

Exotic Hadrons \& Flavor Physics - Simons Center for Geometry and Physics, 28 May-1 June 2018

Theory Summary Flavor anomalies

Matthias Neubert
PRISMA Cluster of Excellence
Johannes Gutenberg University Mainz
nitp

The Standard Model

THE STANDARD MODEL

Beyond the SM

"They have been stuck in that model, like birds in a gilded cage, ever since."

\rightarrow let's hope that the same can be said about flavor physicists!

Beyond the SM

SMEFT

* Indirect searches for heavy new physics should be analyzed in context of a systematic extension of the SM as an effective field theory:
[Buchmüller, Wyler 1986;
Grzadkowski, Iskrzynski, Misiak, Rosiek 2010]

SMEFT

* All scales Λ_{i} probed so far appear to be rather large:

Order	Observable	New-physics scale for g=O(1)
$\mathrm{D}=5$	Neutrino oscillations	$\Lambda \sim 10^{9} \mathrm{TeV}$
$\mathrm{D}=6$	Proton decay	$\Lambda>10^{12} \mathrm{TeV}$
$\mathrm{D}=6$	Flavor physics	$\Lambda>1-10^{5} \mathrm{TeV}$
$\mathrm{D}=6$	EWPT	$\Lambda>1 \mathrm{TeV}$
$\mathrm{D}=6$	Higgs couplings	$\Lambda>0.5-1 \mathrm{TeV}$

Searching on all Fronts

Violations of lepton universality? Heavy flavor anomalies

		Leptons	
mass \rightarrow charge \rightarrow spin \rightarrow name \rightarrow	$\begin{array}{\|l} \hline 2.2 \mathrm{eV} / \mathrm{c}^{2} \\ 0 \\ \text { 1/2 } \mathrm{Ve} \\ \text { electron } \\ \text { neutrino } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \substack{<0.17 \mathrm{MeV} / \mathrm{c}^{2} \\ 0 \\ \text { muon } \\ \text { neutrino }} \\ \hline \end{array}$	$\begin{array}{\|cc\|} <15.5 & {\mathrm{MeV} / \mathrm{c}^{2}}^{2} \\ 0 & \mathrm{~V}_{\text {t }} \\ \text { tau } \\ \text { neutrino } \end{array}$
	$\begin{aligned} & 0.511 \mathrm{MeV} / \mathrm{c}^{2} \\ & -1 \\ & 1 / 2 \\ & \text { electron } \end{aligned}$	$\begin{aligned} & 105.7 \mathrm{MeV} / \mathrm{c}^{2} \\ & -1 \\ & 1 / 2 \end{aligned}$	$$
	I	II	III

CERNCOURIER

Volume 55 Number 9 November 2015

Tensions in the Standard Model

B-flavor anomalies

* Intriguing hints of anomalies in B decays entered the stage starting in $2012\left(\mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}^{*}}, \mathrm{P}_{5}{ }^{\prime}, \mathrm{R}_{\mathrm{K}}, \mathrm{R}_{\mathrm{K}^{*}}\right)$

$$
\begin{aligned}
& R_{D^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\Gamma\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}\right)} ; \quad \ell=e, \mu \\
& R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
\end{aligned}
$$

* If true, they would be hugely important for the future development of high-energy particle physics at large!
* In fact, their importance cannot be overstated ...

B-flavor anomalies

* ... as they would give a clear target for future searches at energy frontier - exactly what's missing right now!

B-flavor anomalies: $\mathrm{R}_{\mathrm{D}} \& \mathrm{R}_{\mathrm{D}^{*}}$

* A totally unexpected signal of new physics in tree-level, CKM-favored, semileptonic decays of B mesons:

B-flavor anomalies: $\mathrm{R}_{\mathrm{D}} \& \mathrm{R}_{\mathrm{D}}{ }^{*}$

B-flavor anomalies: P_{5},

* Various hints of new physics in decays $\bar{B} \rightarrow K^{*} \ell^{+} \ell^{-}$
* As rare, loop-mediated FCNC processes, these were prime observables to probe for BSM effects

B-flavor anomalies: P_{5},

* Several angular observables measured as functions of q^{2}
* Some, like $\mathrm{P}_{5}{ }^{\prime}$, are optimized to be insensitive to hadronic uncertainties:
[Descotes-Genon, Matias, Ramon, Virto: 1207.2753]

B-flavor anomalies: P_{5},

* Several angular observables measured as functions of q^{2}
* Some, like $\mathrm{P}_{5}{ }^{\prime}$, are optimized to be insensitive to hadronic uncertainties:
[Descotes-Genon, Matias, Ramon, Virto: 1207.2753]

B-flavor anomalies: $\mathrm{R}_{\mathrm{K}} \& \mathrm{R}_{\mathrm{K}}{ }^{*}$

* Some scenarios explaining the anomalies in angular observables predicted a departure from unity in the ratios: [Altmannshofer, Gori, Pospelov, Yavin 2014]

$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

* Quite spectacularly, such deviations were later observed at LHCb!

B-flavor anomalies: $\mathrm{R}_{\mathrm{K}} \& \mathrm{R}_{\mathrm{K}^{*}}$

$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

[Hiller, Krüger 2003]

B-flavor anomalies

* These data teach an important lesson about the complementarity of different fields (as flavor physics was sometimes considered irrelevant in the LHC era)
* Cherish the connection between flavor and high- p_{T} !
* Imagine the LHC legacy:
\rightarrow talk by Jernej Kamenik
- discovery of the Higgs boson (2012)
- discovery of lepton-flavor non-universality (2019)

B-flavor anomalies

* These data teach an important lesson about the complementarity of different fields (as flavor physics was sometimes considered irrelevant in the LHC era)
* Cherish the connection between flavor and high- p_{T} !
* Imagine the LHC legacy:
\rightarrow talk by Jernej Kamenik
- discovery of the Higgs boson (2012)
- discovery of lepton-flavor non-universality (2019)
- discovery of the predicted Z^{\prime} bosons / leptoquarks (2022?)

