Production of strange particles in jets in pp, p–Pb and Pb–Pb collisions measured with ALICE

Vít Kučera¹ for the ALICE Collaboration

¹Inha University, Incheon, Republic of Korea

14 June 2018

Light-up 2018 Workshop, CERN

Motivation for PID in jets

- Baryon-to-meson ratio is enhanced in A–A and p–A collisions (RHIC, LHC).
- This phenomenon cannot be explained by fragmentation in vacuum.
- What is the effect of QGP on hadronization mechanism(s) in jets?
- What are the mechanisms (parton recombination)?

Comparison of data with models

Good description by EPOS up to $p_T \approx 4 \text{ GeV/c}$. No single satisfactory description over the full p_T range.

Phys. Rev. Lett. 111 (2013) 222301

Motivation for PID in jets

We aim to understand the origin(s) of the Λ/K_S^0 enhancement by separating hadrons produced in hard processes (jets) from hadrons produced in soft processes (underlying event).

Is the baryon-to-meson ratio enhanced due to the collective effects in the plasma (parton recombination, radial flow,...) or is it (also) due to a modification of the jet fragmentation in the medium?

- jet fragmentation
 A high-p_T parton from hard scattering fragments into hadrons.
- parton recombination Multiple partons cluster together to form a hadron.

4/19

ALICE

- ► Λ/K_S^0 in jets studied in: pp at $\sqrt{s} = 7 \text{ TeV}, 13 \text{ TeV}, \text{ p-Pb}$ at $\sqrt{s_{NN}} = 5.02 \text{ TeV}, \text{ Pb-Pb}$ at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- tracking of charged particles by ITS & TPC in magnetic field of 0.5 T
- centrality estimated from the multiplicity of charged particles in the detectors at forward and backward pseudorapidities

Analysis of charged jets

- track selection
 - charged primary particles
 - *p*_T^{track} > 150 MeV/c
 - uniform in $\phi imes \eta$, $|\eta_{
 m track}| < 0.9$
- raw-jet reconstruction
 - anti-k_t algorithm
 - resolution parameter R = 0.2, (0.3, 0.4)
- subtraction of average soft background
 - average background density ρ estimated from the median $k_{\rm t}$ cluster
- signal-jet selection (good candidates for hard scattering)
 - $p_{T}^{\text{leading track}} > 5 \text{ GeV/c} \text{ (only Pb-Pb)}$
 - $A_{\rm jet,ch} > 0.6\pi R^2$
- further $p_{\rm T}^{\rm jet,ch}$ corrections
 - background anisotropy (intra-event p_T fluctuations)
 - detector response

Analysis of neutral strange particles

Strange neutral particles decaying into two charged daughter particles

- $\blacktriangleright \text{ meson } \mathsf{K}^0_S \rightarrow \pi^+ + \pi^- \text{ (BR 69\%)}$
- baryon $\Lambda \rightarrow p + \pi^-$ (BR 64%)

Mother V^0 particle reconstructed using topology of its V-shaped decay.

Combinatorial background suppressed by cuts on decay parameters. Signal yield extracted from the invariant-mass distribution.

Strange particles in jets

Analysis steps

- V⁰ candidate selection
- candidate-jet matching (V⁰s in jet cones)

$$\sqrt{(\phi_{\mathsf{V}^0}-\phi_{\mathsf{jet},\mathsf{ch}})^2+(\eta_{\mathsf{V}^0}-\eta_{\mathsf{jet},\mathsf{ch}})^2} < R,$$

 $|\eta_{\rm jet,ch}|^{\rm max} < |\eta_{\rm V^0}|^{\rm max} - R$

- candidate-UE matching (V⁰s in events without selected jets with p_T^{jet,ch} > 5 GeV/c)
- signal extraction (invariant-mass distribution)
- efficiency correction (in jet cones, in UE)
- subtraction of V⁰s in UE
- ► subtraction of V⁰s coming from decays of jet constituents $(\Xi \rightarrow \Lambda)$, i.e. "feed-down" correction

Estimation of V^0 s in the underlying event

- ▶ no-jet events: V⁰s in events with no selected jets
- outside cones: V⁰s outside jet cones

 K_{s}^{0}

- ▶ random cones: V⁰s in a randomly oriented cone
- median-cluster cones: V^0 s in the cone of the median k_t -cluster
- ▶ perpendicular cones: V⁰s in cones perpendicular to the jet in azimuth

Methods differ in regions, events, statistics, efficiency.

