

Exotic Hadrons & Flavor Physics — Simons Center for Geometry and Physics, 28 May—1 June 2018

# Theory Summary Flavor anomalies

Matthias Neubert

PRISMA Cluster of Excellence Johannes Gutenberg University Mainz







#### The Standard Model



# Beyond the SM



"They have been stuck in that model, like birds in a gilded cage, ever since."







→ let's hope that the same can be said about flavor physicists!

# Beyond the SM



#### SMEFT

\* Indirect searches for heavy new physics should be analyzed in context of a systematic extension of the SM as an effective field theory:

[Buchmüller, Wyler 1986;
Grzadkowski, Iskrzynski, Misiak, Rosiek 2010]

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda_W} \mathcal{O}_W^{(D=5)} + \sum_{i=1}^{\mathrm{many}} \frac{1}{\Lambda_i^2} \mathcal{O}_i^{(D=6)} + \dots$$
SM without Neutrino masses and oscillations Generic new-physics phenomena

#### **SMEFT**

#### \* All scales $\Lambda_i$ probed so far appear to be rather large:

| Order | Observable            | New-physics scale<br>for g=O(1) |
|-------|-----------------------|---------------------------------|
| D=5   | Neutrino oscillations | $\Lambda \sim 10^9  \text{TeV}$ |
| D=6   | Proton decay          | $\Lambda > 10^{12} \text{ TeV}$ |
| D=6   | Flavor physics        | $\Lambda > 1-10^5 \text{ TeV}$  |
| D=6   | EWPT                  | $\Lambda > 1 \text{ TeV}$       |
| D=6   | Higgs couplings       | $\Lambda > 0.5-1 \text{ TeV}$   |

# Searching on all Fronts





# Violations of lepton universality? Heavy flavor anomalies



INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

# CERNCOURIER

VOLUME 55 NUMBER 9 NOVEMBER 2015



#### B-flavor anomalies

\* Intriguing hints of anomalies in B decays entered the stage starting in 2012 (R<sub>D</sub>, R<sub>D\*</sub>, P<sub>5</sub>′, R<sub>K</sub>, R<sub>K\*</sub>)

$$R_{D^{(*)}} = \frac{\Gamma(\bar{B} \to D^{(*)} \tau \bar{\nu})}{\Gamma(\bar{B} \to D^{(*)} \ell \bar{\nu})}; \quad \ell = e, \mu$$

$$R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)} \mu^{+} \mu^{-})}{\Gamma(\bar{B} \to \bar{K}^{(*)} e^{+} e^{-})}$$

- \* If true, they would be hugely important for the future development of high-energy particle physics at large!
- \* In fact, their importance cannot be overstated ...

#### B-flavor anomalies

\* ... as they would give a clear target for future searches at energy frontier — exactly what's missing right now!



### B-flavor anomalies: RD & RD\*

\* A totally unexpected signal of new physics in tree-level, CKM-favored, semileptonic decays of B mesons:



### B-flavor anomalies: RD & RD\*



### B-flavor anomalies: P5'

- \* Various hints of new physics in decays  $\bar{B} \to K^* \ell^+ \ell^-$
- \* As rare, loop-mediated FCNC processes, these were prime observables to probe for BSM effects



## B-flavor anomalies: P5'

- \* Several angular observables measured as functions of q<sup>2</sup>
- \* Some, like P<sub>5</sub>', are optimized to be insensitive to hadronic uncertainties: [Descotes-Genon, Matias, Ramon, Virto: 1207.2753]





## B-flavor anomalies: P5'

- Several angular observables measured as functions of q<sup>2</sup>
- \* Some, like P<sub>5</sub>', are optimized to be insensitive to hadronic uncertainties: [Descotes-Genon, Matias, Ramon, Virto: 1207.2753]





#### B-flavor anomalies: R<sub>K</sub> & R<sub>K</sub>\*

\* Some scenarios explaining the anomalies in angular observables predicted a departure from unity in the ratios: [Altmannshofer, Gori, Pospelov, Yavin 2014]

$$R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)} \mu^{+} \mu^{-})}{\Gamma(\bar{B} \to \bar{K}^{(*)} e^{+} e^{-})}$$

\* Quite spectacularly, such deviations were later observed at LHCb!

#### B-flavor anomalies: R<sub>K</sub> & R<sub>K</sub>\*



$$R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)} \mu^{+} \mu^{-})}{\Gamma(\bar{B} \to \bar{K}^{(*)} e^{+} e^{-})}$$

[Hiller, Krüger 2003]

#### B-flavor anomalies

- \* These data teach an important lesson about the complementarity of different fields (as flavor physics was sometimes considered irrelevant in the LHC era)
- Cherish the connection between flavor and high-p<sub>T</sub>!

→ talk by Jernej Kamenik

- \* Imagine the LHC legacy:
  - discovery of the Higgs boson (2012)
  - discovery of lepton-flavor non-universality (2019)

#### B-flavor anomalies

- \* These data teach an important lesson about the complementarity of different fields (as flavor physics was sometimes considered irrelevant in the LHC era)
- Cherish the connection between flavor and high-p<sub>T</sub>!

