

Heavy Quark Production at LHCb

Yuanning Gao
Peking University

Heavy Flavor Production in High-Energy Collisions &

Forty Years of Quark-Gluon Plasma

CCNU, Oct.8-11,2018

From Z.G. Zhac

LHCb Detector

LHCb, Int. J. Mod. Phys. A30 (2015) 1530022

Forward spectrometer running in pp collider

• $2 < \eta < 5$ range: $\sim 25\%$ of $b\bar{b}$ pairs inside LHCb acceptance

Excellent vertex and IP, decay time resolution:

- $\sigma(IP) \approx 20 \ \mu m$ for high- p_T tracks
- $\sigma(\tau) \approx 45$ fs for $B_s^0 \to J/\psi \phi$ and $B_s^0 \to D_s^- \pi^+$ decays Very good momentum resolution:
- $\delta p/p \approx 0.5\% 1\%$ for $p \in (0,200)$ GeV
- $\sigma(m_B) \approx 24$ MeV for two-body decays

Hadron and Muon identification

- $\epsilon_{K \to K} \approx 95\%$ for $\epsilon_{\pi \to K} \approx 5\%$ up to 100 GeV
- $\epsilon_{\mu \to \mu} \approx 97\%$ for $\epsilon_{\pi \to \mu} \approx 1 3\%$

Data good for analyses

• > 99%

LHCb Integrated Recorded Luminosity in pp, 2010-2018

Physics program at LHCb

- Not only precision measurements in b, c sectors
 - CKM and CP-violation parameters
 - rare decays
 - testing lepton universality

- ...

- But also a general purpose detector
 - electroweak measurements: $\sin \theta_W$, W/Z, top quark, ...
 - QCD studies: production, spectroscopy, exotic hadrons
 - heavy ions

- ...

Heavy flavor production at LHCb

- Unique rapidity coverage
 - \rightarrow access to small Bjorken x region
- Exceptional coverage at small p_T

Studies of H-F productions at LHCb

	Collision	$\sqrt{s}/\sqrt{s}_{ extsf{NN}}$	Year published
Central exclusive production of J/ψ and $\psi(2S)$ mesons	рр	13 TeV	2018
Measurement of D_s^{\pm} production asymmetry	рр	7 + 8 TeV	2018
Measurement of ↑ production	рр	13 TeV	2018
Study of coherent J/ψ production (CONF)	PbPb	5 TeV	2018
Measurement of the B^\pm production cross-section	рр	$7+13{\sf TeV}$	2017
Measurement of the Υ polarizations	рр	7 + 8 TeV	2017
Study of $bar{b}$ correlations in high energy proton-proton collisions	рр	7 + 8 TeV	2017
Study of prompt D^0 meson production	pPb	5 TeV	2017
Prompt and nonprompt J/ψ production and nuclear modification	pPb	8.16 TeV	2017
Measurement of B^0 , B^0_{s} , B^+ and Λ^0_{b} production asymmetries	рр	7 + 8 TeV	2017
Measurement of the B^\pm production asymmetry	рр	$7+8\; {\sf TeV}$	2017
Study of J/ψ production in jets	рр	13 TeV	2017
Measurement of the J/ψ pair production cross-section	рр	13 TeV	2017
Measurement of the b-quark production cross-section	рр	$7+13{ m TeV}$	2017
Measurement of forward $tar{t}$, $W+bar{b}$ and $W^+car{c}$ production	рр	8 TeV	2017
Measurements of prompt charm production cross-sections	рр	5 TeV	2017
Prompt $\Lambda_{\mathcal{C}}^+$ production (CONF)	pPb	5.02	2017
Measurement of J/ψ and D^0 production (CONF)	pAr	110 GeV	2017
Study of $\psi(2S)$ production and cold nuclear matter effects	pPb	5 TeV	2016
Production of associated Υ and open charm hadrons	рр	7 + 8 TeV	2015
Measurements of prompt charm production cross-sections	рр	13 TeV	2015
Forward production Υ mesons	рр	7+ 8 TeV	2015
Measurement of forward J/ψ production cross-sections	рр	13 TeV	2015
Study of the production of Λ_{b}^{0} and $ar{\mathcal{B}}^{0}$ hadrons	pp	7 + 8 TeV	2015
Measurement of the exclusive Υ production cross-section	рр	7 + 8 TeV	2015
Identification of beauty and charm quark jets at LHCb	pp	7 + 8 TeV	2015
Measurement of B_c^+ production	рр	8 TeV	2015

