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(Anti)(Hyper)nuclei after the ALICE upgrade

After the LS2 ALICE will be able to collect data with better performance at higher luminosity
Expected integrated luminosity: ~10 nbt ( ~ 8x10° collisions in the 0-10% centrality class)

New ITS: less material budget and more precise tracking for the identification of hyper-nuclei

Studies on precise projections of the production yield of light (anti)(hyper)nuclei have been and
are subject of several studies:

e ALICE Upgrade Lol: CERN-LHCC-2012-012
e ALICE ITS Upgrade TDR: CERN-LHCC-2013-024
o CERN Yellow Report (in preparation)
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Nuclei yield reach in Run 3+4

o Accessible candidates assuming:

o Thermal production (validated by Run1+2 results) at T, = 156 MeV

T IIIIIIII T IIIIIIII T T TTTTIT
ALICE Upgrade projection

©
2 10'°
> o F POPD |5y, =55TeV (0-10%)
« Run 2 efficiencies in |n|< 0.9 (TPC+TOF) g 107 F — d(0810GeVio)
. ‘g 108 & — °He (1-10 GeV/c)
o With upgraded detector S L 7E — *He(1.7-10Gevic
L
e ALICE-GEM TPC tracking performance similar to MWPC TPC 10°
(distortion calibration to restore momentum resolution) 10°
4
e impact of upgraded ITS detector: geometry and material to be 103
assessed 10
10?
10 .
o What we will reach: 100 102 1ot i ‘0
e asmanydaspin Run 1+2 Min. bias integrated luminosity (nb™

e What is now measured for A =2 and A = 3 will be accessible for A=4
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Hyper-Nuclei yield reach in Run 3+4

ALICE ITS upgrade TDR, : CERN-LHCC-2013-024

e High statistics sample of minimum bias Pb-Pb collisions %, 70000f
_ . S E ALICE Upgrade
e Improved tracking resolution from the ALICE ITS upgrade £ 60000 PbPb, {5 = 5.5 TeV
B - Sy = 9- e
: . . < i * TN
e 3,H reconstruction feasible in 2-body and 3-body decay ~ 50000} Centrality 0-10 %
. — Integrated luminesity : 10 nb™
with charged products 5 40000"
. . . O A
e For all the studied hypernuclei the B.R. is not well known i
30000}
[1,2] :
: : : : 20000}
« Precise evaluation of absorption cross section of :
anti(hyper)nuclei is needed 10000 2 < p, < 10 GeV/c
I iH - 3He-i]- T J | 1
Mass (GeVic?) Decay Channel B.R. dN/dy (SHM) £96 298 3 302 3.04 3.06
Invariant Mass(*He, ) (GeV/c?)
3 H- 3He + 1T 250411 Expected invariant mass distribution for 3AH (plus
*\H 2,991 3AH S d4p+ T 41%{1} 1x10 antiparticle) reconstruction in Pb-Pb collisions (0-10%
A centrality class), corresponding to L,_=10nb™.
“H 3,931 ‘ H- “He + 1T 50%][2] 2x107 ok
. Kamada et al., PRC 57, 1595 (1998),
4 [2]H. Outa et al., NPA 639 (1998) 251-260
He 3,929 ‘ He— SHe+p+ T 32%][2] 2x107
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Hyper-Nuclei yield reach in Run 3+4
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ALICE Upgrade projection
Pb-Pb, | s,y = 5.5 TeV (0-10%)
_ SH-He+
B.R. = 25% (*)
_ “Ho*He+m
B.R. =50% (*)
‘He > He+p+m
B.R. =32% (*
(*) theoretical

IIIIIIII 1 IIIIIuJ 111 IIIII 11

« ~10%3 H candidates
in 2015 sample

!

11 IIIIIIE

107 1 10
Min. bias integrated luminosity (nb™)

Expected significance (2-10 GeV/c¢)

10?

