Production of strange particles in jets in pp, p-Pb and Pb–Pb collisions measured with ALICE

Vít Kučera¹ for the ALICE Collaboration

1 Inha University, Incheon, Republic of Korea

14 June 2018

Light-up 2018 Workshop, CERN

Motivation for PID in jets

- ^I Baryon-to-meson ratio is enhanced in A–A and p–A collisions (RHIC, LHC).
- This phenomenon cannot be explained by fragmentation in vacuum.
- What is the effect of QGP on hadronization mechanism(s) in jets?
- \triangleright What are the mechanisms (parton recombination)?

Comparison of data with models

Good description by EPOS up to $p_T \approx 4$ GeV/c. No single satisfactory description over the full p_T range.

Phys. Rev. Lett. **111** (2013) 222301

Motivation for PID in jets

We aim to understand the origin(s) of the $\Lambda/\mathsf{K}^0_\mathsf{S}$ enhancement by separating hadrons produced in hard processes (jets) from hadrons produced in soft processes (underlying event).

Is the baryon-to-meson ratio enhanced due to the collective effects in the plasma (parton recombination, radial flow,. . .) or is it (also) due to a modification of the jet fragmentation in the medium?

- \blacktriangleright jet fragmentation A high- p_T parton from hard scattering fragments into hadrons.
- \blacktriangleright parton recombination Multiple partons cluster together to form a hadron.

4 / 19

ALICE

- ► Λ / K_S^0 in jets studied in: pp at $\sqrt{s} = 7$ TeV, 13 TeV, p–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV
- ▶ tracking of charged particles by ITS & TPC in magnetic field of 0.5 T
- \triangleright centrality estimated from the multiplicity of charged particles in the detectors at forward and backward pseudorapidities

Analysis of charged jets

- \blacktriangleright track selection
	- \blacktriangleright charged primary particles
	- \blacktriangleright $p_{\text{T}}^{\text{track}} > 150$ MeV/c
	- \blacktriangleright uniform in $\phi \times η$, $|\eta_{\text{track}}|$ < 0.9
- \blacktriangleright raw-jet reconstruction
	- anti- k_t algorithm
	- resolution parameter $R = 0.2$, (0.3, 0.4)
- \triangleright subtraction of average soft background
	- **Ex** average background density ρ estimated from the median k_t cluster
	- \blacktriangleright $p_{\text{T}}^{\text{jet,ch,corr}} = p_{\text{T}}^{\text{jet,ch,raw}}$ (where A_{iet.ch} is jet area)
- \triangleright signal-jet selection (good candidates for hard scattering)
	- \blacktriangleright p_T ^{leading track} $>$ 5 GeV/c (only Pb–Pb)
	- \blacktriangleright $A_\mathsf{jet,ch}>0.6$ π R^2
- In further $p_T^{\text{jet,ch}}$ corrections
	- **background anisotropy (intra-event** p_T **fluctuations)**
	- \blacktriangleright detector response

Analysis of neutral strange particles

Strange neutral particles decaying into two charged daughter particles

- \blacktriangleright meson K_S⁰ → π⁺ + π⁻ (BR 69%)
- \blacktriangleright baryon $\Lambda \to p + \pi^-$ (BR 64%)

Mother V^0 particle reconstructed using topology of its V-shaped decay.

Combinatorial background suppressed by cuts on decay parameters. Signal yield extracted from the invariant-mass distribution.

Strange particles in jets

Analysis steps

- $\blacktriangleright \; \mathsf{V}^0$ candidate selection
- **D** candidate-jet matching (V^0 s in jet cones)

$$
\sqrt{(\phi_{\mathsf{V}^0} - \phi_{\mathsf{jet},\mathsf{ch}})^2 + (\eta_{\mathsf{V}^0} - \eta_{\mathsf{jet},\mathsf{ch}})^2} < R,
$$

$$
|\eta_{\text{jet,ch}}|^{\text{max}} < |\eta_{\text{V}^0}|^{\text{max}} - R
$$

- **Exerc**idate–UE matching (V^0 s in events without selected jets with $p_{\text{T}}^{\text{jet,ch}} > 5 \,\text{GeV/c}$)
- \triangleright signal extraction (invariant-mass distribution)
- efficiency correction (in jet cones, in UE)
- \blacktriangleright subtraction of V^0 s in UE
- ightharpoonup subtraction of V^0 s coming from decays of jet constituents ($\Xi \rightarrow \Lambda$), i.e. "feed-down" correction

