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Introduction

• Properties of f

– Vector meson

– Hidden strangeness

– Mass similar to p and L

– Lifetime

• Long-lived w.r.t. fireball & resonances

• Short-lived w.r.t. many common hadrons

• Reconstruction

– Usually: invariant-mass analysis with K–K+

decay channel

• In this presentation:

– Yields of f vs. system size & energy

– Strangeness enhancement

– pT spectra of f and particle production

2

f

B.R. = 49.2%

m = 1019 MeV/c2

G = 4.25 MeV /c2

t = 46.4 fm/c

ss

K+

K–

B.R. = 2.86×10–4ss
m–

m+

Knospe



f vs. Other Resonances3

t(K*0) = 4.16 fm/c     t(f) = 46.4 fm/c

PRC 95 064606 (2017)

• Short-lived resonances suppressed in 

central Pb–Pb collisions w.r.t. pp & thermal 

models: see K*0/K, r0/p, L(1520)/L

• But f is not suppressed

– Lives longer than other resonances & many 

estimates of fireball lifetime

• EPOS describes resonance suppression 

trends fairly well

– Uses UrQMD to model hadronic phase

– Turn off UrQMD:

• Suppression of short-lived resonances not 

reproduced;

• Not much change for f

• Conclusions:

– At the very least, re-scattering and regeneration 

are balanced…

– But given its lifetime, it seems that f decays after 

hadronic phase and is not affected by re-

scattering and regeneration.
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Strangeness Production

• Smooth evolution of particle 

production with multiplicity

– Hadron chemistry is driven by 

the multiplicity (system size)

• Enhancement for small 

systems, saturation around 

thermal-model values for 

large systems

– Magnitude of strangeness 

enhancement increases with 

strange-quark content

• The f is a key probe:

– Particles with open strangeness 

are subject to canonical 

suppression in small systems, 

while f is not.
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Hadron Chemistry: f/p5

f/p: (|S|=0)/(|S|=0)

Knospe

arXiv:1610.03001

• Large systems: f production 

described by thermal models

• Small systems: increase in f/p

ratio with multiplicity

– Not expected for simple canonical 

suppression

– Favors non-equilibrium production

(gs<1) production of f or all strange 

particles



Hidden & Open Strangeness
• Ratios f/K and X/f fairly flat across wide multiplicity range

– The f has “effective strangeness” of 1–2 units.

– Yields of f evolve similarly to particles with open strangeness.

– Hint of different evolution for f and X at very low multiplicity.
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Hidden & Open Strangeness
• Ratios f/K and X/f fairly flat across wide multiplicity range

– The f has “effective strangeness” of 1–2 units.

– Yields of f evolve similarly to particles with open strangeness.

– Hint of different evolution for f and X at very low multiplicity.

• Very low multiplicity pp: Is there a stronger increase for L/p in than 

K/p and f/p? Need f/p in pp at 7 TeV.
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Energy Dependence
• Ratio f/K fairly flat in A–A over 3 orders of magnitude in energy

• Large increase for low energies: can be explained by statistical 

model with strangeness correlation radius RC ≈ 2.2 fm

– Strangeness conserved in small volume  K suppressed, but f

not affected

– Supports standard picture of canonical suppression
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Mean Transverse Momentum
• Mass ordering of ⟨pT⟩ in central A–A

– ⟨pT⟩ for p and f similar  expected from hydro (similar masses)

• Mass ordering only approximate for peripheral A–A
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Mean Transverse Momentum
• Mass ordering of ⟨pT⟩ in central A–A

– ⟨pT⟩ for p and f similar  expected from hydro (similar masses)

• Mass ordering only approximate for peripheral A–A, p–Pb, and pp

– Resonances different from long-lived particles? Baryon/meson difference?

10 Knospe

| < 0.5
lab

h|
ñ

lab
h/d

ch
Ndá

10
210

)
c

 (
G

e
V

/
ñ

T
pá

0

0.5

1

1.5

2
-

W 

-
X 

L 

f 

 p

0
 K*

S

0
 K

± K

±p 

 = 5.02 TeV
NN

sALICE, p-Pb  

Uncertainties: stat.(bars), sys.(boxes)

pp: p < L < K*0 < f ≈ X p–Pb: p < L ≈ K*0 < f < X Central A–A: p ≈ f

⟨pT⟩ ordering:

f

L

X-

W-

h
h



Mean Transverse Momentum
• Mass ordering of ⟨pT⟩ in central A–A

– ⟨pT⟩ for p and f similar  expected from hydro (similar masses)

• Mass ordering only approximate for peripheral A–A, p–Pb, and pp

– Resonances different from long-lived particles?  Baryon/meson difference?