10

-  ALICE Upgrade projection
- Pb-Pb, | s, =5.5TeV (0-10%)
_ ,3\H S5%He+
B.R. = 25% (*)
__ tHo'He+mw
B.R. = 50% (*)
‘He >°He +p+
B.R. =32% (*)
(*) theoretical

50

36

107 1 10
Min. bias integrated luminosity (nb™)

 With the expected 10 nb™ anti-* H, anti-* He “discovery” in reach
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Distinguish among production mechanisms




Production models

Statistical thermal model

e Thermodynamic approach to particle production in
heavy-ion collisions
« Abundances fixed at chemical freeze-out (T, _ ) :

(hyper)nuclei are very sensitive to T __because of
their large mass (M)

— Exponential dependence of the yield: dN/dy o

10 10° 10°

el m/Tchem)

ook, =4 LHC
5 10°F =
g 10: E .

10k = -
S 102 i A=3
1;,' .
o 10 .
£ 4 A=4
S .
- 10" B
5 o :

0 =
o L) -
o m'a = A=5
-g 10*H .

10° L.

\ Sy (GeV)

A. Andronic et al., Phys. Lett. B 697, 203 (2011)

» Nuclei are formed by protons and neutrons
which are nearby in space and have similar
velocities (after kinetic freeze-out)

e Produced nuclei can break apart and be
created again by final-state coalescence

Centrality(%)

6050 40 30 20 10 0
3BT T T T T T
F AutAu sy, =200 GeV "
30F
F PACIAE+DCPC % ©
r A
= 25 . 2
3 F ¥ SHe
rd F
S of ol
> r ¢ °He g
T 15F A °He
5 f «d &
& 1oF od
i v A 6 ©
51 op o ©
o S S T . N
S T TN PR TR T |

0 50 100 150 200 250 300 350
Number of participants Nmm

G. Chen et al., Phys. Rev. C 88, 034908 (2013)
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Can we distinguish coalescence vs thermal model? &

ALICE

e Can we understand if the models are in contrast and up to which extent?
e For which system(s) do they provide a valid description?
e Can they describe all the particles in their scope of validity?
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Can we distinguish coalescence vs thermal model? &

ALICE

e Can we understand if the models are in contrast and up to which extent?
e For which system(s) do they provide a valid description?

e Can they describe all the particles in their scope of validity?

» Recently, it has been proposed to address these questions by looking at the coalescence parameters (5,,
B,, B;,) as the key observables, studied as a function of the source radius.

°He, |y| < 0.5

6;‘ T T 5;
< ALICE Preliminary <
> ' -
& 10 By by i pJA=075GeVic 8 PO-P Yy =5.02TeV ]
= E by 3 = * 0-10% * 10-40%
~ L 3 § 0% o -
@ _ ] E * 40-90%
d, pp, Vs =13 TeV ]
| [e]d+d, pp, Vs =7 TeV EH
VOM Multiplicity Classes L \ s+ e ¢
107 (1043, p-Pb, {5 = 5.02 TeV ¥ ) E 107 — i E
C VOA Multiplicity Classes (Pb-side) H § ] [ ol n“
[ [sld, Pb-Pb, {5 = 5.02 TeV ﬁaﬂ ] L -n ]
L [#]d, Pb-Pb, sy = 2.76 TeV (PRC 93 (2015) 024917) 4 107 “ll ALICE Preliminary —
PN I AP I IR IPPNN I BT I P I
107 ' ool 06 08 1 12 14 16 18 2 22 24 26 28
! 10 TGN sdn S p./ A (GeVic)
oh o Tan | <05 ALICE-PUBLIC-2017-006
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Advanced coalescence model

e |f baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum)
and match spin state a (anti-)nucleus can be formed

e Sincein “small” colliding systems the nucleus is larger w.r.t. the source, the phase space is
reduced to the momentum space

g _ (4 NV 1M
ATz AlmA

Ag

X
FIG. 1. Schematic for the production of a deuteron in
the final state of a relativistic collision between two
heavy nuclei.

