
Doubly-charmed baryon at LHCb

Hang Yin
Central China Normal University

Heavy Flavor Productions in High-Energy Collisions and Forty Years of Quark-Gluon Plasma Oct. 9th, 2018

Outline

c

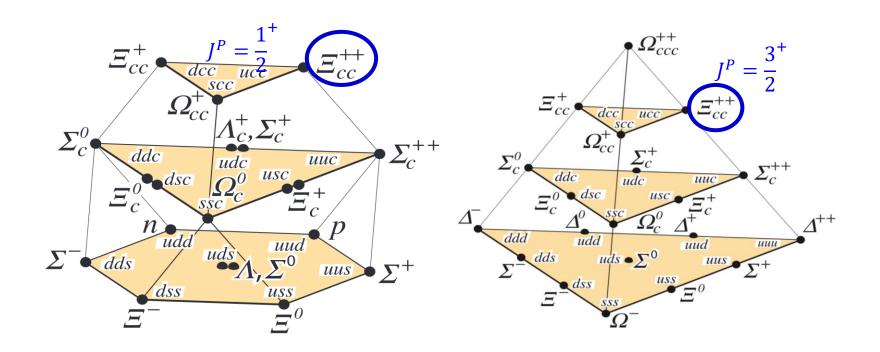
Introduction

 Ξ_{cc}^{++}

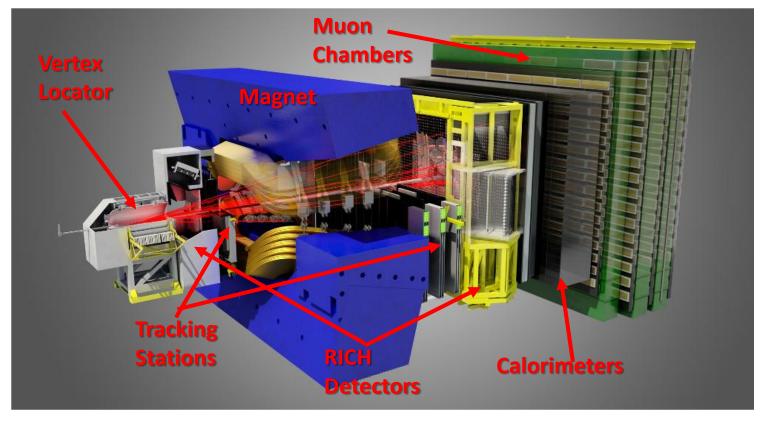
LHCb detector

- Recent results on charmed baryons
 - \Rightarrow Discovery of \mathcal{Z}_{cc}^{++}
 - $\Rightarrow \mathcal{Z}_{cc}^{++}$ lifetime measurement
 - \Rightarrow Rediscovery of \mathcal{Z}_{cc}^{++} , with $\mathcal{Z}_{c}^{+}\pi^{+}$

Phys. Rev. Lett. 119, 112001 (2017)

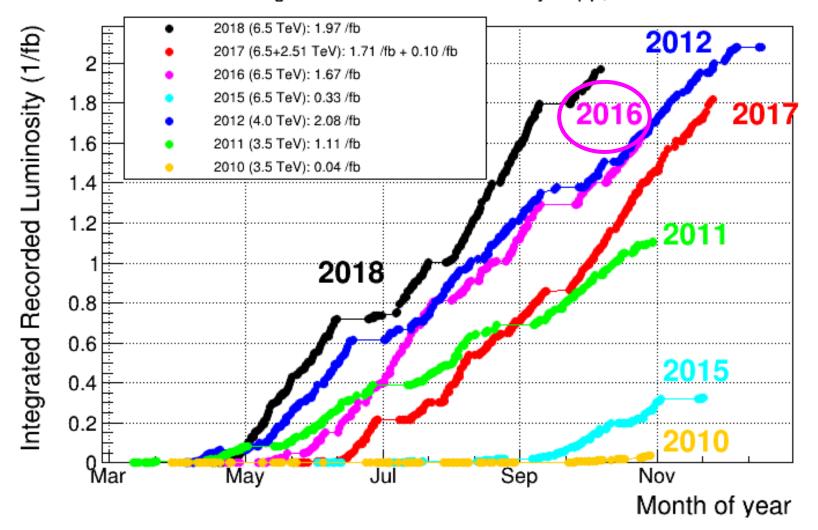

Phys. Rev. Lett. 121, 052002 (2018)

Accepted by PRL, arXiv: 1807.01919


Summary

Success of the constituent quark model

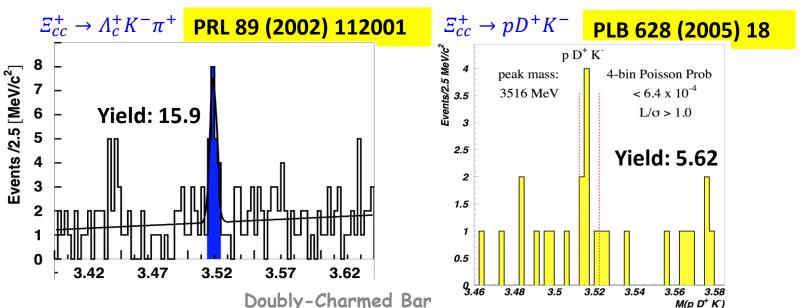
- Quark model, introduced by Gell-Mann and Zweig, in 1964
 - Construct the numerous hadrons using quarks
 - \Rightarrow SU(4) and SU(5) to include new quarks: charm (c), and bottom (b)

