Heavy-quark Hadron Production in Nuclear Collisions Pengfei Zhuang (Tsinghua University, Beijing)

- Introduction
- Correlation between Strangeness and Charm
- Correlation between Strangeness and Baryon Density
- Sequential Coalescence
- D_s/D^0 (Λ_c/D^0) Enhancement (Suppression)
- Summary

work by Jiaxing Zhao, Shuzhe Shi, Nu Xu and PZ

Hadronization

Hadronization in vacuum

a non-perturbative process, unsolved problem in physics

Hadronization at finite temperature (such as in heavy ion collisions)

statistics should play an important role in hadronization of quark matter.

statistical distribution at freeze-out:

P.Braun-Munzinger, J.Stachel, J.Wessels and N.Xu, PLB344, 43(1995)

coalescence (recombination) models:

V.Greco, C.Ko and P.Levai, PRL90, 202302(2003) R.Hwa and C.Yang, PRC70, 024905(2004)

$$N_{meson} \sim \int d\sigma^{\mu} p_{\mu} W(x,p) f_q(x_1,p_1) f_{\bar{q}}(x_2,p_2)$$

hydro, dynamics, statistics

• Two assumptions

1) the coalescence probability (Wigner function)

 $W(x,p) \sim e^{-\frac{x^2}{\langle x \rangle^2}} e^{-\frac{p^2}{\langle p \rangle^2}}$ with parameters $\langle x \rangle$ and $\langle p \rangle$

2) all the hadrons (light- and heavy-quark hadrons) are created at the same surface (time).

Limit: Quarkonia

• Quarkonia in vacuum

non-relativistic potential model with Cornell potential:

C.Quigg and J.Rosner, Phys. Rep. 56, 167(1979)

• Quarkonia at finite temperature (such as in heavy ion collisions)

non-relativistic potential model with lattice simulated potential:

H.Satz, J.Phys. G32, R25(2006)

 \rightarrow 1) sequential suppression, the dissociation temperature

$$T_{J/\psi} > T_{\psi'} \simeq T_{\chi_c}$$

 J/ψ is produced earlier than ψ' and χ_c . Heavy-quark hadrons are sequentially produced.

 \rightarrow 2) calculable Wigner function

$$W(x,p) = \int d^4 y e^{-ipy} \psi(x + \frac{y}{2}) \psi^*(x - \frac{y}{2})$$

• *Quarkonium regeneration:*

P.Braun-Munzinger and J.Stachel, PLB490, 196(2000) R.Thews, M.Schroedter and J.Rafelski, PRC63, 054905(2001) L.Grandchamp and R.Rapp, NPA709, 415(2002) L.Yan, N.Xu and PZ, PRL97, 232301(2006)

Langevin equation for heavy quarks with attractive force between correlated c and \overline{c} , C. Young and E.Shuryak, PRC79, 034907(2009)

$$\frac{d\vec{p}}{dt} = -\gamma\vec{p} + \vec{\eta} - \vec{\nabla}V$$

 \rightarrow increasing charmonium surviving probability.

Strangeness Enhancement

Well-known strangeness enhancement due to thermal production in QGP, supported by experimental data in heavy ion collisions.

P.Koch, B.Muller and J.Rafelski, Phys. Rept. 142, 167(1986)

Strong D_s/D^0 enhancement at RHIC and LHC

 \square D_s enhancement via strangeness enhanement

M.He, R.Fries and R.Rapp, PRL110, 112301(2013)

there is still a sizeable difference between strangeness enhancement and data.

Charm Conservation

Charm quark thermal production in QGP

K.Zhou, Z.Chen, C.Greiner and PZ, PLB758, 434(2016)

Even at LHC energy, heavy quark production is controlled by the initial hard process, the thermal production in QGP can be safely neglected.

 \rightarrow Charm quark number is conserved during the evolution of HIC.

Correlation between Strangeness and Charm

Charm conservation in heavy ion collisions

P.Braun-Munzinger and J.Stachel, PLB490, 196(2000) M.Gorenstein, A.Kostyuk, H.Stoecker and W.Greiner, PLB509, 277(2001) Y.Oh, C.Ko, S.Lee and S.Yasui, PRC79, 044905(2009) S.Plumari, V.Minissale, S.Das and V.Greco, EPJC78, 348(2018)

If all charmed hadrons are simultaneously produced, the constraint of charm conservation is introduced via a normalization constant g_c ,

of any singly charmed hadron $\sim g_c$ \rightarrow no effect on the ratio D_s/D^0 and Λ_c/D^0 !

■ If charmed hadrons are sequentially produced, more charm quarks are involved in the earlier production and less in the later production, due to charm conservation. → different charm conservation effect on different hadrons !

Correlation between strangeness and charm:

When D_s is produced earlier than D^0 ,

D_s enhancement by strangeness enhancement

 $\rightarrow D_0$ suppression by charm conservation

 \rightarrow an extra D_S/D^0 enhancement !