J. 1. Kapusta, Phys.Rev. C21, 1301 (1980)
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Advanced coalescence model

e |f baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum)
and match spin state a (anti-)nucleus can be formed

o Sincein “small” colliding systems the nucleus is larger w.r.t. the source, the phase space is
reduced to the momentum space
o For “large” systems, the size of the emitting volume (V) has to be taken into account: the larger

the distance between the protons and neutrons which are created in the collision, the less likely
it is that they coalesce

(small fireball) (|argéﬁréball)
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Advanced coalescence model €

ALICE

e |f baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum)
and match spin state a (anti-)nucleus can be formed

o Sincein “small” colliding systems the nucleus is larger w.r.t. the source, the phase space is
reduced to the momentum space

o For “large” systems, the size of the emitting volume (V) has to be taken into account: the larger

the distance between the protons and neutrons which are created in the collision, the less likely
it is that they coalesce

e The source can be parameterized as rapidly expanding under radial flow (hydro)

e The coalescence process is governed by the same correlation volume (“length of homogeneity”)
which can be extracted from HBT interferometry

« The source radius enters in the B, and in the quantum-mechanical correction (C,) factor that
accounts for the size of the object being produced (d, *He, ...)

. A-1
Veff(A, Mt) (27?)
R. Scheibl, U. Heinz, PRC 59 (1999) 1585-1602 2A Veg(1l.m m+Veg(l. m

K. Blum et al,, PRD 96 (2017) 103021 eff( ’ t) . eﬁ( ’ t)
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B,, B, from advanced coalescence

Bg [ G6V2 ]

1073

104

_3
2 2 2 3
~ 0068 [ (F2)) og( L2 [1] Govi
1 fm 3.2 fn e
-2
- | | . . 10
o — Eg.(12)
N . PP ISR 53 GeV v
o % pp Serpukhov 11.5 GeV vF
- : 77 pAlfBe SPS 200-240 GeV py -3
L Q S50 pBe FNAL 300 GeV py; 10
AN 777 pTi ENAL 300 GeV pu
S0 pW FNAL 300 GeV pi
© © PbPb central ALICE 2.76 TeV v5 high p,
| & & PbPb central ALICE 2.76 TeV 5 low p, | 10 -4
o & & PbPb off ALICE 2.76 TeV ¥ high p, —
L © © PbPb off ALICE 2.76 TeV 5 low p, -
F & & PbPb Central NA44/NA49 158A GeV 5 %
B & & AuAu Central STAR 200 GeV 5 _
I | S 107
e
L d ES’
= 10°
r -7
L 10
A AA
PR P2 | | ! ! 108
0 1 2 3 4 5 6
R[ fm ]

0.0024 ((lf(pt))z +0.8 (%)2) _fl]

5

T |||||||| T |||||||| T |||||||| T IIIIIIII T T TJTTTIm

T T
— Eq.(11)

pp ALICE 7 TeV /5 (preliminary)
77 PAl/Be SPS 200-240 GeV p, L]
© © PbPb Central ALICE 2.76 TeV v high p,
& & PbPb Central ALICE 2.76 TeV V5 low p, §
& & PbPb Off ALICE 2.76 TeV v high p, H
© © PbPb Off ALICE 2.76 TeV v low p,
& & PbPb Central NA44/NA49 158A GeV 5 ]
& & AuAu Central STAR 200 GeV v

SHe

PR

R[fm]
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B, from thermal model + blast-wave

o Statistical thermal models provide the yield of nuclei very precisely

— Ty L B L BN BRI
%0 T Pb-Pb \5,,=2.76 TeV
g 102 _ 5 0-10% centrality _
> [ . PA E
2 ok i 4
Z g R E
© 1 ¢’.' : E
-0 3

107" "-‘..‘d 4

g -, ]

