absorber in dump collimator
- 4 collimation stages to minimize neutron halo, including beam scattered from absorber
- Active final collimator in LYSO

Neutral beam simulation

FLUKA simulation of beamline 32-mm tungsten coverter $(9X_0)$ Detail of target and dump collimator:

Shashlyk calorimeter with spy tiles

Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

0.275 mm Pb + 1.5 mm scintillator

PANDA/KOPIO prototypes:

- $\sigma_E/\sqrt{E} \sim 3\% / \sqrt{E}$ (GeV)
- σ_t ~ **72** ps $/\sqrt{E}$ (GeV)
- σ_x ~ 13 mm / \sqrt{E} (GeV)

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , n interactions
- Shower depth information: improved time resolution for EM showers

Small-angle photon veto

Small-angle photon veto systems (IRC, SAC)

- Reject high-energy γ s from $K_L \to \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 430 MHz of beam neutrons

Beam comp.	Rate (MHz)	Req. 1 – ε
$\gamma, E > 5 \text{ GeV}$	50	10-2
γ , E > 30 GeV	2.5	10-4
n	430	_

Baseline solution:

Tungsten/silicon-pad sampling calorimeter with crystal metal absorber

Efficient γ conversion with crystals

Coherent effects in crystals enhance pair-conversion probability

Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

1. Beam photon converter in dump collimator

Effective at converting beam γ s while relatively transparent to K_L

2. Absorber material for small-angle calorimeter (SAC)

Must be insensitive as possible to high flux of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

AXIAL group is collaborating with KLEVER on test beam measurement of pair-production enhancement in crystals

Tagged photon test beam setup:

- Nearly all detectors and DAQ system available for use from AXIAL
 - 1 week of beam H2 beam time in August 2018

4. Obtain information to assist MC development for beam photon converter and SAC

for $5 < E_{\nu} < 150 \text{ GeV}$

3. Measure pair conversion vs. E_{ν} , θ_{inc}

Basic signal selection

No hits in UV, AFC, LAV, SAC + fiducial volume (FV) and p_{\perp} cuts

Additional background rejection

Cluster radius $r_{\rm MEC}$ > 35 cm - Require $z_{\rm PSD}$ in FV if PSD hit available

Status and timeline

Project timeline – target dates:

2017-2018	Project consolidation and proposalBeam test of crystal pair enhancementConsolidate design
2019-2021	Detector R&D
2021-2025	Detector constructionPossible K12 beam test if compatible with NA62
2024-2026	Installation during LS3
2026-	Data taking beginning Run 4

- KLEVER is actively seeking new collaborators!
- KLEVER is represented in the CERN Physics Beyond Colliders study
- An Expression of Interest to the CERN SPSC is in preparation and will also be submitted as input to the European Strategy for Particle Physics

Summary and outlook

LHCb has demonstrated unprecedented sensitivity for rare K_S decays

 $K \rightarrow \pi \nu \nu$ is a uniquely sensitive indirect probe for high mass scales

• Need precision measurements of both K^+ and K_L decays

NA62 will improve on current knowledge of BR($K^+ \rightarrow \pi^+ \nu \nu$) in short term, ultimately reaching ~100 event sensitivity

KOTO will reach SM sensitivity to BR($K_L \rightarrow \pi^0 vv$) by 2021

Preliminary design studies indicate that an experiment to measure $BR(K_L \to \pi^0 vv)$ can be performed at the SPS in Run 4 (2026-2029)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with S/B ~ 1
- KLEVER is preparing Expression of Interest to CERN SPSC and will provide input to European Strategy for Particle Physics

Additional information

Exotic Hadrons and Flavor PhysicsSimons Center for Geometry and Physics
Stony Brook NY, 1 June 2018

Matthew Moulson INFN Frascati

$$K_L \longrightarrow \pi^0 \ell^+ \ell^-$$

$$K_L \! o \pi^0 \ell^+ \ell^-$$
 vs $K \! o \pi vv$:

- Somewhat larger theoretical uncertainties from long-distance physics
 - SD CPV amplitude: γ/Z exchange
 - LD CPC amplitude from 2γ exchange
 - LD indirect CPV amplitude: $K_L \rightarrow K_S$
- $K_L \to \pi^0 \ell^+ \ell^-$ can be used to explore helicity suppression in FCNC decays

 $K_L
ightharpoonup \pi^0 \ell^+ \ell^-$ CPV amplitude constrains UT in same way as BR $(K_L
ightharpoonup \pi^0 vv)$

Greenlee.

PRD42 (1990)

Main background: $K_L \rightarrow \ell^+ \ell^- \gamma \gamma$

• Like $K_L \to \ell^+ \ell^- \gamma$ with hard bremsstrahlung

$$BR(K_L \to e^+e^-\gamma\gamma) = (6.0 \pm 0.3) \times 10^{-7}$$

$$BR(K_L \to \mu^+ \mu^- \gamma \gamma) = 10^{+8}_{-6} \times 10^{-9}$$

 $E_{\gamma}^* > 5 \text{ MeV}$

 $m_{\gamma\gamma} > 1 \text{ MeV}$

$$K_L
ightarrow \pi^0 e^+ e^-$$
 channel is plagued by $K_L
ightarrow e^+ e^- \gamma \gamma$ background

- Small acceptance because of tight cuts on Dalitz plot

$$K_L \to \pi^0 \mu^+ \mu^-$$
 channel may be more tractable

$K \rightarrow \pi \nu \bar{\nu}$ and new physics

General agreement of flavor observables with SM → invocation of MFV

Long before recent flavor results from LHC

But NP may simply occur at a higher mass scale

Null results from direct searches at LHC so far

Indirect probes to explore high mass scales become very interesting!