Sequential Coalescence Model

Step 1: Sequential production temperature from 2-body (3-body) Dirac equations for $c\bar{q}$ (q = u, d, s, c), → 1) binding energy $\varepsilon(T)$, production (dissociation) temperature $\varepsilon(T_D) = 0$ 2) wave function $\psi(x|T)$ coalescence probability $W(x, p|T) = \int d^4y e^{-ipy} \psi(x + \frac{y}{2}|T) \psi^*(x - \frac{y}{2}|T)$

■ Step 2: Sequential production time from hydrodynamics for QGP evolution \rightarrow production time $t(\vec{x}, T_D)$

Step 3: Sequential coalescence with charm conservation

$$N \sim \int d\sigma^{\mu} p_{\mu} W(x, p) f_{q}(x_{1}, p_{1}) f_{\bar{q}}(x_{2}, p_{2})$$

total charm quark number: N_c

total charm quark number in the sequential coalescence process:

$$N_c - \sum$$
(all used charm quarks)

Step 1: Sequential Production Temperature from 2-body Dirac Equations

T = 0: H.Crater, J.Yoon and C.Wong, PRD79, 034011(2009) $T \neq 0$: S.Shi, X.Guo and PZ, PRD88, 014021(2013)

$$\begin{bmatrix} -\frac{d^2}{dt^2} + \frac{j(j+1)}{r^2} + 2m_w B + B^2 + 2\epsilon_w A - A^2 + \Phi_D - 3\Phi_{SS} \end{bmatrix} u_0 + 2\sqrt{j(j+1)} (\Phi_{SOD} - \Phi_{SOX}) u_1^0 = b^2 u_0. \quad \Phi_D = M + F^2 + K'^2 - \nabla^2 F + 2K'P - 2\left(F' + \frac{1}{r}\right)Q,$$

$$\begin{bmatrix} -\frac{d^2}{dt^2} + \frac{j(j+1)}{r^2} + 2m_w B + B^2 + 2\epsilon_w A - A^2 + \Phi_D - 2\Phi_{SO} + \Phi_{SS} + 2\Phi_T - 2\Phi_{SOT} \end{bmatrix} u_1^0 \qquad \Phi_T = \frac{1}{3} \begin{bmatrix} N + 2F'K' - \nabla^2 K + \left(\frac{3F' - K' + \frac{3}{r}}{r}\right)P + \left(F' - 3K' + \frac{1}{r}\right)Q,$$

$$\begin{bmatrix} -\frac{d^2}{dt^2} + \frac{j(j-1)}{r^2} + 2m_w B + B^2 + 2\epsilon_w A - A^2 + \Phi_D + 2(j-1)\Phi_{SO} + \Phi_{SS} + \frac{2(j-1)}{2j+1} (\Phi_{SOT} - \Phi_T) \end{bmatrix} u_1^+ \qquad \Phi_{SO} = -\frac{F'}{r} + K'P - \left(F' + \frac{1}{r}\right)Q,$$

$$\begin{bmatrix} -\frac{d^2}{dt^2} + \frac{j(j-1)}{r^2} + 2m_w B + B^2 + 2\epsilon_w A - A^2 + \Phi_D + 2(j-1)\Phi_{SO} + \Phi_{SS} + \frac{2(j-1)}{2j+1} (\Phi_{SOT} - \Phi_T) \end{bmatrix} u_1^+ \qquad \Phi_{SO} = 0 + \frac{2}{3}F'K' - \frac{1}{3}\nabla^2 K + \frac{2}{3}K'P - 2\left(F' + \frac{1}{3}F\right)Q,$$

$$\frac{+2\sqrt{j(j+1)}}{2j+1} (3\Phi_T - 2(j+2)\Phi_{SOT}) u_1^- = b^2u_1^+, \qquad F' = \frac{1}{2}L - \frac{3}{3}G,$$

$$\begin{bmatrix} -\frac{d^2}{dt^2} + \frac{(j+1)(j+2)}{r^2} + 2m_w B + B^2 + 2\epsilon_w A - A^2 + \Phi_D - 2(j+2)\Phi_{SO} + \Phi_{SS} + \frac{2(j+2)}{2j+1} (\Phi_{SOT} - \Phi_T) \end{bmatrix} u_1^- \qquad G' = -\frac{1}{2}\ln\left(1 - 2\frac{A}{m_m}\right),$$

$$\frac{+2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac{-2\sqrt{j(j+1)}}{2j+1} (3\Phi_T + 2(j-1)\Phi_{SOT}) u_1^+ = b^2u_1^- \qquad (2)$$

$$\frac$$

 $b^{2} = \frac{1}{4} \left[m_{m}^{2} - 2 \left(m_{q1}^{2} + m_{q2}^{2} \right) + \left(m_{q1}^{2} - m_{q2}^{2} \right)^{2} / m_{m}^{2} \right]$