107 E
= ]

10 ? ~._3H63H %
10*F e Data, ALICE *a' .
10_% Statistical Hadronization 7
10 i total (after decays) ~2He ]
R primordial + 3
10—77"..\....\.."|.‘.‘|.H.|‘...|H.m‘...’
0 0.5 1 1.5 2 2.5 3 3.5 4
Mass (GeV)

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel arXiv:1710.09425
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B, from thermal model + blast-wave

« Statistical thermal models provide the yield of nuclei very precisely but no p; spectra
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B, from thermal model + blast-wave

« Statistical thermal models provide the yield of nuclei very precisely but no p; spectra

« To evaluate the B,, the p; spectra have been modeled with a Blast-Wave parametrization,
with parameters fixed by fit to i,K,p

~ 0_2_ | I —— T 7 o~
%J C l: o%
O 0-1 8_ — "=
BN \%wag% 18
0.14 —:
- %% 1840
0.1 2:_ (Q} _: 35
0.1 %% 430
L Global BIast-Wave fit to x N
0.08F ™ (0.5-1 GeV/c) , K (0.2-1.5 GeV/c) , p (0.3-3.0 GeV/c) = 25
e ALICE Preliminary, pp, \s =7 TeV 1%
0-06:_ = ALICE, p-Pb, 15 = 5.02 TeV Bl e
0.04F * ALICE, Pb-Pb, {5, =276 TeV El "
L e ALICE Prellmlnary Pb-Pb, ﬁ_ 5.02 TeV ]
o O L L I | | 11 I 111 1 I_ 5
’ 20 0 1 O 2 0 3 0 4 0 5 0.6 0.7
B
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B, from thermal model + blast-wave

« Statistical thermal models provide the yield of nuclei very precisely but no p; spectra

« To evaluate the B,, the p; spectra have been modeled with a Blast-Wave parametrization,
with parameters fixed by fit to i,K,p

e The normalization for d and 3He spectra is fixed multiplying the d/m (3He/m) ratio from
thermal model to the measured nt yield

« The normalization for 3,H is extracted from the 3He and the S; predicted by thermal model
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B, from thermal model + blast-wave

« Statistical thermal models provide the yield of nuclei very precisely but no p; spectra

« To evaluate the B,, the p; spectra have been modeled with a Blast-Wave parametrization,
with parameters fixed by fit to i,K,p

e The normalization for d and 3He spectra is fixed multiplying the d/m (3He/m) ratio from
thermal model to the measured nt yield

e The normalization for 3,H is extracted from the 3He and the s, predicted by thermal model

o Coalescence parameters B, are extracted from using

3

d’N, SN\
Ey—= =By | E,—2
dp;
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B, from thermal model + blast-wave

« Statistical thermal models provide the yield of nuclei very precisely but no p; spectra

« To evaluate the B,, the p; spectra have been modeled with a Blast-Wave parametrization,
with parameters fixed by fit to i,K,p

e The normalization for d and 3He spectra is fixed multiplying the d/m (3He/m) ratio from
thermal model to the measured nt yield

e The normalization for 3,H is extracted from the 3He and the s, predicted by thermal model

« Coalescence parameters B, are extracted using

Nucleus p, spectra Proton p_spectra
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Sensitivity to the radius of the object: the B,  case €

P o ° Hisavery loosely bound state (- large radius)
- = — - B, , coalesc.
E oL e e e Tov 2 081 re ity . Predictions of B, , from advanced coalescence and
& L SHM+Blast vary a lot when different ° H radii are
10 R=10.6 fm considered
R e This measurement is fundamental to
5 s H understand hyper-nuclei production mechanism
10 in Pb-Pb collisions
10"{?
10?%__—_— “"—'
10“;— H“'"""--..,_
109—1 L1l ] Ll I L1 1 I L1 1l l L1 1 I Ll L 1
1 2 3 4 5 6
radius (fm)