→ talk by Jernej Kamenik

- \* Imagine the LHC legacy:
  - discovery of the Higgs boson (2012)
  - discovery of lepton-flavor non-universality (2019)
  - discovery of the predicted Z' bosons/leptoquarks
     (2022?)

#### \* Lots of reasons to be excited!

- two different sets of anomalies of very different taste
- many are seen by more than one experiment
- in case of b→sll several observables appear to deviate from SM predictions, and the deviations appear to fit a simple pattern

  → talks by Jorge Martin Camalich, Gudrun Hiller

|               | b→clv                                                                               | b→sII                                                                                            |
|---------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Observables   | $R_D$ , $R_{D^*}$                                                                   | $R_{K}$ , $R_{K^*}$ , angular distributions                                                      |
| SM            | tree level, CKM<br>favored                                                          | one-loop FCNC,<br>GIM suppressed                                                                 |
| LFU violation | τ vs. e/μ                                                                           | μ vs. e                                                                                          |
| Caveats       | τ reconstruction<br>difficult, oldest<br>experiment (BaBar)<br>shows largest effect | electron reconstruction<br>difficult at LHCb, so far<br>no confirmation by<br>another experiment |
| Benefits      | Solid theory                                                                        | Solid theory for $R_{K(*)}$ , some caveats for $P_5$ '                                           |

<sup>→</sup> talks by Michele Papucci, Jernej Kamenik, Elvira Gamiz, Sheldon Stone





[D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano 2017; Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi 2017]

#### B-flavor anomalies: Models

\* Challenge to model building, yet several interesting models have been proposed (Z', leptoquarks, ...)

→ talks by Jorge Martin Camalich, Gudrun Hiller, Ulrich Nierste

#### B-flavor anomalies: Models

\* Challenge to model building, yet several interesting models have been proposed (Z', leptoquarks, ...)

→ talks by Jorge Martin Camalich, Gudrun Hiller, Ulrich Nierste

\* E.g.: Adding a single leptoquark  $\phi \sim (\mathbf{3}, \mathbf{1})_{-1/3}$  to the SM can address the flavor anomalies along with  $(\mathbf{g-2})_{\mu}$ 

[Bauer, MN 2016]

\* Relevant diagrams for R<sub>D</sub> and R<sub>K</sub>:

 $\phi$  c  $\tau$ 

 $R_D \& R_{D^*}$ 









#### Should we believe LFU violation?

#### Yes

- R measurements are double ratio's to J/ψ, LHCb's check with K\*J/ψ→e+e-/μ+μ-=1.043±0.006±0.045
- 8(B-→K-e+e-) agrees with SM prediction puts onus on muon mode which is well measured and low
- Both R<sub>K</sub> & R<sub>K\*</sub> are different than ~1
- Supporting evidence of effects in angular distributions

#### No, not yet

- Statistics are marginal in each measurement
- Need confirming evidence in other experiments for R<sub>K</sub>
   & R<sub>K\*</sub>
- Disturbing that R<sub>K\*</sub> is not ~1 in lowest q<sup>2</sup> bin, which it should be, because of the photon pole
- Angular distribution
   evidence can be effected
   by hadronic uncertainties

## Past (elusive) B-flavor anomalies

- \* Several anomalies in B physics (many rather persistent, some at the 3-4 $\sigma$  level) have created quite some excitement at their times:
  - puzzle of the too short  $\Lambda_b$  lifetime
  - evidence for a low  $sin2\beta_{\phi Ks}$  from loop processes
  - puzzle of the too large B→τν branching ratio
  - $\Delta A_{CP}(B \rightarrow \pi K)$  puzzle of direct CP asymmetries

•

# CP Asymmetry in $B \rightarrow \Phi K_S$

- Interference of mixing and decay:
- Penguin graph is real to very good approximation!



- \* Phase structure identical to the decay  $B \rightarrow J/\psi K_S$
- Model-independent result:



 $S(\Phi K_S) - S(J/\psi K_S) = 0.02\pm0.01$ 

#### \* Experimental situation: (after LP 03)

- $S(\Phi K_S) = +0.45\pm0.43\pm0.07$  BaBar
- $S(\Phi K_S) = -0.96 \pm 0.50 \pm 0.10$  Belle

-0.15±0.33

 $S(\Phi K_S) - S(J/\psi K_S) = -0.88 \pm 0.33 (2.7\sigma)$ 



## New Physics in penguins?



s-penguin average at 2.75 different from  $sin2\beta[cc]$  (BABAR)

Similar difference at 2.4 σ seen by Belle

[A. Hoecker, ICHEP 2004]

$$B^0 \rightarrow \phi K^0$$



















# B-flavor anomalies - quo vadis?

- \* Today we are in a much better situation, and the flavor anomalies are much more compelling!
- \* But also now, we should not necessarily assume that all anomalies are correct ...
- An independent confirmation
   of the flavor anomalies by
   Belle II is as crucial as refining
   the current LHCb analyses