Λ

Reconstruction efficiency of V^0 particles

- Reconstruction efficiency depends strongly on $p_{\rm T}^{\rm V^0}$ and $\eta_{\rm V^0}$.
- Shape of the measured $\eta_{\mathcal{N}^0}$ distribution depends on the selection criteria.
- ▶ Not enough statistics to apply efficiency correction in 2D ($p_T^{V^0} \times \eta_{V^0}$).

 \Rightarrow Efficiency of inclusive V^0s is scaled (in 2D) to get efficiency in jet cones and UE (in 1D).

Feed-down in jets in Pb-Pb

 Ξ in jets not measured in Pb–Pb. Feed-down fraction of Λ in jets estimated from:

- inclusive Λ (Pb–Pb-like),
- jets generated by PYTHIA 8 (pp-like).

 Ξ/Λ ratio in jets in pp at $\sqrt{s_{\rm NN}} = 13$ TeV

ALI-PREL-148665

Estimation of systematic uncertainties

The systematic uncertainties are studied for the following sources:

- ▶ reconstruction efficiency of V^0 s (selection cuts applied on V^0 candidates),
- signal extraction (fitting parameters),
- subtraction of spectra of V⁰s in UE (5 methods),
- subtraction of feed-down in jets (inclusive vs PYTHIA),
- material budget (detector model),
- fluctuations of UE (jet embedding).

$\Lambda/{ m K}_{ m S}^{ m 0}$ ratio in jets in pp at $\sqrt{s}=$ 7 TeV and 13 TeV

- The ratio in UE is consistent with the inclusive ratio.
- ► The ratio in jets is clearly different from the inclusive ratio at low and intermediate p_T^{V⁰}.
- A slight increase of the ratio in jets with increasing R and \sqrt{s} .

$\Lambda/\mathrm{K}^{0}_{\mathrm{S}}$ ratio in jets in p–Pb at $\sqrt{\mathit{s}_{\mathrm{NN}}}=5.02\,\mathrm{TeV}$

The ratio in jets

- is clearly different from the inclusive ratio at low and intermediate $p_T^{V^o}$,
- ▶ is different from the inclusive ratio in PYTHIA (black line),
- ▶ is similar to the ratios in PYTHIA jets (red dashed lines),
- **•** shows no significant dependence on $p_T^{\text{jet,ch}}$ and a slight dependence on R.

Λ/K_S^0 ratio in jets in Pb–Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

The ratio in jets

- is clearly different from the inclusive ratio at low and intermediate $p_T^{V^0}$,
- shows no significant dependence on p_T^{jet,ch},
- ▶ is consistent with the ratio in jets in p–Pb and pp at $p_T^{V^0} > 4 \text{ GeV/c}$.

- Same slopes of spectra from measurement and from PYTHIA.
- Enhancement for Λ at $p_{\rm T}^{\rm V^0} < 4 \,{\rm GeV/c}$.

Summary

ALICE has performed the first measurement of the Λ/K_S^0 ratio in charged jets in pp, p–Pb and Pb–Pb collisions at the LHC.

Results

- In every collision system, the Λ/K_S^0 ratio in jets is significantly smaller than the inclusive ratio (and the UE).
- ► The Λ/K_S^0 ratios in jets are consistent within uncertainties in all collision systems for $p_T^{V^0} > 4 \text{ GeV/c}$.
- ► The dominant source of the enhancement are soft processes associated with collective behaviour.
- A potential modification of jet fragmentation seems to be restricted to the region p^{V⁰}_T < 4 GeV/c and manifested by an enhancement of the Λ yields.

Thank you for your attention.

Backup

V^0 candidate selection

Cut variable	Value
Daughter tracks	
TPC refit	true
type of production vertex	not kKink
DCA to the primary vertex	$\geq 0.1{ m cm}$
DCA between daughters	$\leq 1\sigma_{TPC}$
$ \eta $	≤ 0.8
V ⁰ candidate	
reconstruction method	offline
cosine of the pointing angle (CPA)	\geq 0.998
radius of the decay vertex	5–100 cm
$ \eta $	≤ 0.7
transverse proper lifetime	$\leq 5 au$
Armenteros–Podolanski cut (K ⁰ _S)	$p_{\mathrm{T}}^{\mathrm{Arm.}} \geq 0.2 \alpha^{\mathrm{Arm.}} $