B-flavor anomalies: Analysis

* Lots of reasons to be excited!
- two different sets of anomalies of very different taste
- many are seen by more than one experiment
- in case of $b \rightarrow$ sll several observables appear to deviate from SM predictions, and the deviations appear to fit a simple pattern

B-flavor anomalies: Analysis

$b \rightarrow$ clv $\quad \mathrm{b} \rightarrow \mathrm{sll}$		
Observables	$\mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}^{*}}$	$\mathrm{R}_{\mathrm{K}}, \mathrm{R}_{\mathrm{K}^{*},}$ angular distributions
SM	tree level, CKM favored	one-loop FCNC, GIM suppressed
LFU violation	τ vs. e/ μ	μ vs. e
Caveats	τ reconstruction difficult, oldest experiment (BaBar) shows largest effect	electron reconstruction difficult at LHCb , so far no confirmation by another experiment
Benefits	Solid theory	Solid theory for $\mathrm{R}_{\left.\mathrm{K}^{*}\right)^{*} \text {, }}$ some caveats for P_{5}^{\prime}

B-flavor anomalies: Analysis

[Altmannshofer, Nies, Stangl, Straub 2017]

B-flavor anomalies: Analysis

[D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano 2017;
Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi 2017]

B-flavor anomalies: Models

* Challenge to model building, yet several interesting models have been proposed (Z^{\prime}, leptoquarks, ...)
\rightarrow talks by Jorge Martin Camalich, Gudrun Hiller, Ulrich Nierste

B-flavor anomalies: Models

* Challenge to model building, yet several interesting models have been proposed (Z^{\prime}, leptoquarks, ...)
\rightarrow talks by Jorge Martin Camalich, Gudrun Hiller, Ulrich Nierste
* E.g.: Adding a single leptoquark $\phi \sim(\mathbf{3}, \mathbf{1})_{-1 / 3}$ to the SM can address the flavor anomalies along with $(\mathrm{g}-2)_{\mu}$
[Bauer, MN 2016]
* Relevant diagrams for R_{D} and R_{K} :

Don't get too excited before you really know what's what

Should we believe LFU violation?

Yes

- R measurements are double ratio's to J / ψ, LHCb's check
with $\mathrm{K}^{*} \mathrm{~J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} / \mu^{+} \mu^{-}$
$=1.043 \pm 0.006 \pm 0.045$
- $\mathcal{Z}\left(\mathrm{B}^{-} \rightarrow \mathrm{K}^{-} \mathrm{e}^{+} \mathrm{e}^{-}\right)$agrees with SM prediction puts onus on muon mode which is well measured and low
- Both R_{K} \& $\mathrm{R}_{\mathrm{K}^{*}}$ are different than ~ 1
- Supporting evidence of effects in angular distributions

Past (elusive) B-flavor anomalies

- Several anomalies in B physics (many rather persistent, some at the $3-4 \sigma$ level) have created quite some excitement at their times:
- puzzle of the too short Λ_{b} lifetime
- evidence for a low $\sin 2 \beta_{\phi K s}$ from loop processes
- puzzle of the too large $B \rightarrow \tau v$ branching ratio
- $\triangle \mathrm{A}_{\mathrm{CP}}(\mathrm{B} \rightarrow \pi \mathrm{K})$ puzzle of direct CP asymmetries

CP Asymmetry in $B \rightarrow \Phi K_{S}$

* Interference of mixing and * Penguin graph is real to decay: very good approximation!

* Phase structure identical to the decay $B \rightarrow J / \psi K_{S}$

* Model-independent result:

$$
S\left(\Phi K_{S}\right)-S\left(J / \psi K_{S}\right)=0.02 \pm 0.01
$$

[Beneke, Neubert 2003]

* Experimental situation: (after LP 03) $\left.\begin{array}{ll}S\left(\Phi K_{S}\right)=+0.45 \pm 0.43 \pm 0.07 & \text { BaBar } \\ S\left(\Phi K_{S}\right)=-0.96 \pm 0.50 \pm 0.10 & \text { Belle }\end{array}\right\}-0.15 \pm 0.33$

$$
S\left(\Phi K_{\mathrm{S}}\right)-S\left(J / \psi K_{\mathrm{S}}\right)=-0.88 \pm 0.33(2.7 \sigma)
$$

New Physics in penguins?

s-penguin average at 2.7 σ different from sin2 $\beta[c c]$ (BABAR)

Similar difference at 2.4σ seen by Belle

$$
B^{0} \rightarrow \phi K^{0} \quad B^{0} \rightarrow K^{+} K^{-} K^{0} \quad B^{0} \rightarrow \eta^{\prime} K^{0} \quad B^{0} \rightarrow f_{0} K^{0} \quad B^{0} \rightarrow \pi^{0} K^{0}
$$

B-flavor anomalies - quo vadis?

* Today we are in a much better situation, and the flavor anomalies are much more compelling!
* But also now, we should not necessarily assume that all anomalies are correct ...
* An independent confirmation of the flavor anomalies by
Belle II is as crucial as refining the current LHCb analyses

Stay Tuned

妍" AWESOMWith some luck, wetwillsoon leave the StandardMode behind us.
Ifsome of the ctmrent flavoramomalies survive the is an unexploned wor drout there for us to discove

1 1t would be agreatadenture!

