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(Anti)(Hyper)nuclei after the ALICE upgrade
● After the LS2 ALICE will be able to collect data with better performance at higher luminosity 
● Expected integrated luminosity: ~10 nb-1 ( ~ 8x109 collisions in the 0-10% centrality class)
● New ITS: less material budget and more precise tracking for the identification of hyper-nuclei

● Studies on precise projections of the production yield of light (anti)(hyper)nuclei have been and 
are subject of several studies:
● ALICE Upgrade LoI: CERN-LHCC-2012-012
● ALICE ITS Upgrade TDR: CERN-LHCC-2013-024 
● CERN Yellow Report (in preparation)
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Nuclei yield reach in Run 3+4
● Accessible candidates assuming:

● Thermal production (validated by Run1+2 results) at Tch = 156 MeV
● Run 2 efficiencies in |η|< 0.9 (TPC+TOF)

● With upgraded detector
● ALICE-GEM TPC tracking performance similar to MWPC TPC 

(distortion calibration to restore momentum resolution)
● impact of upgraded ITS detector: geometry and material to be 

assessed

● What we will reach:
● as many d as p in Run 1+2
● What is now measured for A = 2 and A = 3 will be accessible for A = 4 
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Hyper-Nuclei yield reach in Run 3+4
● High statistics sample of minimum bias Pb-Pb collisions
● Improved tracking resolution from the ALICE ITS upgrade
● 3

ΛH reconstruction feasible in 2-body and 3-body decay 
with charged products

● For all the studied hypernuclei the B.R. is not well known 
[1,2]

● Precise evaluation of absorption cross section of 
anti(hyper)nuclei is needed 

ALICE ITS upgrade TDR, : CERN-LHCC-2013-024

[1] H. Kamada et al., PRC 57, 1595 (1998), 
[2]H. Outa et al., NPA 639 (1998) 251-260 

Expected invariant mass distribution for 3
Λ
H (plus 

antiparticle) reconstruction in Pb-Pb collisions (0-10% 
centrality class), corresponding to Lint= 10 nb-1.

Mass (GeV/c2) Decay Channel B.R. dN/dy (SHM)

3
Λ
H 2,991

3
Λ
H→ 3He + π-

3
Λ
H→ d+p+ π-

25%[1]
41%[1] 1x10-4

4
Λ
H 3,931 4

Λ
H→ 4He + π- 50%[2] 2x10-7

4
Λ
He 3,929 4

Λ
He→ 3He+p+ π- 32%[2] 2x10-7
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Hyper-Nuclei yield reach in Run 3+4

● With the expected 10 nb-1 anti-4
ΛH, anti-4

ΛHe “discovery” in reach 

● ~102 3
ΛH candidates 

in 2015 sample

4



Distinguish among production mechanismsDistinguish among production mechanisms



14/06/2017 LIGHT UP 2018 - Ramona Lea / 18

Production models
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Statistical thermal modelStatistical thermal model CoalescenceCoalescence
● Thermodynamic approach to particle production in 

heavy-ion collisions
● Abundances fixed at chemical freeze-out (Tchem) : 

(hyper)nuclei are very sensitive to Tchem because of 
their large mass (M)
– Exponential dependence of the yield: dN/dy ∝ 

e(- m/Tchem)

 Nuclei are formed by protons and neutrons 
which are nearby in space and have similar 
velocities (after kinetic freeze-out) 

 Produced nuclei can break apart and be 
created again by final-state coalescence

A. Andronic et al., Phys. Lett. B 697, 203 (2011) G. Chen et al., Phys. Rev. C 88, 034908 (2013)
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Can we distinguish coalescence vs thermal model?
● Can we understand if the models are in contrast and up to which extent?
● For which system(s) do they provide a valid description?
● Can they describe all the particles in their scope of validity?
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Can we distinguish coalescence vs thermal model?
● Can we understand if the models are in contrast and up to which extent?
● For which system(s) do they provide a valid description?
● Can they describe all the particles in their scope of validity?

● Recently, it has been proposed to address these questions by looking at the coalescence parameters (B2, 
B3, B3,Λ) as the key observables, studied as a function of the source radius.

ALICE-PUBLIC-2017-006
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Advanced coalescence model
● If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) 

and match spin state a (anti-)nucleus can be formed
● Since in “small” colliding systems the nucleus is larger w.r.t. the source, the phase space is 

reduced to the momentum space
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Advanced coalescence model
● If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) 

and match spin state a (anti-)nucleus can be formed
● Since in “small” colliding systems the nucleus is larger w.r.t. the source, the phase space is 

reduced to the momentum space
● For “large” systems, the size of the emitting volume (Vef) has to be taken into account: the larger 

the distance between the protons and neutrons which are created in the collision, the less likely 
it is that they coalesce 

(small fireball) (large fireball)
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Advanced coalescence model
● If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) 

and match spin state a (anti-)nucleus can be formed
● Since in “small” colliding systems the nucleus is larger w.r.t. the source, the phase space is 

reduced to the momentum space
● For “large” systems, the size of the emitting volume (Vef) has to be taken into account: the larger 

the distance between the protons and neutrons which are created in the collision, the less likely 
it is that they coalesce