Studies of H-F productions at LHCb

·	Collision	\sqrt{s}/\sqrt{s}_{NN}	Year published
Study of χ_b meson production	pp	7 + 8 TeV	2014
Observation of charmonium pairs produced exclusively	рр	7 + 8 TeV	2014
First measurement of the charge asymmetry in beauty-quark pair production	рр	7 TeV	2014
Study of Υ production and cold nuclear matter effects	pPb	5 TeV	2014
Measurement of $\psi(2S)$ polarisation	рр	7 TeV	2014
Measurement of the $\eta_{\mathcal{C}}(1S)$ production cross-section	рр	7 + 8 TeV	2014
Measurement of Υ production	рр	2.76	2014
Updated measurements of exclusive J/ψ and $\psi(2S)$ production	рр	7 TeV	2014
Study of J/ψ production and cold nuclear matter effects	pPb	5 TeV	2014
Reference cross-sections for $\Upsilon(1S)$ studies (CONF)	рр	5.02 TeV	2014
Measurement of J/ψ polarization	рр	7 TeV	2013
Measurement of the relative rate of prompt χ_{c0} , χ_{c1} and χ_{c2} production	рр	7 TeV	2013
Measurement of B meson production cross-sections	рр	7 TeV	2013
Production of J/ψ and Υ mesons	рр	8 TeV	2013
Measurements of the Λ_{b}^{0} polarisation	рр	7 TeV	2013
Prompt charm production	рр	7 TeV	2013
Exclusive J/ψ and $\psi(2S)$ production	рр	7 TeV	2013
Measurement of J/ψ production	рр	2.76	2013
Measurement of the D^\pm production asymmetry	рр	7 TeV	2013
Measurements of the B_c^+ production	рр	7 TeV	2013
Reference cross-sections for J/ψ studies (CONF)	рр	5.02	2013
Measurement of $\sigma(bar{b})$ with inclusive final states (CONF)	рр	7 TeV	2013
Measurement of prompt hadron production ratios	рр	$0.9+7~{ m TeV}$	2012
Measurement of the ratio of prompt $\chi_{\mathcal{C}}$ to J/ψ production	рр	7 TeV	2012
Measurement of $\psi(2S)$ production	рр	7 TeV	2012
Measurement of Υ production	рр	7 TeV	2012
Measurement of the B^\pm cross-section	рр	7 TeV	2012
Measurement of the cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ for prompt χ_c	рр	7 TeV	2012
Measurement of b hadron production fractions	рр	7 TeV	2012
Measurement of J/ψ production	рр	7 TeV	2011
Measurement of $\sigma(pp o bar{b}X)$ in forward region	рр	7 TeV	2010

Outline

- In pp collisions
 - √ quarkonium production
 - ✓ open heavy flavor production
 - √ Bc production
- Beyond ${m p}{m p}$ collisions
- Summary and prospects

Experiment strategies

- Advantage: high production rates
- Challenge: reconstruct an unstable particle from O(10²) tracks

√ tracking

- → excellent mass resolution
- $\sqrt{}$ particle identification
 - → no. of combinations reduced
- √ Vertexing
 - → weakly decayed particles
 - → particles from b/c decays