F.Bellini, A.Kalweit Private Communication
Based on PRD 96 (2017) 103021
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Sensitivity to the radius of the object: the B,  case €

~ 10 1E
‘3.3 ? — - B, , coalesc.
B = [m] B, Pb-Pb (s, =2.76 TeV [PLB 754, 360-372 (2016)]
8 102w By, Pb-Pb {5, =2.76 TeV, BW + GSI (T = 156 MeV)
3
10 R = 10.6 fm
w0
: 3 H
10°® A
E
10 G_E aaaaa
107 "
: e ———
--'“l-.
10°k T~ —
109—l| ] JII JI |ll|11||||||
1 2 3 B 5 6
radius (fm)

F.Bellini, A.Kalweit Private Communication
Based on PRD 96 (2017) 103021
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o ° Hisavery loosely bound state (- large radius)

e Predictions of Bg/\from advanced coalescence and
SHM+Blast vary a lot when different ° H radii are
considered

e This measurement is fundamental to
understand hyper-nuclei production mechanism
in Pb-Pb collisions

e Questions to be addressed in Run 3 and 4

e What is the centrality dependence of the
hypertriton production in Pb-Pb?

e Can we produce at all the hypertriton in pp
collisions?

10/ 18




Particle ratios: Coalescence vs Thermal model|

€

0.006 .

ﬁ B T T T T TT1T I T T T T T TTT T T T T T TTT | T T T ] % T T 1T 1T 171
+ - [#]p-Pb, {5y = 5.02TeV ALICE Preliminary 1 ©
g 0.005 [ VOA Multiplicity Classes (Pb-side) 7 > q0° = H H —
= ~ [W]Pb-Pb, {5y, = 5.02 TeV . . g = i
Q - [®lpp, s =7Tev | © C ]
0.004 | [¥|pp, (5= 13 Tev - 2 [ H i
B VOM Multiplicity CI H - € H H H
C N — 10k —
0.003F - 6 10°E -
- 7] o C .
- @ i g L @@ §
0.002]— 197 - | ALICE i
B ,*Ewé [ [#]Pb-Pb, {s,, = 2.76 TeV (PRC 93 (2015) 024917) . e 2°He/ (p + p), p-Pb \ Sy = 5.02 TeV, Preliminary
0.001F- H pp. s = 900 GeV, dip (PRC 97 (2018) 024615) 107" o 2°He / (p + p), Pb-Pb | 5, = 5.02 TeV, Preliminary E
’ - BHpp. Vs = 2.76 TeV, d/p (PRC 97 (2018) 024615) | = u 2°He/(p + p), Pb-Pb \ San = 276 TeV, Phys.Rev. C93 (2016) 2, 024917 .
i o BKlpp, Vs = 7 TeV, d/p (PRC 97 (2018) 024615) ] _ m2°He/(p+p),pp \S =7 TeV, Phys.Rev. C97 (2018) 2, 024615 ]
0 C 1 1 | I I I I 1 1 | N I I | 1 1 | N I I | 1 1 1 i 1 I T | | 1 1 1 | T - | 1 1 1 N | | 1
1 10 102 10° 10 10° oy }83>
n
(AN, /dn, b>| <05 o~ M pi<0.5

o Simple coalescence works in small systems while thermal models describe better the Pb-Pb data
e Hint of deuteron suppression in central collisions (not significant with the current uncertainties)

o 3He/p: a factor 5 is seen going from small systems to Pb-Pb. If this will be confirmed by studies on larger data samples, a

unified description will be more challenging
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Coalescence in UrQMD