Estimation of V^0 s in the underlying event

- \blacktriangleright no-jet events: V^0 s in events with no selected jets
- outside cones: V^0 s outside jet cones
- **P** random cones: V^0 s in a randomly oriented cone
- **IF** median-cluster cones: V^0 s in the cone of the median k_t -cluster
- \blacktriangleright perpendicular cones: V^0 s in cones perpendicular to the jet in azimuth

Methods differ in regions, events, statistics, efficiency.

Λ

Reconstruction efficiency of V^0 particles

- Reconstruction efficiency depends strongly on p_T^{\vee} and η_{V^0} .
- **In Shape of the measured** $\eta_{\mathcal{N}^0}$ distribution depends on the selection criteria.
- ► Not enough statistics to apply efficiency correction in 2D $(p_T^{V^0} \times \eta_{V^0})$.

 \Rightarrow Efficiency of inclusive V^0 s is scaled (in 2D) to get efficiency in jet cones and UE (in 1D).

Feed-down in jets in Pb–Pb

Ξ in jets not measured in Pb–Pb. Feed-down fraction of Λ in jets estimated from:

- \blacktriangleright inclusive Λ (Pb–Pb-like),
- \blacktriangleright jets generated by PYTHIA 8 (pp-like).

 $\overline{\Xi}/\Lambda$ ratio in jets in pp at $\sqrt{s_\text{NN}}=13\,\text{TeV}$

Estimation of systematic uncertainties

The systematic uncertainties are studied for the following sources:

- reconstruction efficiency of V^0 s (selection cuts applied on V^0 candidates),
- \triangleright signal extraction (fitting parameters),
- ightharpoonup subtraction of spectra of V^0 s in UE (5 methods),
- \triangleright subtraction of feed-down in jets (inclusive vs PYTHIA),
- \triangleright material budget (detector model),
- \blacktriangleright fluctuations of UE (jet embedding).

$\mathsf{\Lambda}/\mathsf{K}^0_\mathsf{S}$ $\frac{0}{\mathsf{S}}$ ratio in jets in pp at $\sqrt{s}=7$ TeV and 13 TeV

- The ratio in UE is consistent with the inclusive ratio.
- \triangleright The ratio in jets is clearly different from the inclusive ratio at low and intermediate $p_T^{\vee^0}$.
- **I A** slight increase of the ratio in jets with increasing R and \sqrt{s} .

$\mathsf{\Lambda}/\mathsf{K}^0_\mathsf{S}$ $\frac{0}{\mathsf{S}}$ ratio in jets in p–Pb at $\sqrt{s_\mathsf{NN}} = 5.02\,\mathsf{TeV}$

The ratio in jets

- is clearly different from the inclusive ratio at low and intermediate p_T^{\vee} ,
- \triangleright is different from the inclusive ratio in PYTHIA (black line),
- \triangleright is similar to the ratios in PYTHIA jets (red dashed lines),
- In shows no significant dependence on $p_T^{\text{jet,ch}}$ and a slight dependence on R.

$\mathsf{\Lambda}/\mathsf{K}^0_\mathsf{S}$ $\frac{0}{\mathsf{S}}$ ratio in jets in Pb–Pb at $\sqrt{s_\mathsf{NN}} = 2.76\,\mathsf{TeV}$

The ratio in jets

- is clearly different from the inclusive ratio at low and intermediate p_T^{\vee} ,
- ightharpoonup shows no significant dependence on $p_T^{\text{jet},\text{ch}}$,
- is consistent with the ratio in jets in p-Pb and pp at $p_T^{\vee} > 4$ GeV/c.

