Using the ϕ meson to study particle production

A. G. Knospe The University of Houston on behalf of the ALICE Collaboration

15 June 2018

Introduction

- Properties of
 - Vector meson
 - Hidden strangeness
 - Mass similar to p and Λ
 - Lifetime
 - Long-lived w.r.t. fireball & resonances
 - Short-lived w.r.t. many common hadrons
- Reconstruction
 - Usually: invariant-mass analysis with K⁻K⁺ decay channel
- In this presentation:
 - Yields of ϕ vs. system size & energy
 - Strangeness enhancement
 - $p_{\rm T}$ spectra of ϕ and particle production

Knospe

- Short-lived resonances suppressed in ٠ central Pb–Pb collisions w.r.t. pp & thermal models: see K^{*0}/K , ρ^{0}/π , $\Lambda(1520)/\Lambda$
- ٠

3

- models: see K*V/K, ρ V/ π , Λ (1520)/ Λ But ϕ is not suppressed Lives longer than other resonances & many estimates of fireball lifetime EPOS describes resonance suppression 0.4 ٠ trends fairly well
 - Uses UrQMD to model hadronic phase
 - Turn off UrQMD:
 - Suppression of short-lived resonances not reproduced;
 - Not much change for ϕ
- Conclusions:
 - At the very least, re-scattering and regeneration are balanced...
 - But given its lifetime, it seems that ϕ decays after hadronic phase and is not affected by rescattering and regeneration.

Strangeness Production

- Smooth evolution of particle production with multiplicity
 - Hadron chemistry is driven by the multiplicity (system size)
- Enhancement for small systems, saturation around thermal-model values for large systems
 - Magnitude of strangeness enhancement increases with strange-quark content
- The ϕ is a key probe:
 - Particles with open strangeness are subject to canonical suppression in small systems, while \u03c6 is not.

Hadron Chemistry: ϕ/π

- Large systems: ϕ production described by thermal models
- Small systems: increase in ϕ/π ratio with multiplicity
 - Not expected for simple canonical suppression
 - Favors non-equilibrium production $(\gamma_{s} < 1)$ production of ϕ or all strange particles

(h/л)/(h/л)

0.5

10

10

dN_/dv

10

⁶ Hidden & Open Strangeness Knospe

- Ratios ϕ/K and Ξ/ϕ fairly flat across wide multiplicity range
 - The ϕ has "effective strangeness" of 1–2 units.
 - Yields of ϕ evolve similarly to particles with open strangeness.
 - Hint of different evolution for ϕ and Ξ at very low multiplicity.

⁷ Hidden & Open Strangeness Knospe

- Ratios ϕ/K and Ξ/ϕ fairly flat across wide multiplicity range
 - The ϕ has "effective strangeness" of 1–2 units.
 - Yields of ϕ evolve similarly to particles with open strangeness.
 - Hint of different evolution for ϕ and Ξ at very low multiplicity.
- Very low multiplicity pp: Is there a stronger increase for Λ/π in than K/ π and ϕ/π ? Need ϕ/π in pp at 7 TeV.

Energy Dependence

Knospe

- Ratio ϕ/K fairly flat in A–A over 3 orders of magnitude in energy
- Large increase for low energies: can be explained by statistical model with strangeness correlation radius R_c ≈ 2.2 fm
 - Strangeness conserved in small volume → K suppressed, but not affected
 - Supports standard picture of canonical suppression

arXiv:1703.08418 PLB 778 403-407 (2018)

⁹ Mean Transverse Momentum Knospe

- Mass ordering of $\langle p_T \rangle$ in central A–A
 - $\langle p_T \rangle$ for p and ϕ similar \rightarrow expected from hydro (similar masses)
- Mass ordering only approximate for peripheral A-A

¹⁰ Mean Transverse Momentum Knospe

- Mass ordering of $\langle p_T \rangle$ in central A–A
 - $\langle p_T \rangle$ for p and ϕ similar \rightarrow expected from hydro (similar masses)
- Mass ordering only approximate for peripheral A-A, p-Pb, and pp
 - Resonances different from long-lived particles? Baryon/meson difference?