● The source can be parameterized as rapidly expanding under radial flow (hydro)
● The coalescence process is governed by the same correlation volume (“length of homogeneity”) 

which can be extracted from HBT interferometry

● The source radius enters in the BA and in the quantum-mechanical correction ⟨CA⟩ factor that 
accounts for the size of the object being produced (d, 3He, …)

R. Scheibl, U. Heinz,  PRC 59 (1999) 1585-1602   
K. Blum et al., PRD 96 (2017) 103021

7



14/06/2017 LIGHT UP 2018 - Ramona Lea / 18

B2, B3 from advanced coalescence

[1]

[1] K. Blum et al., PRD 96 (2017) 103021

d

3He
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BA from thermal model + blast-wave

● Statistical thermal models provide the yield of nuclei very precisely

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel arXiv:1710.09425
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BA from thermal model + blast-wave

● Statistical thermal models provide the yield of nuclei very precisely but no pT spectra
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BA from thermal model + blast-wave

● Statistical thermal models provide the yield of nuclei very precisely but no pT spectra
● To evaluate the BA, the pT spectra have been modeled with a Blast-Wave parametrization, 

with parameters fixed by fit to π,K,p
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BA from thermal model + blast-wave

● Statistical thermal models provide the yield of nuclei very precisely but no pT spectra
● To evaluate the BA, the pT spectra have been modeled with a Blast-Wave parametrization, 

with parameters fixed by fit to π,K,p
● The normalization for d and 3He spectra is fixed multiplying the d/π (3He/π) ratio from 

thermal model to the measured π yield
● The normalization for 3

ΛH is extracted from the 3He and the S3 predicted by thermal model
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BA from thermal model + blast-wave

● Statistical thermal models provide the yield of nuclei very precisely but no pT spectra
● To evaluate the BA, the pT spectra have been modeled with a Blast-Wave parametrization, 
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● The normalization for d and 3He spectra is fixed multiplying the d/π (3He/π) ratio from 

thermal model to the measured π yield
● The normalization for 3

ΛH is extracted from the 3He and the s3 predicted by thermal model
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BA from thermal model + blast-wave

● Statistical thermal models provide the yield of nuclei very precisely but no pT spectra
● To evaluate the BA, the pT spectra have been modeled with a Blast-Wave parametrization, 

with parameters fixed by fit to π,K,p
● The normalization for d and 3He spectra is fixed multiplying the d/π (3He/π) ratio from 

thermal model to the measured π yield
● The normalization for 3

ΛH is extracted from the 3He and the s3 predicted by thermal model
● Coalescence parameters BA are extracted using 

Nucleus pT spectra Proton pT spectra
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R = 10.6 fm

Sensitivity to the radius of the object: the B3,Λ case

3
H

10

F.Bellini, A.Kalweit Private Communication 
Based on PRD 96 (2017) 103021

●
3

ΛH is a very loosely bound state (→ large radius)

● Predictions of B3,Λ from advanced coalescence and 
SHM+Blast vary a lot when diferent 3

ΛH radii are 
considered
● This measurement is fundamental to 

understand hyper-nuclei production mechanism 
in Pb-Pb collisions
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R = 10.6 fm

Sensitivity to the radius of the object: the B3,Λ case

●
3

ΛH is a very loosely bound state (→ large radius)

● Predictions of B3,Λ from advanced coalescence and 
SHM+Blast vary a lot when diferent 3

ΛH radii are 
considered
● This measurement is fundamental to 

understand hyper-nuclei production mechanism 
in Pb-Pb collisions

● Questions to be addressed in Run 3 and 4
● What is the centrality dependence of the 

hypertriton production in Pb-Pb?
● Can we produce at all the hypertriton in pp 

collisions? 

3
H
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F.Bellini, A.Kalweit Private Communication 
Based on PRD 96 (2017) 103021
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Particle ratios: Coalescence vs Thermal model 

● Simple coalescence works in small systems while thermal models describe better the Pb-Pb data 

● Hint of deuteron suppression in central collisions (not significant with the current uncertainties) 

● 3He/p: a factor 5 is seen going from small systems to Pb-Pb. If this will be confirmed by studies on larger data samples, a 
unified description will be more challenging
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Coalescence in UrQMD

Reinhard Stock (QM2018) https://indico.cern.ch/event/656452/contributions/2869985/attachments/1645416/2629552/Stock_QM2018-2.pdf

● Models with rescattering provide a 
significant diference for the d/p in 
central collisions

● At the moment our data are consistent 
with both the predictions.