• ⟨pT⟩ of of K*0, p, and f:

– pp and p–Pb follow same trends vs. multiplicity, different trend for Pb–Pb

– Reach or exceed central Pb–Pb values in high multiplicity pp & p–Pb

11 Knospe
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Blast-Wave Fits
• Simultaneous blast-wave fits of p±K±p pT spectra

• A–A results follow different trend than pp and p–Pb

• For similar multiplicities: ⟨bT⟩ (and ⟨pT⟩) greater in smaller systems

• Consistent with behavior of f

12 Knospe



Baryon-to-Meson Ratios
• Pb–Pb L/K0

S ratio:

– Low-pT rise described by 

hydrodynamics (VISH 2+1)

– Recombination qualitatively 

describes enhancement

– EPOS consistent with measured 

enhancement  radial flow

• p/f ratio is useful: baryon and 

meson with almost the same mass

– Flat with pT  consistent with 

hydrodynamic expectation
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Baryon-to-Meson Ratios
• Pb–Pb L/K0

S ratio:

– Low-pT rise described by 

hydrodynamics (VISH 2+1)

– Recombination qualitatively 

describes enhancement

– EPOS consistent with measured 

enhancement  radial flow

• p/f ratio is useful: baryon and 

meson with almost the same mass

– Flat with pT  consistent with 

hydrodynamic expectation

– Fair description by EPOS

– Can also be described by some 

recombination models
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Baryon-to-Meson Ratios

• Extend p/f measurement to high pT

– Flat in pT for pT<4 GeV/c

• Hydrodynamics or recombination

– Drop-off towards high pT, Pb–Pb consistent w/ pp

• Jets, fragmentation
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PRC 95 064606 (2017)

Pb–Pb 2.76 TeV 0–5%

Pb–Pb 2.76 TeV 60–80%

INEL pp 2.76 TeV
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pT Spectra in pp

• pT spectra harden in pp 

collisions with increasing 

multiplicity

• Ratio to INEL>0 flat for           

pT >4 GeV/c

– Spectral shape independent 

of multiplicity                      

 jets, fragmentation

• Same behavior seen for other 

light-flavor particles and for f at 

other energies
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pp Model Comparisons
• ⟨pT⟩: PYTHIA 6 & EPOS-LHC describe f values

• Yield: EPOS-LHC better than PYTHIA at 

describing yields

– Similar behavior for strange baryons

• Ratio f/K: Flat-ish for all models, EPOS 

reproduces values better

• Ratio X/f: EPOS-LHC has increasing trend, 

PYTHIA does not reproduce the ratio

17 Knospe



Elliptic Flow
• v2 of identified hadrons in Pb–Pb

– Low pT: mass ordering: v2 ≈ v2 ≈ v2

– Hight pT: baryon-meson splitting

– Also for other centralities, lower energies

– The f is a key probe for verifying this.

• See also D0 meson flow (CMS)

– m(D0)=1.865 GeV/c2

– Baryon-meson splitting at high pT

– Consistent with mass ordering at low pT, 

but large uncertainties
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Elliptic Flow
• v2 of identified hadrons in Pb–Pb

– Low pT: mass ordering: v2 ≈ v2 ≈ v2

– Hight pT: baryon-meson splitting

– Also for other centralities, lower energies

– The f is a key probe for verifying this.

• See also D0 meson flow (CMS)

– m(D0)=1.865 GeV/c2

– Baryon-meson splitting at high pT

– Consistent with mass ordering at low pT, 

but large uncertainties

• In p–Pb

– Mass ordering and baryon-meson 

splitting, becomes less pronounced for 

lower multiplicities

– The f may break mass ordering, but 

large uncertainties
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Conclusions
• Yields & strangeness enhancement

– Thermal production of f in A–A

– Small systems:

• Trend for f inconsistent w/ simple canonical suppression.