¹¹ Mean Transverse Momentum Knospe

- Mass ordering of $\langle p_T \rangle$ in central A–A
 - $\langle p_T \rangle$ for p and ϕ similar \rightarrow expected from hydro (similar masses)
- Mass ordering only approximate for peripheral A-A, p-Pb, and pp
 - Resonances different from long-lived particles? Baryon/meson difference?
- $\langle p_{\rm T} \rangle$ of of K^{*0}, p, and ϕ :
 - pp and p-Pb follow same trends vs. multiplicity, different trend for Pb-Pb
 - Reach or exceed central Pb–Pb values in high multiplicity pp & p–Pb

Blast-Wave Fits

- Simultaneous blast-wave fits of $\pi^{\pm}K^{\pm}p p_{T}$ spectra
- A–A results follow different trend than pp and p–Pb
- For similar multiplicities: $\langle \beta_T \rangle$ (and $\langle p_T \rangle$) greater in smaller systems
- Consistent with behavior of $\boldsymbol{\phi}$

Baryon-to-Meson Ratios

- Pb–Pb Λ/K_{s}^{0} ratio:
 - Low-p_T rise described by hydrodynamics (VISH 2+1)
 - Recombination qualitatively describes enhancement
 - EPOS consistent with measured enhancement → radial flow
- p/
 ratio is useful: baryon and meson with almost the same mass
 - Flat with $p_T \rightarrow$ consistent with hydrodynamic expectation

Baryon-to-Meson Ratios

Knospe

• Pb–Pb Λ/K_{S}^{0} ratio:

14

- Low-p_T rise described by hydrodynamics (VISH 2+1)
- Recombination qualitatively describes enhancement
- EPOS consistent with measured enhancement → radial flow
- p/
 ratio is useful: baryon and meson with almost the same mass
 - Flat with $p_T \rightarrow$ consistent with hydrodynamic expectation
 - Fair description by EPOS
 - Can also be described by some recombination models

Baryon-to-Meson Ratios

Knospe

- Extend p/ ϕ measurement to high p_{T}
 - Flat in p_T for $p_T < 4 \text{ GeV}/c$

15

- Hydrodynamics or recombination
- Drop-off towards high p_T , Pb-Pb consistent w/ pp
 - Jets, fragmentation

$p_{\rm T}$ Spectra in pp

- *p*_T spectra harden in pp collisions with increasing multiplicity
- Ratio to INEL>0 flat for *p*_T >4 GeV/*c*
 - Spectral shape independent of multiplicity
 - \rightarrow jets, fragmentation
- Same behavior seen for other light-flavor particles and for φ at other energies

pp Model Comparisons

- $\langle p_T \rangle$: PYTHIA 6 & EPOS-LHC describe ϕ values
- Yield: EPOS-LHC better than PYTHIA at describing yields
 - Similar behavior for strange baryons
- Ratio φ/K: Flat-ish for all models, EPOS reproduces values better
- Ratio Ξ/φ: EPOS-LHC has increasing trend, PYTHIA does not reproduce the ratio

Elliptic Flow

v₂ of identified hadrons in Pb–Pb

- Low $p_{\rm T}$: mass ordering: $v_2^{\rm p} \approx v_2^{\rm \phi} \approx v_2^{\rm A}$
- Hight p_{T} : baryon-meson splitting
- Also for other centralities, lower energies
- The ϕ is a key probe for verifying this.
- See also D⁰ meson flow (CMS)
 - m(D⁰)=1.865 GeV/c²
 - Baryon-meson splitting at high p_{T}
 - Consistent with mass ordering at low p_{T} , but large uncertainties

Elliptic Flow

- v₂ of identified hadrons in Pb–Pb
 - Low $p_{\rm T}$: mass ordering: $v_2^{\rm p} \approx v_2^{\rm \phi} \approx v_2^{\rm A}$
 - Hight p_{T} : baryon-meson splitting
 - Also for other centralities, lower energies
 - The ϕ is a key probe for verifying this.
- See also D⁰ meson flow (CMS)
 - m(D⁰)=1.865 GeV/c²
 - Baryon-meson splitting at high p_{T}
 - Consistent with mass ordering at low p_{T} , but large uncertainties
- In p–Pb
 - Mass ordering and baryon-meson splitting, becomes less pronounced for lower multiplicities

Knospe

ALI-PREL-156487

Conclusions

- Yields & strangeness enhancement
 - Thermal production of ϕ in A–A
 - Small systems:
 - Trend for ϕ inconsistent w/ simple canonical suppression.
 - The ϕ seems to have "effective strangeness" of 1–2
 - Do Λ & Ξ yields drop off faster than K & ϕ for very low-multiplicity collisions?
- Shapes of *p*_T spectra
 - Hydro-like behavior in central A-A
 - Mass ordering of $\langle p_T \rangle$, flat p/ ϕ for $p_T < 4$ GeV/c
 - Can also be described by (some) recombination models.
 - Any new measurements to help distinguish between hydro and recombination?
 - Violations of $\langle p_{\rm T} \rangle$ mass ordering in smaller systems
 - At high $p_{\rm T}$, shapes do not depend on coll. system or multiplicity