Charmonia studies at LHCb

• At LHCb charmonia $\lceil c\overline{c}
ceil$ may be accessed by

-
$$[c\overline{c}] \rightarrow J/\psi(\rightarrow \mu^+\mu^-) + X$$

Charmonia studies at LHCb

• At LHCb charmonia $[c\overline{c}]$ may be accessed by

$$- [c\overline{c}] \rightarrow J/\psi(\rightarrow \mu^{+}\mu^{-}) + X$$

$$- [c\overline{c}] \rightarrow p\overline{p}$$

LHCb, EPJC 75 (2015) 311

Charmonia studies at LHCb

• At LHCb charmonia $\lceil c\overline{c}
ceil$ may be accessed by

-
$$[c\overline{c}] \rightarrow J/\psi(\rightarrow \mu^+\mu^-) + X$$

-
$$[c\overline{c}] o p\overline{p}$$

-
$$[c\overline{c}] o \phi \phi$$

LHCb, EPJC 77 (2017) 609

Quarkonium production

• Two scales of production: hard process of $Q \bar Q$ formation + hadronization of $Q \bar Q$ at softer scales

$$d\sigma[pp \to Q + X] = \sum_{i,j,n} dx_i dx_j f_i(x_i, \mu_F) f_j(x_j, \mu_F) \times d\sigma_{i+j \to (Q\overline{Q})_n + X}(\mu_R, \mu_F, \mu_\Lambda) \langle \mathcal{O}_Q^n \rangle$$

- CSM: intermediate $Q\bar{Q}$ colorless and has same J^{PC} as the final state quarkonium
- NRQCD: all viable colors and J^{PC} allowed for the intermediate $Q\bar{Q}$, Long Distance Matrix Elements, $\langle \mathcal{O}_Q^n \rangle$, from experimental data, same for prompt production and in b decays; color octet mechanism (COM)
- Quarkonium production is test of both perturbative and nonperturbative QCD

J/ψ production

LHCb, JHEP 10 (2015) 172 JHEP 05 (2017) 063

Lifetime to separate prompt production from b decays

Prompt = direct + feed down from $\psi(2S)$, χ_c , ...

$$\sqrt{s} = 13 \text{ TeV}, L_{int} = 3.05 \text{ pb}^{-1}$$

$$\sigma$$
(prompt J/ψ , $p_{\rm T} < 14$ GeV/ c , $2.0 < y < 4.5) = 15.03 ± 0.03 ± 0.94 μb, $\sigma(J/\psi$ -from- b , $p_{\rm T} < 14$ GeV/ c , $2.0 < y < 4.5) = 2.25 ± 0.01 ± 0.14 μb,$$

J/ψ production

LHCb, JHEP 10 (2015) 172 JHEP 05 (2017) 063

• Double differential cross-sections in bins of p_T and y

Ratios 13 TeV / 8 TeV

NRQCD works very well

Shao, Han, Ma, Meng, Zhang, Chao, JHEP 05 (2015) 103

J/ψ and $\psi(2S)$ polarization

• Angular distribution of J/ψ , $\psi(2s) o \mu^+\mu^-$

LHCb, EPJC 73 (2013) 2631 EPJC 74 (2014) 2872

$$rac{1}{\sigma}rac{d\sigma}{d\Omega} \propto rac{1}{3+\lambda_{ heta}}(1+\lambda_{ heta}\cos^2 heta+\lambda_{ heta\phi}\sin2 heta\cos\phi+\lambda_{\phi}\sin^2 heta\cos2\phi)$$

• Parameters are reference frame dependent

Helicity (HX): z axis is direction of ψ momentum in CM frame of colliding protons

Collins-Soper (CS): z axis bisects angle between \vec{p}_1 and \vec{p}_2 in ψ rest frame

Gottfried-Jackson (GJ): z axis is Direction of \vec{p}_1 in ψ rest frame

PhysRevD.82.012001

y axes normal to ψ production plane

J/ψ and $\psi(2S)$ polarization

LHCb, EPJC 73 (2013) 2631 EPJC 74 (2014) 2872

- The polarization parameters are generally small
- Disagree with CSM
- Agreements with NRQCD predictions at low p_T , the prediction of increasing polarization with p_T is not supported