5 Pb+Pb, 2.75 TeV

Deuterons from ' ' '
Lphase-space coalescence.
Parameters:
4 ’ipmaf giiGew‘: o ’ « Models with rescattering provide a
o | rmax= . m | o e . o
S [ smuiations * o significant difference for the d/p in
= 3 _—g—gygﬁglﬁzmo, Pb+Pb 1 . central collisions
--B8--Ur v3.4, p+ .
D | ALICE Data: PP 1 . e At the moment our data are consistent
L LS Ef;Pb | with both the predictions.
S ’ | — The reduction of systematic
o i,@ | uncertainties is mandatory for future
1k @ Thermal fit (Florence): T,= 163.8 MeV measurements
& \Without Rescattering
{> With Rescattering
O 1 a3l 1 L 1 MR R | 1 L 1 P |
3 10 100 1000

dN_ /dn

Reinhard Stock (QM2018) https://indico.cern.ch/event/656452/contributions/2869985/attachments/1645416/2629552/Stock_QM2018-2.pdf

14/06/2017 LIGHT UP 2018- Ramona Lea 12 /18




Improving the anti-nuclei production systematics

Positive Tracks with TRDin in data Positive Tracks with TRDin in MC
s g% §a i
ALkE mem.ig% ,@ e ek ALICE Preliminary <~ deuteron
T|lo © [ —_ .
p- Pb A= 2|TeV 2|, PPD Sy =5.02TeV ~anti-deuteron
| s g [
| 3 g2 s g
| | | S22 8L . —— -
2 EE il il == == clliin a= Sn o SN i = o
208— — + -1
| l C _+_
: Do . ool
0.4:—
""I'"'2'""3"'"‘1""é""5| 1 02:.‘.I.v N
“1 1.2 1.4 1.6 1.8 2
¢ (rad) p/q (GeV/c)

« Knowing precisely the interaction of nuclei with the detector is fundamental for precise measurements

o At present, efficiencies are evaluated on MC using GEANT3 + empirical model for absorption of anti-nuclei
and Geant4: results are quite different (0(10%))

o ALICE is now studying the discrepancies between data and MC using the TRD detector as a “target” for
(anti-)nuclei projectiles

e First studies show that the current uncertainty can be reduced by applying a better data driven correction to

our measurements.
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Precise measurements of 3 AH lifetime




°H lifetime determination

e ALICE can be used also for hypernuclear
physics measurements:

> the present data provide one of the most

w S500F : 3 H

8 e Poiosans Semens - Fres A (PDG) precise measurement of H life

GE') PR 180 (1969) 1307 bR 3HW d A . . ..

= 400F G. Keyes et al aft World Average e« How much will increase our precision on
= PRD 1 (1970) 66

c I STAR Collaboration ALICE Collaboration ALICE Preliminary th e m e a S u re m e nt?

L - Science PLB 754 (2016)360 Pb-Pb y5.,,=5.02 TeV

£ 300f ¢ 328 (2010)58 Pb-Pb YSyy=2.76 TeV

8 - Ll RN N} L N R R R I BN LB B ) BB N B N BN R R RN R BN EEE _NEN N

s - i

] ]

200 ' [ﬂ |ﬂ H] '
[ G. Keyes et al.
L NPB 67(1973)269

HypH| Collaboration

100 G. Bohm et al. NPA 913(2013)170 Pﬁgggg (2314%[;0(;22839
L NPB 16 (1970) 46
tR. J. Prem and P. H. Steinberg

0 r PR 136 (1964) B1803
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°H lifetime determination

1 : e ALICE can be used also for hypernuclear
; physics measurements:

> the present data provide one of the most
precise measurement of ° H life

10

e How much will increase our precision on
the measurement?

e With 13ub™? (2015 run) a statistical
uncertainty of ~14% has been measured
ALICE Upgrade projection

Pb-Pb, |5y = 5.5 TeV (0-10%) « With 10nb™ (Run 3 and 4)a statistical
: uncertainty of ~0.7% is foreseen

3 3 - : . . .
— AH-"He+x 5 e The increase of the measured statistics
; will reduce also the systematics
1ol ———nll il il uncertainties - the final evaluation is

1072 10” 1 10 work in progress
Min. bias integrated luminosity (nb™

ct Statistical Error

1072

107
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Searches for exotic bound states




Ann bound state

TMVA overtraining check for classifier: BDT

Bound state of Ann? HypHI experiment at GSI

e The main challenge of this analysis is that the signal
is not only rare, but it may not even exist.