• The f seems to have “effective strangeness” of 1–2

• Do L & X yields drop off faster than K & f for very low-multiplicity 

collisions?

• Shapes of pT spectra

– Hydro-like behavior in central A–A

• Mass ordering of ⟨pT⟩, flat p/f for pT<4 GeV/c

– Can also be described by (some) recombination models.

• Any new measurements to help distinguish between hydro 

and recombination?

– Violations of ⟨pT⟩ mass ordering in smaller systems

– At high pT, shapes do not depend on coll. system or multiplicity
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Parity Doubling21

arXiv:1710.00566

• FASTSUM Collaboration calculates 

mass degeneracy for (opposite-

parity) chiral partners around TC.

– Positive-parity masses independent of 

temperature.

– Negative-parity masses decrease with 

increasing temperature.

• Candidates in the octet:

– L: JP=1/2
+: measured many times

– L(1405): JP=1/2
–: difficult to measure, 

decays to Sp

• Candidates in the decuplet:

– X(1530): JP=3/2
+: measured in pp, p–Pb, 

and Pb–Pb

– X(1820): JP=3/2
–: (difficult) measurement 

in progress in pp in LK channels

– Potential to measure mass shift, width 

broadening, or change in X(1820)/X(1530) 

ratio with system size

Knospe



Additional Material



Energy Dependence
• Possible weak decrease in 

f/K ratio with energy in A–A

• May be connected to

– Decrease in f/p from    

200 GeV  2.76 TeV

– Increase in K/p from   

2.76 TeV  5.02 TeV
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K/p, f/p, and f/K24
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Particle Ratios vs pT

• Ratios of K*0 & f to p & K

• At high pT: Pb–Pb consistent w/ pp

– Fragmentation

25

PRC 95 064606 (2017)

Knospe



Thermal Models
• Most light-flavor hadron yields described fairly well by thermal models with 

single chemical freeze-out temp. (Tch=156±3 MeV for Pb–Pb at 2.76 TeV)

• Even (anti)nuclei and hyper-nuclei are described

• Short-lived resonances (e.g., K*0) deviate due to re-scattering effects 

(excluded from fit)

• However, some tension for protons and (multi)strange baryons

26

Additional effects needed? 

Baryon annihilation, 

interacting hadron gas, 

incomplete hadron spectrum?
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Thermal Models
• Most light-flavor hadron yields described fairly well by thermal models with 

single chemical freeze-out temp. (Tch=156±3 MeV for Pb–Pb at 2.76 TeV)

• Even (anti)nuclei and hyper-nuclei are described

• Short-lived resonances (e.g., K*0) deviate due to re-scattering effects 

(excluded from fit)

• However, some tension for protons and (multi)strange baryons

27

Additional effects needed? 

Baryon annihilation, 

interacting hadron gas, 

incomplete hadron spectrum?

Similar behavior seen for    

Pb–Pb at 5.02 TeV:

Tch=153±3 MeV

Lower temperature driven by 

increase in system size

THERMUS: Wheaton et al.,

Comput. Phys. Commun. 180 84 (2009)

GSI-Heidelberg: Andronic et al.,

PLB 673 142 (2009)

SHARE: Petran et al.,

Comput. Phys. Commun. 185 2056 (2014)
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Resonances28

Regeneration: pseudo-elastic 

scattering through resonance state

 increase in resonance yield
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Resonances29

Regeneration: pseudo-elastic 

scattering through resonance state

 increase in resonance yield
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Final resonance yields depend on:
• Chemical freeze out temperature

• Lifetime of hadronic phase

• Resonance lifetimes

• Scattering cross sections of decay products



Resonance Suppression
• Suppression of K*0 w.r.t. pp and thermal model values

– Re-scattering of decay products in hadronic medium

– Hint of K*0 suppression in high-mult. pp and p–Pb

• No f suppression: lives longer, decays outside fireball

• Similar suppression of r0 & L(1520)

• Possible weak suppression of X*0 w.r.t. pp collisions

• Ratios do not depend on energy (RHICLHC) or 

collision system (same for p–Pb and Xe–Xe)

• Suppression trends qualitatively described by EPOS

– Includes scattering effects modeled with UrQMD

30
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Elliptic Flow: Pb–Pb31
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Elliptic Flow: p–Pb32
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More Model Comparisons33
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Nuclear Modification Factor34 Knospe