Butenschoen, Kniehl, PRL 108 (2012) 172002; Gong, Wan, Wang, Zhang, PRL 110 (2013) 042002 Chao, Ma, Shao, Wang, Zhang, PRL 108 (2012) 242004; Shao, Chao, PRD 90 (2014) 014002

Y production

LHCb, EPJC 74 (2014) 2835 JHEP 11 (2015) 103 JHEP 07 (2018) 134

20

- Perturbative QCD expected to work better; All prompt, but complicated by feed down
- NRQCD can describe cross-section trends with uncertainties

10/08/2018

Y production

LHCb, EPJC 74 (2014) 2835 JHEP 11 (2015) 103 JHEP 07 (2018) 134

• Cross-section ratios as function of p_T consistently higher than NRQCD predictions, cannot describe trend as function of y

Theoretical predictions for 13/8 not available

Y polarization

- Experimental results on $\Upsilon(nS)$ polarization not consistent
 - CDF No polarization for $\mathbf{Y}(nS)$ in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.8 and 1.96 TeV PRL 108 (2012) 151802
 - Significant p_T dependent longitudinal polarizations for $\Upsilon(\mathbf{1S})$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV PRL 101 (2008) 182004
 - CMS No polarization for $\mathbf{Y}(nS)$ in pp collisions at \sqrt{s} =7 TeV

PRL 110 (2013) 081802

• NLO NRQCD calculations predict $\Upsilon(\mathbf{1S})$ and $\Upsilon(\mathbf{2S})$ have small transverse polarization across p_T

•

Y polarization at LHCb

LHCb, JHEP 12 (2017) 110

• $\Upsilon(nS)$ polarization measured in pp collisions at $\sqrt{s}=7$, 8 TeV

Y polarization at LHCb

LHCb, JHEP 12 (2017) 110

• $\Upsilon(nS)$ polarization measured in pp collisions at $\sqrt{s}=7.8$ TeV

No model as yet can describe both heavy quarkonium production and polarisation

Perspectives: η_c , χ_{cI}

• $\eta_c(1S)$, $\eta_c(2S)$ and χ_{cJ} productions can give more information/constraints

Lansberg, Shao, Zhang, arXiv:1711.00265

Double J/ψ production at 13 TeV

 Double Parton Scattering: two independent hard scatters that are assumed to factorize

Single Parton Scattering: gluon splitting dominate

 DPS can provide information on parton transverse momentum and correlations inside proton

Double J/ψ production at 13 TeV

• Require 4 μ -tracks from same primary vertex, 2D fit

	$\sigma(J/\psi J/\psi)$ [nb]			
	no $p_{\rm T}$ cut	$p_{\mathrm{T}} > 1\mathrm{GeV}/c$	$p_{\mathrm{T}} > 3\mathrm{GeV}/c$	
LOCS	$1.3 \pm 0.1^{+3.2}_{-0.1}$	_	_	
LOCO	$0.45 \pm 0.09^{+1.42+0.25}_{-0.36-0.34}$	_	_	
$\mathrm{LO}k_{\mathrm{T}}$	$6.3^{+3.8+3.8}_{-1.6-2.6}$	$5.7^{+3.4+3.2}_{-1.5-2.1}$	$2.7^{+1.6+1.6}_{-0.7-1.0}$	
NLO* CS′	_	$4.3 \pm 0.1^{+9.9}_{-0.9}$	$1.6 \pm 0.1^{+3.3}_{-0.3}$	
NLO* CS"	$15.4 \pm 2.2^{+51}_{-12}$	$14.8 \pm 1.7^{+53}_{-12}$	$6.8 \pm 0.6^{+22}_{-5}$	
NLO CS	$11.9^{+4.6}_{-3.2}$	_	_	
DPS	$8.1 \pm 0.9^{+1.6}_{-1.3}$	$7.5 \pm 0.8^{+1.5}_{-1.2}$	$4.9 \pm 0.5^{+1.0}_{-0.8}$	
Data	$15.2 \pm 1.0 \pm 0.9$	$13.5 \pm 0.9 \pm 0.9$	$8.3 \pm 0.6 \pm 0.5$	