§ as -_- Signhl (test sample) | | T 0" "signal (training sampid) | _:

sees eVI d ence Of a new State . /\n n % t_l_ T Z "~ \-VV//] Background (test sample) -+ Background (training sample)

: 2 C Kolmogorov-Smirnov test: signal (background) probability = 0.24 ( 0.95) -

= 2f i -

C. Rappold et al. (HypHI collaboration), Phys. Rev. C88, 041001(R) (2013) [~ r _V' ALICE Performance ]
- /.. Pb-Pb {5=5.02 TeV J g
15 - §
PR i e O T T . = 1 43
= of: L Je
5 — (dE/dx) . - <
g [ = trifon ] 05 [ 2
x 200[— ALICE Performance e -] H
m [ Pb-Pb |s=5.02TeV [ — 4 / g ¢

- . : . -08 -06 -04  -02 0 0.2 04 0.6
.l . moe<|3 Ot 1 BDT response

100

50 JoFs e Machine learning (ML) approach has been used to

consider all the features of the signal.

PR TR T AN T TR TN AN ST TR T AN ST TR TN NN TN TR T [N TN T SR [ ST S T N S T _l

-8 -6 -4 -2 0 2 4 6 8 . . . .
plz (Gevio) e This study is not (yet) conclusive but will serve as a
baseline for the search of other “exotic” particles
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Search for d*

In 2011 the WASA-at-COSY Collaboration reported the observation of a resonance

compatible with the predicted d* in all relevant two pion decay channels as well as in np
scatteri NE. P Adlarson, etal, Phys. Rev. Lett. 106 (2011) 242302

—_

C\/'IL-)\ E E q) 0_40_| TTT ‘ TTTT | TTTT | TTTT | TTTT | TTTT | TTTT | TTTT [ TTTT | TTT I_
3 - —— 0(782) ALICE simulation ] O - .
8 o ;_ S no p—Pb {5y, = 5.02 TeV _; .8 0_35:— ALICE simulation < PID with TPC only e
'é = “s : “é 0.30FP P2 Sy = 5.02 TeV+PID with TPC+TOF .
o B 7 N - 1
\\&/ 102 = @ 0.25 —
i) = = T —— .
SR el i 0.20- 3
s B C .
5 VE 0.5 =
S - T - .
o B T 0.10F — -
210t E C ]
8 F ] 0.05—e— =
o L i E e E

10_5 I 2_'5 I I I I 2_'6 I OIOO:I 11 ‘ | | | | 1111 | | | | | 1111 | | ‘ | | 111 I_

05 115 2 25 3 35 4 45 5 55

M., (Gev/c?)
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Search for d*

e The significance of the d*(2380) signal
measurement is low due to the huge background
and to the low reconstruction efficiency at the

10 I T | T | T TTT I T T 17T T TT1TT T TTT mTTT LI \ d . k
ALICE simulation NRRER procduction peak.
gl P-Pb Sy =5.02TeV e Two methods to increase the significance:
e Reducing background - Optimization of

rejection criteria

e Increasing data sample :
PID with TPC+TOF, 0.5 < pT <1.5GeV/c

d*(2380)— dnr Significance

£ Statistical uncertainty e ~ 3 x 10 events needed to reach 50

»
Illlllllllllllllll_
)

N
I RN B

2 \\\\§ Thermal model uncertainty N . . .
i e p-Pbintegrated luminosity end of Run 4:
olie Lo b b b e b b Lo Lo x10° ~100 nbt > ~2x10* events
100 200 300 400 500 600 700 800 900 1000
Number of p-Pb inelastic events e Very challenging measurement, but

feasible at the end of Run4
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Conclusions

o After the LS2 ALICE will be able to collect data with better $ 10°  Alce Uparieprfsten ™" 3
performance at higher luminosity A S