K^0_S $⁰$, Λ spectra in jets in Pb–Pb</sup> comparison to PYTHIA smeared with $p_{\text{T}}^{\text{jet},\text{ch}}$ fluctuations $p_{\textsf{T}}^{\textsf{jet},\textsf{ch}}>10\,\textsf{GeV/c}$ 2 3 4 5 6 7 8 9 10 ۱/(N_{jets}πR^e) dWdp_r (c/GeV)
 [−]³ 10 10^{-2} [−]¹ 10 1 F K_s^0 , stat. unc., (x 1.5) $(\overline{\Lambda}+\overline{\Lambda})/2$, stat. unc. syst. unc. full markers $\mathsf{K}_{\mathrm{s}}^0$, $(\mathrm{x}\,1.5)$ open markers (Λ+Λ)/2 PYTHIA 8 - tune Monash PYTHIA 6 - tune Perugia 2011 PYTHIA 6 - tune Perugia NoCR $\frac{1}{\tau}$ smeared with true $\sigma(\delta p)$ T $\rho_+^{\text{\tiny{per}}}$: $p_{\tau}^{\rm jet, ch}$ > 10 GeV/ c T ALICE Preliminary $\frac{\text{track}}{\tau} > 150 \text{ MeV}/c$ $\rho_{_{\,{\sf T}}}^{\rm ^{wave}}$ > 5 GeV/ c leading track p_{T}^{max} $| < 0.5$ jet,ch $|\eta|$ anti- k_t , $R = 0.2$ $|\eta_{\gamma\rho}| < 0.7$ Pb−Pb, s NN = 2.76 TeV, 0−10 % $p_{\text{T}}^{\text{jet,ch}} > 20 \text{ GeV/c}$ 2 3 4 5 6 7 8 9 10 ۱/(N_{|ets}πR^e) dWdp_T (c/GeV)
 10 1 10^{-2} [−]¹ 10 1F stat. unc., $(x 1.5)$ K^α, <u>st</u>at. unc., (x 1.5
(Λ+Λ)/2, stat. unc. syst. unc. tull markers K;, (x 1.5)
open markers (Λ+Λ)/2 full markers K_s^0 , (: PYTHIA 8 - tune Monash PYTHIA 6 - tune Perugia 2011 PYTHIA 6 - tune Perugia NoCR $\frac{1}{\tau}$ smeared with true σ (δρ $'$ T $\rho^{\text{\tiny jet}}_{\scriptscriptstyle +}$: ALICE Preliminary $p_{\perp}^\mathrm{jet,ch}$ > 20 GeV/c T $\frac{\text{track}}{\text{r}} > 150 \text{ MeV}/c$ $\rho_{_{\rm T}}^{\rm{max}}$ > 5 GeV/c leading track p_T^{max} $| < 0$ jet,ch $|\eta|$ anti- k_t , $R = 0.2$ $|\eta_{\rm v0}| < 0.7$ Pb−Pb, s NN = 2.76 TeV, 0−10 %

ALI−PREL−112798

ALI−PREL−112802

▶ Same slopes of spectra from measurement and from PYTHIA.

 p_{-} (GeV/c)

Enhancement for Λ at $p_T^{\vee^0} < 4$ GeV/c.

 p_{n} (GeV/c

Summary

ALICE has performed the first measurement of the $\Lambda/\mathrm{K^0_S}$ ratio in charged jets in pp, p–Pb and Pb–Pb collisions at the LHC.

Results

- \blacktriangleright In every collision system, the $\Lambda/\textsf{K}_\textsf{S}^0$ ratio in jets is significantly smaller than the inclusive ratio (and the UE).
- \blacktriangleright The Λ/K_S^0 ratios in jets are consistent within uncertainties in all collision systems for $p_{\text{T}}^{\text{V}^0} > 4 \text{ GeV/c}.$
- \blacktriangleright The dominant source of the enhancement are soft processes associated with collective behaviour.
- \triangleright A potential modification of jet fragmentation seems to be restricted to the region $p_T^{\vee^0} < 4$ GeV/c and manifested by an enhancement of the Λ yields.

Thank you for your attention.