Double J/ψ production at 13 TeV

• Differential cross-sections

- Evidence for DPS at high $|\Delta y|$ region
- Fit of kinematical distribution to extract DPS fraction & $\sigma_{
 m eff}$

$$\sigma_{\rm eff} \sim 10 - 12 \text{ mb}$$

using various SPS descriptions

Double J/ψ production at $\int s=13 \ TeV$

 $lue{}$ Compilation of results on σ_{eff}

LHCb, $J/\psi J/\psi$, pp, $\int s = 13 \ TeV$ JHEP 1706 (2017) 047

$\boldsymbol{B_c}$ production at 8 TeV

• Use $B_c o J/\psi \pi$, define

LHCb, PRL 114 (2015) 132001

• Distributions well described by complete $lpha_s^4$ calculations

[C.-H. Chang et al., Comput. Phys. Commun. 174 (2006) 241]

Open heavy flavor production

• In heavy flavor production, quark mass acts as long-distance cut-off allowing calculation of cross-sections in perturbative QCD down to low p_T

$$\begin{split} \mathrm{d}\sigma^{Q+X}[s,\, p_{\mathrm{T}},\, y,\, m_{Q}] \\ &\simeq \sum_{i,\, j} \int_{0}^{1} \mathrm{d}x_{i} \int_{0}^{1} dx_{j} \, f_{i}^{A}(x_{i},\, \mu_{F}) f_{j}^{B}(x_{j},\, \mu_{F}) \\ &\times \mathrm{d}\tilde{\sigma}_{ij \to Q+X}[x_{i},\, x_{j},\, s,\, p_{\mathrm{T}},\, y,\, m_{Q},\, \mu_{F},\, \mu_{R}], \end{split}$$

- Cross-section measurements provide test of pQCD FONLL calculations
 - Cross-sections are sensitive to PDFs

B^{\pm} production at 7/13 TeV

LHCb, JHEP 12 (2017) 026

• Use $B^\pm o J/\psi K^\pm$ decays

B^{\pm} production at 7/13 TeV

LHCb, JHEP 12 (2017) 026

Results in agreement with FONLL calculations

Compare results to FONLL calculations $m_b=4.75 \text{GeV}$, $\mu_R=\mu_F=\mu_0=\sqrt{m_Q^2+p_T^2}$ using CTEQ6.6 PDFs. Eur. Phys. J. C 75 (2015) 610

B^{\pm} production at 7/13 TeV

LHCb, JHEP 12 (2017) 026

• In ratio of 13 TeV / 7 TeV, FONLL uncertainties largely cancel

D_s^{\pm} production asymmetry at 7/13 TeV

LHCb, JHEP 08 (2018) 008

Assumed for most charm production asymmetries

Arise from ability of charm quarks to form charm baryons with proton valence quarks

...but not charm mesons

• Results in a different kinematic distribution between $D_s^+ \& D_s^-$

D_s^{\pm} production asymmetry at 7/13 TeV

LHCb, JHEP 08 (2018) 008

Production asymmetry:
$$A_{\rm P}(D_s^+) = \frac{\sigma(D_s^+) - \sigma(D_s^-)}{\sigma(D_s^+) + \sigma(D_s^-)}$$

$$D_s^+ o \phi(K^+K^-)\pi^+$$
, and $A_{\mathrm{raw}} = rac{N(D_s^+) - N(D_s^-)}{N(D_s^+) + N(D_s^-)}$

$$A_{\mathrm{P}}(D_{s}^{+}) = \frac{1}{1 - f_{\mathrm{bkg}}} (A_{\mathrm{raw}} - A_{\mathrm{D}} - f_{\mathrm{bkg}} A_{\mathrm{P}}(B))$$

n-prompt

Production asymmetry

of b-hadrons

Fraction of non-prompt

 D_s^+ decays (from b-hadrons)

of b-hadrons

Detection asymmetries

$$f_{\rm bkg} = (4.12 \pm 1.23)\%$$

Determined from simulation, known cross sections and branching fractions

$$A_{\rm D} = A_{\rm track}^{\pi} + A_{\rm track}^{KK} + A_{\rm PID} + A_{\rm trigger}^{\rm software} + A_{\rm trigger}^{\rm hardware}$$