Knospe

Parity Doubling

- FASTSUM Collaboration calculates mass degeneracy for (oppositeparity) chiral partners around T_c.
 - Positive-parity masses independent of temperature.
 - Negative-parity masses decrease with increasing temperature.
- Candidates in the octet:
 - $\Lambda: J^{P}=1/2^+$: measured many times
 - $\Lambda(1405)$: $J^P = \frac{1}{2}$: difficult to measure, decays to $\Sigma \pi$
- Candidates in the decuplet:
 - $\Xi(1530)$: $J^P = \frac{3}{2}$: measured in pp, p-Pb, and Pb-Pb
 - $\Xi(1820)$: $J^{P}=3/_{2}^{-}$: (difficult) measurement in progress in pp in ΛK channels
 - Potential to measure mass shift, width broadening, or change in Ξ(1820)/Ξ(1530) ratio with system size

Additional Material

Energy Dependence

- Possible weak decrease in φ/K ratio with energy in A–A
- May be connected to
 - Decrease in φ/π from
 200 GeV → 2.76 TeV
 - Increase in K/π from
 2.76 TeV → 5.02 TeV

Knospe

K/ π , ϕ/π , and ϕ/K

Au–Au 200 GeV \rightarrow Pb–Pb 2.76 TeV

Pb-Pb 2.76 TeV \rightarrow Pb-Pb 5.02 TeV

ALI-PREL-156810

24

Particle Ratios vs p_{T}

- Ratios of K*0 & ϕ to π & K
- At high p_T : Pb–Pb consistent w/ pp
 - Fragmentation

Thermal Models

- Most light-flavor hadron yields described fairly well by thermal models with single chemical freeze-out temp. (T_{ch} =156±3 MeV for Pb–Pb at 2.76 TeV)
- Even (anti)nuclei and hyper-nuclei are described
- Short-lived resonances (e.g., K*0) deviate due to re-scattering effects (excluded from fit)
- However, some tension for protons and (multi)strange baryons

Thermal Models

- Most light-flavor hadron yields described fairly well by thermal models with single chemical freeze-out temp. (T_{ch} =156±3 MeV for Pb–Pb at 2.76 TeV)
- Even (anti)nuclei and hyper-nuclei are described
- Short-lived resonances (e.g., K*0) deviate due to re-scattering effects (excluded from fit)
- However, some tension for protons and (multi)strange baryons

Additional effects needed? Baryon annihilation, interacting hadron gas, incomplete hadron spectrum?

Knospe

Similar behavior seen for Pb–Pb at 5.02 TeV: T_{ch} =153±3 MeV Lower temperature driven by increase in system size

THERMUS: Wheaton *et al.*, *Comput. Phys. Commun.* **180** 84 (2009) **GSI-Heidelberg:** Andronic *et al.*, *PLB* **673** 142 (2009) **SHARE:** Petran *et al.*, *Comput. Phys. Commun.* **185** 2056 (2014)

Resonances

Resonances

Resonance Suppression

π(K*0)

Particle

0.4

0.3

0.2

0.1

0

4.16 fm/c

ሐ/K

○ □ Pb-Pb 2.76 TeV (PRC 91, 024609)

EPOS3 ····· EPOS3 w/o UrQMD

.... Thermal Model, $T_{ch} = 156$ MeV

46.2 fm/c

* pp 2.76 TeV

◊ ☆ pp 7 TeV

Knospe

PRC 95 064606

(2017)

Pb-Pb 2.76 TeV

K*0/K

ALICE

- Suppression of K^{*0} w.r.t. pp and thermal model values ratios
 - Re-scattering of decay products in hadronic medium
 - Hint of K^{*0} suppression in high-mult. pp and p-Pb
- No ϕ suppression: lives longer, decays outside fireball
- Similar suppression of ρ^0 & $\Lambda(1520)$

30

- Possible weak suppression of Ξ^{*0} w.r.t. pp collisions
- Ratios do not depend on energy (RHIC→LHC) or collision system (same for p–Pb and Xe–Xe)
- Suppression trends qualitatively described by EPOS
 - Includes scattering effects modeled with UrQMD

Elliptic Flow: Pb–Pb

Knospe

Elliptic Flow: p-Pb

More Model Comparisons

Knospe

33

³⁴ Nuclear Modification Factor Knospe</sup>