« All the physics which is now done for A =2 and A = 3 (hyper-)nuclei © N
will be done for A =4: A
» Differential measurements of A=3 (hyper)nuclei 12
« Potential for discovery for A = 4 (anti)hypernuclei 1‘1’ e
o Measurements of B, for 4He, 4,H and 4,He " i s int;g;;ted juminosiy (nb)

£ TorTTTT
F  ALICE Upgrade projection
I Pb-Pb, | sy =55 TeV (0-10%)
__ SHo He+n
102 B.R. = 25% (*)
F_ AH-o'He+m
[ B.R.=50% (*)
j'\HeAEHe+p+1t'

B.R. = 32% (*)
(*) theoretical

10

Expected significance (2-10 GeV/c)

107 1 10
Min. bias integrated luminosity (nb™
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Conclusions

o After the LS2 ALICE will be able to collect data with better
performance at higher luminosity

E — - B, , coalesc
[ [®]8,, Pb-Pb |5, =276 TeV [PLB 754, 360-372 (2016)]
25 s B, Pb-Pb 5, =2.76 TeV, BW + GSI (T = 156 MeV)

o All the physics which is now done for A= 2 and A = 3 (hyper-)nuclei
will be done for A =4:

B, (GeV*/c9)
|

. ) ) R=10.6 fm
o Differential measurements of A=3 (hyper)nuclei

e Potential for discovery for A = 4 (anti)hypernuclei

o Measurements of B, for 4He, 4,H and 4,He

« The precise measurement of B, will shed light on the understanding  «t g

e
E T —
E ——
—
—~—
—~
—

of nuclei production mechanism

-
—
—~—

HEEEEE R TR R
1 2 3 4 5 6

radius (fm)
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Conclusions

o After the LS2 ALICE will be able to collect data with better
performance at higher luminosity

o All the physics which is now done for A= 2 and A = 3 (hyper-)nuclei
will be done for A =4:

ct Statistical Error
=

o Differential measurements of A=3 (hyper)nuclei 10*
e Potential for discovery for A = 4 (anti)hypernuclei 104' PP o s T 010%
« Measurements of B, for 4He, 4,H and 4,He P T
. The precise measurement of B, will shed light on the understanding .. & regas o vy

of nuclei production mechanism

e The 3,H lifetime measurements will reach a statistical precision < 1%
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Conclusions

o After the LS2 ALICE will be able to collect data with better
performance at higher luminosity

o All the physics which is now done for A= 2 and A = 3 (hyper-)nuclei
will be done for A =4:

o Differential measurements of A=3 (hyper)nuclei
e Potential for discovery for A = 4 (anti)hypernuclei

o Measurements of B, for 4He, 4,H and 4,He

e The precise measurement of B, will shed light on the understanding
of nuclei production mechanism

e The 3,H lifetime measurements will reach a statistical precision < 1%

e The search for exotic bound systems will profit from the large
statistics

e The reduction of systematics uncertainties will be mandatory
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Backup




Mapping (dN/dn) into system radius

o ALICE measured spectra and yields in VOM (or VOA for p-Pb) multiplicity bins and we do
not have HBT radii measurements with this estimator in all cases.

e The following assumptions have been done:

« the radii defining the volume of the source are equal (Rgs. = Riong = Rout = R)

* R=4.5fm from the m HBT radii at the highest (k;)in central Pb-Pb
« forpp, R=R ~0.8fm [PRD 96 (2017) 103021]

* linear dependence of the (dN/dn)1/3vs radius across collision systems

* Mapping of (dN/dn) — R applied to ALICE data and Thermal + Blast-wave predictions.

F.Bellini, A.Kalweit [Private Communication]
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