Data driven corrections

$$f_{\rm bkg}A_{\rm P} = (0.3 \pm 1.0) \times 10^{-4} \ (7 \text{ TeV})$$

 $f_{\rm bkg}A_{\rm P} = (1.7 \pm 0.8) \times 10^{-4} \ (8 \text{TeV})$

From published LHCb production asymmetries

D_s^{\pm} production asymmetry at 7/13 TeV

LHCb, JHEP 08 (2018) 008

A essential input to LHCb CP violation measurements

$$A_{\rm P}(D_s^+) = (-0.52 \pm 0.13 \text{ (stat.)} \pm 0.10 \text{ (syst.)})\%$$

(Averaged over 7 and 8 TeV)

b hadron production asymmetry at 7/8 TeV

$$A_{\rm P}(B^+)_{\sqrt{s}=7\,{\rm TeV}} = -0.0023 \pm 0.0024 \; ({\rm stat}) \pm 0.0037 \; ({\rm syst}),$$

$$A_{\rm P}(B^+)_{\sqrt{s}=8\,{\rm TeV}} = -0.0074 \pm 0.0015 \; ({\rm stat}) \pm 0.0032 \; ({\rm syst}),$$

$$A_{\rm P}(B^0)_{\sqrt{s}=7\,{\rm TeV}} = 0.0044 \pm 0.0088 \; ({\rm stat}) \pm 0.0011 \; ({\rm syst}),$$

$$A_{\rm P}(B^0)_{\sqrt{s}=8\,{\rm TeV}} = -0.0140 \pm 0.0055 \; ({\rm stat}) \pm 0.0010 \; ({\rm syst}),$$

$$A_{\rm P}(B^0)_{\sqrt{s}=7\,{\rm TeV}} = -0.0065 \pm 0.0288 \; ({\rm stat}) \pm 0.0059 \; ({\rm syst}),$$

$$A_{\rm P}(B^0)_{\sqrt{s}=8\,{\rm TeV}} = 0.0198 \pm 0.0190 \; ({\rm stat}) \pm 0.0059 \; ({\rm syst}),$$

$$A_{\rm P}(A^0)_{\sqrt{s}=7\,{\rm TeV}} = -0.0011 \pm 0.0253 \; ({\rm stat}) \pm 0.0108 \; ({\rm syst}),$$

$$A_{\rm P}(A^0)_{\sqrt{s}=8\,{\rm TeV}} = 0.0344 \pm 0.0161 \; ({\rm stat}) \pm 0.0076 \; ({\rm syst}).$$

• All consistent with zero with 2.5 sigma

H-F productions in pPb collisions

Rapidity coverage pp: 2 < y < 5

Forward production

y = 0.47 in lab

p-Pb: $1.5 < y^* < 4.5$

Data taken in 2016: ~13.6/nb

Backward production

y = -0.47 in lab

Pb-p: $-5.5 < y^* < -2.5$

Data taken in 2016: ~20.8/nb

- Common range for measurements: 2.5 < |y*| < 4.5
- Centre of mass energy in 2016 : 8.16 TeV, $L=34~{\rm pb^{-1}}$, about 20x 2013 !

LHCb-PAPER-2018-035

Higher statistics at RUNII

Yields	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	\mathcal{L}
pPb	2705 ± 87	584 ± 49	262 ± 44	12.5 nb^{-1}
Pbp	3072 ± 82	679 ± 54	159 ± 39	19.3 nb^{-1}

LHCb-PAPER-2018-035

• Y(1S) Nuclear modification factor

$$R_{p\text{Pb}}(p_{\text{T}}, y^*) = \frac{1}{208} \frac{\mathrm{d}^2 \sigma_{p\text{Pb}}(p_{\text{T}}, y^*) / \mathrm{d}p_{\text{T}} \mathrm{d}y^*}{\mathrm{d}^2 \sigma_{pp}(p_{\text{T}}, y^*) / \mathrm{d}p_{\text{T}} \mathrm{d}y^*},$$