$K \to \pi \nu \bar{\nu}$ is uniquely sensitive to high mass scales

Tree-level flavor changing Z' LH+RH couplings

- Some fine-tuning around constraint from $\varepsilon_{\scriptscriptstyle K}$
- $K \rightarrow \pi \nu \nu$ sensitive to mass scales up to 2000 TeV
 - Up to tens of TeV even if LH couplings only
- Order of magnitude higher than for B decays

$K \to \pi \nu \bar{\nu}$ and other flavor observables

Simplified Z, Z' model used as paradigm

Buras, Buttazzo, Knegjens, JHEP 1511

CMFV hypothesis:

Constraints from B and K observables

LH and RH couplings allowed:

Constraints from K observables:

- ε_K , ΔM_K
- ε'/ε , $K \to \mu\mu$ (for modfied Z)

Extra constraints for $K_L \rightarrow \pi^0 \nu \bar{\nu}$

Brookhaven AGS Cancelled 2005

Primary: 26 GeV p

 $10^{14} p/7.2 s$

Neutral beam (43°)

$$\langle p(K_L) \rangle = 0.9 \text{ GeV}$$

50% of K_L have 0.5-1.2 GeV

Microbunched beam from AGS:

200 ps every 40 ns, 10⁻³ extinction

Flat beam to increase K_L flux

Solid angle 360 μ sr = 1 m wide!

Preradiator in front of calorimeter

Reconstruct angle of incidence for γ s

Sensitivity: 180 SM evts in ~4 yr

Advantages:

- $p(K_L)$ from time of flight
- Vertex position from preradiator
- Redundant constraints

Disadvantages:

- Difficult to veto low-energy γs
- Much lower K_L flux at high angle

Background rejection

Lessons from 2013 run help to reject backgrounds other than $K_L \to \pi^0 \pi^0$

1. Hadron clusters on Csl

- Control sample with Al plate in beam
- Cluster and pulse shape analysis

3. $n \rightarrow X\pi^0$ on collar (NCC)

- Beam profile monitor for better alignment
- Thinner vacuum window

2. $K_L \rightarrow \pi^+\pi^-\pi^0$ with $\pi^+\pi^-$ escape

 New charged-particle vetoes lining beam exit

4. $n \rightarrow X\eta$ on charged veto (CV)

Cluster shape (angle of incidence)

High-intensity neutral beam issues

 10^{19} pot/yr × 5 years → 2 × 10^{13} ppp/16.8s = 6× increase relative to NA62

Feasibility/cost study a primary goal of our involvement in Conventional Beam WG

Preliminary analysis of critical issues by Secondary Beams & Areas group

Issue	Approach
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) Slow extraction workshop, 9-11 November: https://indico.cern.ch/event/639766/
Beam loss on T4	Vertical by-pass to increase transmission to T10
Equipment protection	Possibly use SIS interlock to stop extraction during PoSurvey reaction time
Ventilation in ECN3	Need to understand better current safety margin May need comprehensive ventilation system upgrade
ECN3 beam dump	Significantly improved for NA62 Need to understand better current safety margin
Background fluxes	Detailed simulations getting started

Large-angle photon vetoes

KOPIO Photonuclear KOPIO Sampling KOPIO Punchthrouah

25 new LAV detectors providing hermetic coverage out to 100 mrad Need good detection efficiency at low energy (1 – ε ~ 0.5% at 20 MeV)

Baseline technology: CKM VVS
Scintillating tile with WLS readout

Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficienciesSame construction as CKM

Tests for NA62 at Frascati BTF

1-129 MeV: KOPIO (E949 barrel)

203-483 MeV: CKM VVS

10

Tests at JLAB for CKM:

• $1 - \varepsilon \sim 3 \times 10^{-6}$ at 1200 MeV

Preshower background rejection

Preshower vertex z_{pre} vs. LKr vertex z_{rec} z_{rec} reconstructed by imposing $M(\gamma\gamma) = m_{\pi 0}$

- $K_L \rightarrow \pi^0 \pi^0$, 1 year equivalent
- No cuts on FV, p_{\perp} , $r_{\rm min}$

Even pairs (2 γ from same π^0) 1 γ converts in preshower

Odd pairs (2 γ s from different π^0) 1 γ converts in preshower

Limits on $K_L \to \pi^0 X$ from $K_L \to \pi^0 \nu \bar{\nu}$

Limits on dark photon from $K_L \to \pi^0 \nu \bar{\nu}$

Interpret X as dark photon and obtain limits in ε^2 vs. m_X plane

As per Davoudiasl, Lee, Marciano 2014 (analysis giving E787/E949 limits)