Jet algorithms

A sequential recombination jet finder is defined according to this general scheme:

1. $\forall i, j$: calculate distances d_{ij} and d_{iB} (NB $k_t \equiv p_T$):

$$d_{ij} = \min\left(k_{t,i}^{2p}, k_{t,j}^{2p}
ight) rac{\Delta_{ij}^2}{R^2}, \quad \Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2, \quad d_{iB} = k_{t,i}^{2p}$$

2. Find d_{min}:

$$d_{\min} = \min\left(d_{ij}, d_{iB}\right).$$

- If ∃ i, j : d_{min} = d_{ij}, merge particles i and j into a single particle and combine their momenta.
- If $\exists i : d_{\min} = d_{iB}$, declare particle *i* to be a final jet and remove it from the list.

These steps are repeated until no particles are left.

$$p = \begin{cases} 1 & k_{t} \text{ (background estimation)} \\ 0 & \text{Cambridge/Aachen} \\ 1 & \text{Cambridge/Aachen} \end{cases}$$

$$-1$$
 anti- $k_{\rm t}$ (signal jets)

Matteo Cacciari et al. JHEP 0804 (2008) 063

Background in Pb-Pb

Production of soft particles by underlying-event processes.

average background density ρ :

► *k*_t jets w/o 2 hardest

each event: $\rho = \text{median} \left\{ p_{\text{T}}^{\text{jet}} / A_{\text{jet}} \right\}$ each jet: $p_{\text{T,jet}}^{\text{corrected}} = p_{\text{T,jet}}^{\text{raw}} - \rho A_{\text{jet}}$

$$\blacktriangleright \ \delta p_{\mathsf{T}} = p_{\mathsf{T},\mathsf{probe}}^{\mathsf{raw}} - \rho A_{\mathsf{probe}}$$

• response matrix \rightarrow deconvolution

ibid.

 $[\]rho$ anisotropy in events (fluctuations):

Scaling of the reconstruction efficiency

- $\blacktriangleright~\epsilon$ reconstruction efficiency of inclusive particles
- ▶ ϵ_s reconstruction efficiency of particles of interest (scaled ϵ)
- ▶ *a_s* yield of associated particles of interest
- ▶ g_s yield of generated particles of interest
- m uncorrected yield of measured particles (candidates) of interest
- t yield of true (corrected) particles of interest
- P signal purity

Signal extraction in JC, UE (assume that $P_{\text{inclusive}}(p_T^{V^0}, \eta_{V^0})$ is the same as for V⁰s of interest):

$$m(p_{\mathsf{T}}^{\mathsf{V}^0},\eta_{\mathsf{V}^0})=m_{\mathsf{raw}}(p_{\mathsf{T}}^{\mathsf{V}^0},\eta_{\mathsf{V}^0})|_{\mathsf{peak region}}\cdot P_{\mathsf{inclusive}}(p_{\mathsf{T}}^{\mathsf{V}^0},\eta_{\mathsf{V}^0})|_{\mathsf{peak region}}$$

Efficiency calculation:

$$\begin{aligned} a_{s} \equiv m, \quad \sigma_{a_{s}} \equiv 0, \qquad g_{s} = a_{s}/\epsilon \\ \frac{1}{\epsilon_{s}(p_{\mathsf{T}}^{\mathsf{V}^{0}})} = \frac{\sum_{\eta_{\mathsf{V}^{0}_{j}}} g_{s}(\eta_{\mathsf{V}^{0}_{j}}, p_{\mathsf{T}}^{\mathsf{V}^{0}})}{\sum_{\eta_{\mathsf{V}^{0}_{j}}} a_{s}(\eta_{\mathsf{V}^{0}_{j}}, p_{\mathsf{T}}^{\mathsf{V}^{0}})} = \sum_{\eta_{\mathsf{V}^{0}_{j}}} \frac{a_{s}(\eta_{\mathsf{V}^{0}_{j}}, p_{\mathsf{T}}^{\mathsf{V}^{0}})}{\sum_{\eta_{\mathsf{V}^{0}_{j}}} a_{s}(\eta_{\mathsf{V}^{0}_{j}}, p_{\mathsf{T}}^{\mathsf{V}^{0}})} \frac{1}{\epsilon(\eta_{\mathsf{V}^{0}_{j}}, p_{\mathsf{T}}^{\mathsf{V}^{0}})} \end{aligned}$$

Spectra correction:

$$t = m/\epsilon_s$$