LHCb-PAPER-2018-035

• Y(2S) Nuclear modification factor

$$R_{p\text{Pb}}(p_{\text{T}}, y^*) = \frac{1}{208} \frac{\mathrm{d}^2 \sigma_{p\text{Pb}}(p_{\text{T}}, y^*) / \mathrm{d}p_{\text{T}} \mathrm{d}y^*}{\mathrm{d}^2 \sigma_{pp}(p_{\text{T}}, y^*) / \mathrm{d}p_{\text{T}} \mathrm{d}y^*},$$

LHCb-PAPER-2018-035

• Ratios
$$R(\Upsilon(nS)) = \frac{\left[d^2\sigma/dp_Tdy^*\right](\Upsilon(nS))}{\left[d^2\sigma/dp_Tdy^*\right](\Upsilon(1S))}.$$

- Can also operate in fixed-target mode: unique at LHC
 - Injecting gas in the LHCb VErtex LOcator (VELO) tank, originally done to perform luminosity measurement.
 - Can be used as an internal gas target
 - Allows measurement of p-gas and ion-gas interactions

Distribution of vertices overlaid on detector display, z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle.

Noble gas only:

(very low chemical reactivity)

He, Ne, Ar, ... A = 4, 20, 40

Gas pressure: 10⁻⁷ to 10⁻⁶ mbar

The LHCb fixed-target program fills the gap between SPS and RHIC energies

Gives access to the large Bjorken-x region in the target

Data sample

 $\sqrt{s_{NN}}$ = 110 GeV proton-Ar interactions 2015 ~ 4×10²² Protons On Target (17h)

 $\sqrt{s_{NN}}$ = 86.6 GeV proton-He interactions 2016 $\sim 4 \times 10^{22}$ POTs (87h) $\mathcal{L}_{pHe} = 7.6 \pm 0.5 \text{ nb}^{-1}$

LHCb-PAPER-2018-023

• $J/\psi
ightarrow \mu\mu$, $D^0
ightarrow K\pi$ in pHe at 86.6 GeV

- J/ψ differential yields (pAr@110 GeV) and cross sections (pHe@86.6 GeV)
 - Plain and dashed red lines, phenomenological parametrization: JHEP 05 (2013) 155
 - HELAC-ONIA predictions for pp (blue lines) and pA (yellow boxes): EPJC(2017) 77:1

- HELAC-ONIA underestimate the J/ ψ cross section (pHe) by a factor 1.78
- Good shape agreement with phenomenological predictions

Summary

- HF productions have been studied at LHCb
 - in pp, pA/Ap, AA collisions
 - with unique forward phase space
- With RUNII and the upgraded detector, more to come
 - excited hadrons
 - doubly charmed baryons
 - XYZ and pentaguarks
 -

Stay tuned!

Backup slides

Charmonia from $B^+ o p \overline{p} K^+$

 Exclusive reconstruction: clean sample, better control of background and resolution effects

$$m_{J/\psi} - m_{\eta_c(1S)}$$

= 110.2 \pm 0.5 \pm 0.9 MeV

$$m_{\psi(2S)} - m_{\eta_c(2S)}$$

= 52. 2 \pm 1. 7 \pm 0. 6 MeV

$$\Gamma_{\eta_c(1S)} = 34.0 \pm 1.9 \pm 1.3 \text{ MeV}$$

$$\mathcal{R}_{[c\overline{c}]} = \frac{\mathcal{B}(B^+ \to [c\overline{c}]K^+) \times \mathcal{B}([c\overline{c}] \to p\overline{p})}{\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to p\overline{p})}$$

$$egin{aligned} \mathcal{R}_{\eta_c(2S)} &= (1.58 \pm 0.33 \pm 0.09) imes 10^{-2} \ \mathcal{R}_{\psi(3770)} &< 10 imes 10^{-2} \ \mathcal{R}_{X(3872)} &< 0.25 imes 10^{-2} \end{aligned}$$