Backup

V^0 candidate selection

Jet algorithms

A sequential recombination jet finder is defined according to this general scheme:

1. ∀ *i*, *j* : calculate distances d_{ij} and d_{iB} (NB $k_t \equiv p_T$):

$$
d_{ij} = \min \left(k_{\text{t},i}^{2p}, k_{\text{t},j}^{2p} \right) \frac{\Delta_{ij}^2}{R^2}, \quad \Delta_{ij}^2 = \left(y_i - y_j \right)^2 + \left(\phi_i - \phi_j \right)^2, \quad d_{iB} = k_{\text{t},i}^{2p}
$$

2. Find d_{min} :

$$
d_{\min}=\min\left(d_{ij},d_{iB}\right).
$$

- ► If $\exists i, j : d_{\text{min}} = d_{ij}$, merge particles *i* and *j* into a single particle and combine their momenta.
- If $\exists i$: $d_{\text{min}} = d_{iB}$, declare particle *i* to be a final jet and remove it from the list.

These steps are repeated until no particles are left.

$$
p = \left\{ \begin{array}{cl} 1 & k_t \text{ (background estimation)} \\ 0 & \text{Cambridge/Aachen} \\ -1 & \text{anti-}k_t \text{ (signal jets)} \end{array} \right.
$$

Matteo Cacciari et al. JHEP **0804** (2008) 063

Background in Pb–Pb

Production of soft particles by underlying-event processes.

average background density *ρ*:

 \blacktriangleright k_t jets w/o 2 hardest

each event: $\rho =$ median $\left\{ \rho_T^{\rm jet}/A_{\rm jet} \right\}$ each jet: $\rho_{\mathsf{T},\mathsf{jet}}^{\mathsf{corrected}} = \rho_{\mathsf{T},\mathsf{jet}}^{\mathsf{raw}} - \rho \mathcal{A}_{\mathsf{jet}}$

ρ anisotropy in events (fluctuations):

$$
\blacktriangleright \delta p_{\mathsf{T}} = p_{\mathsf{T},\mathsf{probe}}^{\mathsf{raw}} - \rho A_{\mathsf{probe}}
$$

response matrix \rightarrow deconvolution

ibid.

Scaling of the reconstruction efficiency

- \bullet ϵ reconstruction efficiency of inclusive particles
- $\bullet \epsilon_{s}$ reconstruction efficiency of particles of interest (scaled ϵ)
- \triangleright a_s yield of associated particles of interest
- g_s yield of generated particles of interest
- \blacktriangleright m uncorrected yield of measured particles (candidates) of interest
- \blacktriangleright t yield of true (corrected) particles of interest
- \blacktriangleright P signal purity

Signal extraction in JC, UE (assume that $P_{\text{inclusive}}(p_{\text{T}}^{\text{V}^0},\eta_{\text{V}^0})$ is the same as for V^0s of interest):

$$
m(\rho_T^{V^0},\eta_{V^0})=m_{raw}(\rho_T^{V^0},\eta_{V^0})|_{peak\ region}\cdot P_{inclusive}(\rho_T^{V^0},\eta_{V^0})|_{peak\ region}
$$

Efficiency calculation:

$$
a_s \equiv m, \quad \sigma_{a_s} \equiv 0, \qquad g_s = a_s/\epsilon
$$

$$
\frac{1}{\epsilon_s(p_T^{\vee 0})} = \frac{\sum_{\eta_{\sqrt{0}}}}^{} g_s(\eta_{\sqrt{0}}^{}, p_T^{\sqrt{0}}^{})}{\sum_{\eta_{\sqrt{0}}^{}, g_s(\eta_{\sqrt{0}}^{}, p_T^{\sqrt{0}}^{})}} = \sum_{\eta_{\sqrt{0}}^{}, \frac{a_s(\eta_{\sqrt{0}}^{}, p_T^{\sqrt{0}}^{})}{\sum_{\eta_{\sqrt{0}}^{}, g_s(\eta_{\sqrt{0}}^{}, p_T^{\sqrt{0}}^{})}} = \frac{1}{(\eta_{\sqrt{0}}^{}, p_T^{\sqrt{0}}^{})}
$$

Spectra correction:

$$
t=m/\epsilon_s
$$