→ The reduction of systematic 
uncertainties is mandatory for future 
measurements
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Improving the anti-nuclei production systematics

● Knowing precisely the interaction of nuclei with the detector is fundamental for precise measurements
● At present, efficiencies are evaluated on MC using GEANT3 + empirical model for absorption of anti-nuclei 

and Geant4: results are quite diferent (O(10%))
● ALICE is now studying the discrepancies between data and MC using the TRD detector as a “target” for 

(anti-)nuclei projectiles
● First studies show that the current uncertainty can be reduced by applying a better data driven correction to 

our measurements.
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
H lifetime determination


3

14

● ALICE can be used also for hypernuclear 
physics measurements:
➢ the present data provide one of the most 

precise measurement of 3
ΛH life

● How much will increase our precision on 
the measurement?
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
H lifetime determination


3

● ALICE can be used also for hypernuclear 
physics measurements:
➢ the present data provide one of the most 

precise measurement of 3
ΛH life

● How much will increase our precision on 
the measurement?
● With 13μb-1 (2015 run) a statistical 

uncertainty of ~14% has been measured
● With 10nb-1 (Run 3 and 4)a statistical 

uncertainty of ~0.7% is foreseen
● The increase of the measured statistics 

will reduce also the systematics 
uncertainties → the final evaluation is 
work in progress
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Λnn bound state 


nn

Bound state of Λnn? HypHI experiment at GSI 
sees evidence of a new state: Λnn  → t+ -

C. Rappold et al. (HypHI collaboration), Phys. Rev. C88, 041001(R) (2013)

● The main challenge of this analysis is that the signal 
is not only rare, but it may not even exist. 

● Machine learning (ML) approach has been used to 
consider all the features of the signal. 

● This study is not (yet) conclusive but will serve as a 
baseline for the search of other “exotic” particles
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Search for d* 

d* In 2011 the WASA-at-COSY Collaboration reported the observation of a resonance 
compatible with the predicted d* in all relevant two pion decay channels as well as in np 
scattering.  P. Adlarson, et al., Phys. Rev. Lett. 106 (2011) 242302 
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Search for d* 

● The significance of the d*(2380) signal 
measurement is low due to the huge background 
and to the low reconstruction efficiency at the 
production peak. 

● Two methods to increase the significance:

● Reducing background → Optimization of 
rejection criteria 

● Increasing data sample : 

● ~ 3 x 1011 events needed to reach 5σ

● p-Pb integrated luminosity end of Run 4: 
~100 nb-1 → ~2x1011 events 

● Very challenging measurement, but 
feasible at the end of Run4
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Conclusions
● After the LS2 ALICE will be able to collect data with better 

performance at higher luminosity 
● All the physics which is now done for A = 2 and A = 3 (hyper-)nuclei 

will be done for A = 4:
● Diferential measurements of A=3 (hyper)nuclei
● Potential for discovery for A = 4 (anti)hypernuclei
● Measurements of B4 for 4He, 4

ΛH and 4
ΛHe 
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Conclusions
● After the LS2 ALICE will be able to collect data with better 

performance at higher luminosity 
● All the physics which is now done for A = 2 and A = 3 (hyper-)nuclei 

will be done for A = 4:
● Diferential measurements of A=3 (hyper)nuclei
● Potential for discovery for A = 4 (anti)hypernuclei
● Measurements of B4 for 4He, 4

ΛH and 4
ΛHe 

● The precise measurement of BA will shed light on the understanding 
of nuclei production mechanism 
 

R = 10.6 fm
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Conclusions
● After the LS2 ALICE will be able to collect data with better 

performance at higher luminosity 
● All the physics which is now done for A = 2 and A = 3 (hyper-)nuclei 

will be done for A = 4:
● Diferential measurements of A=3 (hyper)nuclei
● Potential for discovery for A = 4 (anti)hypernuclei
● Measurements of B4 for 4He, 4

ΛH and 4
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● The precise measurement of BA will shed light on the understanding 
of nuclei production mechanism 

● The 3
ΛH lifetime measurements will reach a statistical precision < 1% 
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Conclusions
● After the LS2 ALICE will be able to collect data with better 

performance at higher luminosity 
● All the physics which is now done for A = 2 and A = 3 (hyper-)nuclei 

will be done for A = 4:
● Diferential measurements of A=3 (hyper)nuclei
● Potential for discovery for A = 4 (anti)hypernuclei
● Measurements of B4 for 4He, 4

ΛH and 4
ΛHe 

● The precise measurement of BA will shed light on the understanding 
of nuclei production mechanism 

● The 3
ΛH lifetime measurements will reach a statistical precision < 1%

● The search for exotic bound systems will profit from the large 
statistics

● The reduction of systematics uncertainties will be mandatory 
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Mapping ⟨dN/dη⟩ into system radius
● ALICE measured spectra and yields in V0M (or V0A for p-Pb) multiplicity bins and we do 

not have HBT radii measurements with this estimator in all cases.
● The following assumptions have been done:

● the radii defining the volume of the source are equal (Rside = Rlong = Rout ≡ R)

● R = 4.5 fm from the π HBT radii at the highest ⟨kT⟩in central Pb-Pb

● for pp, R ≈ Rp ~ 0.8 fm [PRD 96 (2017) 103021]

● linear dependence of the ⟨dN/dη⟩1/3 vs radius across collision systems

● Mapping of ⟨dN/dη⟩ → R applied to ALICE data and Thermal + Blast-wave predictions. 

19
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