Charmonia from $b o \phi \phi + X$

Allow to measure production ratios

LHCb-PAPER-2017-007 EPJC 77 (2017) 609

$$R_{C_2}^{C_1} \equiv \frac{\mathcal{B}(b \to C_1 X) \times \mathcal{B}(C_1 \to \phi \phi)}{\mathcal{B}(b \to C_2 X) \times \mathcal{B}(C_2 \to \phi \phi)}$$

1st Observation of $\eta_c(2S) o \phi \phi$

$$R_{\eta_c(1S)}^{\chi_{c0}} = 0.147 \pm 0.023 \pm 0.011,$$

$$R_{\eta_c(1S)}^{\chi_{c1}} = 0.073 \pm 0.016 \pm 0.006,$$

$$R_{\eta_c(1S)}^{\chi_{c2}} = 0.081 \pm 0.013 \pm 0.005,$$

$$R_{\chi_{c0}}^{\chi_{c1}} = 0.50 \pm 0.11 \pm 0.01,$$

$$R_{\chi_{c0}}^{\chi_{c2}} = 0.56 \pm 0.10 \pm 0.01,$$

$$R_{\eta_c(1S)}^{\eta_c(2S)} = 0.040 \pm 0.011 \pm 0.004,$$

Competitive measurements of masses of widths

	Measured value	World average [14]
$M_{\eta_c(1S)}$	$2982.8 \pm 1.0 \pm 0.5$	2983.4 ± 0.5
$M_{\chi_{c0}}$	$3413.0 \pm 1.9 \pm 0.6$	3414.75 ± 0.31
$M_{\chi_{c1}}$	$3508.4 \pm 1.9 \pm 0.7$	3510.66 ± 0.07
$M_{\chi_{c2}}$	$3557.3 \pm 1.7 \pm 0.7$	3556.20 ± 0.09
$M_{\eta_c(2S)}$	$3636.4 \pm 4.1 \pm 0.7$	3639.2 ± 1.2
$\Gamma_{\eta_c(1S)}$	$31.4 \pm 3.5 \pm 2.0$	31.8 ± 0.8
$\Gamma_{\eta_c(2S)}$	_	$11.3 \begin{array}{l} + \ 3.2 \\ - \ 2.9 \end{array}$

1.93 fb⁻¹

$B_c^{(*)}(2S) \to B_c^{(*)} \pi^+ \pi^-$

LHCb-PAPER-2017-042 arXiv:1712.04094

ATLAS, PRL 113 (2014) 212004

Data	Signal events	_
7 TeV 8 TeV	100 ± 23 227 ± 25	$N_{B_c}^{\rm ATLAS}$

 $m_{B_c(2S)} = 6842 \pm 4 \pm 5 \text{ MeV}$

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-)$$

$$= \frac{N_{B_c^{(*)}(2S)^+}}{N_{B_c^+}} \cdot \frac{\varepsilon_{B_c^+}}{\varepsilon_{B_c^{(*)}(2S)^+}},$$

$$\sqrt{s} = 7 \, \text{TeV}$$
 $\sqrt{s} = 8 \, \text{TeV}$

ATLAS $(0.22 \pm 0.08 \, (\text{stat}))/\varepsilon_7$ $(0.15 \pm 0.06 \, (\text{stat}))/\varepsilon_8$

LHCb $< [0.04, 0.09]$

 ${m \epsilon_7}, {m \epsilon_8}$: relative efficiencies of reconstructing $B_c^{(*)}(2S)^+$ wrt B_c^+

- ATLAS did not publish $arepsilon_7, arepsilon_8$
- More studies needed to resolve the large tension between ATLAS and LHCb.

Spectroscopy with the upgraded LHCb

• LHCb will be upgraded in 2019, software trigger with 40MHz

- Allow PID at the trigger level great increase (~2x) of trigger efficiency on full hadronic final states
- A new computing approach to data-analysis is needed