Pengfei Zhuang, Shuryak Workshop, CCNU, 20181008-11

r [fm]

1

-0.6

-0.8

0

0.5

1.95

2.54 3.29

2

2.5

1.5

Step 2: Sequential Production Time from Hydrodynamic Equations

Sequential production temperature

the experimental data [19].			
Meson	$n^{2s+1}l_j$	Experiment (GeV)	Theoretical (GeV)
ϕ :s \bar{s}	$1^{3}S_{1} + 1^{3}D_{1}$	1.019	1.096
D:cū	$1^{1}S_{0}$	1.865	1.929
$D^*:c\bar{u}$	$1^{3}S_{1} + 1^{3}D_{1}$	2.010	1.989
$D_s:c\overline{s}$	$1^{1}S_{0}$	1.968	1.978
$D_s^*:c\bar{s}$	$1^{3}S_{1} + 1^{3}D_{1}$	2.112	2.037
J/ψ : $c\bar{c}$	$1^{3}S_{1}^{1} + 1^{3}D_{1}^{1}$	3.097	3.045
ψ' : $c\bar{c}$	$2^{3}S_{1}^{1} + 1^{3}D_{1}^{1}$	3.686	3.609
$\chi_1:c\bar{c}$	$1^{3}P_{1}$	3.511	3.395

TABLE I. Meson masses in vacuum and the comparison with the experimental data [19].

V = F

$$T_D/T_c \simeq \begin{cases} 1.20 & D_s \\ 1.15 & D^0 \\ 1 & \Lambda_c \end{cases}$$

Sequential production time

ideal hydrodynamics:

$$\partial^{\mu}T_{\mu\nu} = 0 + \partial^{\mu}n_{\mu} = 0 \rightarrow \tau(\vec{x}|T_D)$$

Step 3: Sequential Coalescence

J.Zhao, H.He and PZ, PLB771, 349(2017)

S.Shi, X.Guo and PZ, PRD88, 014021(2013)

Shuryak Workshop, CCNU, 20181008-11 Pengfei Zhuang,

Light & Strange Quark Distributions

 light quarks u and d: equilibrium distribution

$$f_q = \frac{N_q}{e^{(u^{\mu}p_{\mu} - \mu_q)/T} + 1}$$

 strange quark s: equilibrium distribution with strangeness fugacity

$$f_{s} = \frac{N_{s}\lambda_{s}}{e^{u^{\mu}p_{\mu}/T} + 1}$$
$$\lambda_{s} = \begin{cases} 0.85 & at RHIC\\ 1 & at LHC \end{cases}$$

Charm Quark Distribution

Hadron Decay after Coalescence

Decay from excited states to ground state (from PDG book)

to D^0 : 100% of D^{*0} and 68% of D^{*+}

to D_{s}^{+} :100% of D_{s}^{*+}

92% of $\Lambda_c s$ is from the excited state decay

Charmed Hadron P_T Distribution

J.Zhao, S.Shi, N.Xu and PZ, arXiv: 1805.10858

the shape is controlled by charm quark thermalization, namely the value of α . Pengfei Zhuang, Shuryak Workshop, CCNU, 20181008-11 14

Charm conservation increases the ratio D_s/D^0 , but sequential thermalization decreases the ratio at low p_T and increases the ratio at high p_T .

Correlation between Strangeness and Baryon Density

Baryon density effect

$$f_{u,d} = \frac{N_{u,d}}{e^{(u^{\mu}p_{\mu} - \mu_B/3)/T} + 1}} \qquad \qquad f_s = \frac{N_s \lambda_s}{e^{u^{\mu}p_{\mu}/T} + 1}$$

At high baryon density, more u and d quarks, less \bar{u} and \bar{d} quarks, and probably $n_{\bar{\eta}} < n_{\bar{s}}$!

$D_s/D^0(\sqrt{s})$

• Very strong D_s/D^0 enhancement at about $\sqrt{s} = 10$ GeV where the baryon density is the largest.

• The decreasing ratio at very low \sqrt{s} is due to the disappearance of s-quark thermal production, or the disappearance of the QGP fireball.

Comparison with K/π

• The behavior of D_s^+/D^0 (D_s^-/\overline{D}^0) is similar to K^+/π^+ (K^-/π^-) .

The two peaks locate at the largest baryon density.

Summary

• We developed a sequential coalescence model with charm conservation and continuous charm thermalization.

• The charm conservation significantly enhances (suppresses) the ratio $D_s/D^0 (\Lambda_c/D^0)$.

• The peak of $D_s/D^0(\sqrt{s})$ in the energy region of FAIR/NICA/HIAF can be considered as a signal of QGP phase transition.

Chirality Workshop 2019

The 5th Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions

The 1st (2015), 2nd(2016), and 3rd (2017) workshops at UCLA The 4th workshop at Florence

- Place: Tsinghua University, Beijing
- Date: April 8-12, 2019

You are welcome to join the workshop!