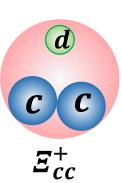

LHCb detector

- Chapter LHCb is a forward spectrometer suited for b, c hadrons: $2 < \eta < 5$
- Momentum resolution:
 - 0.5% at 5 GeV, 1.0% at 200 GeV
- Excellent track and vertex reconstruction
- Good PID separation

LHCb integrated luminosity

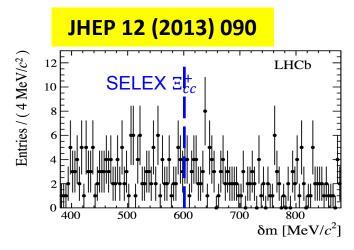
LHCb Integrated Recorded Luminosity in pp, 2010-2018

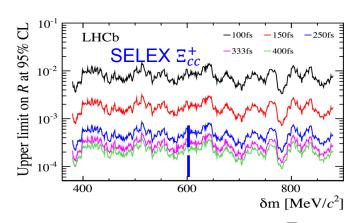


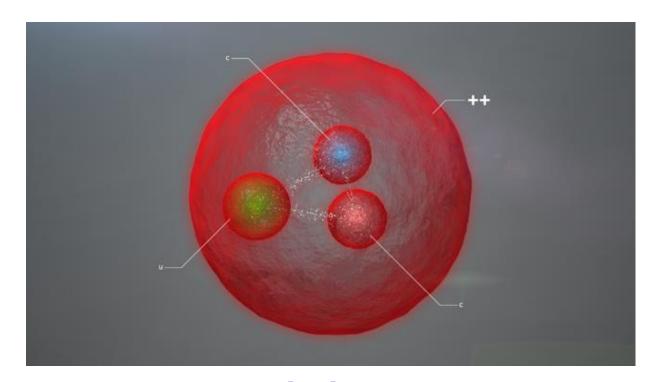

Today's talk with 2016 (1.7 fb⁻¹) data

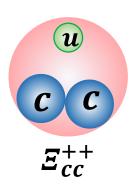
Thanks to the LHC team!

Studies of \mathcal{E}_{cc} by SELEX experiment

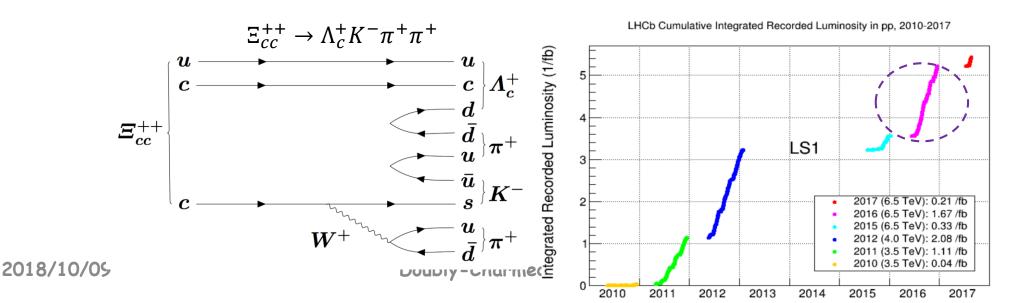

- \circ SELEX (Fermilab E781) claimed observation of $\mathcal{E}_{cc}^+(ccd)$ in $\mathcal{E}_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\mathcal{E}_{cc}^+ \to pD^+ K^-$ decays
 - \Rightarrow Short lifetime: $\tau(\mathcal{Z}_{cc}^+) < 33$ fs @90% CL, but not zero
 - \Rightarrow Large production: $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$
 - → Mass (combined): 3518.7 ± 1.7 MeV






No confirmation from other experiments

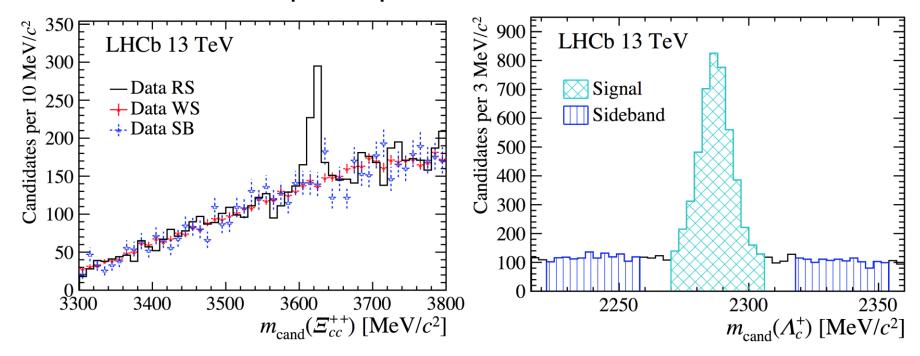
- Fixed target: FOCUS (Fermilab E831) Nucl. Phys. Proc. Suppl. 115 (2003) 33
 - Studies charm hadrons produced in photon-nuclear fixed target collisions
- Electron colliders: Babar, Belle BaBar: PRD 74 (2006) 011103 Belle: PRL 97 (2006) 162001
 - \Rightarrow Large Λ_c^+ yields, 0.6 (0.8) M at Babar (Belle)
- Hadron Collider: LHCb



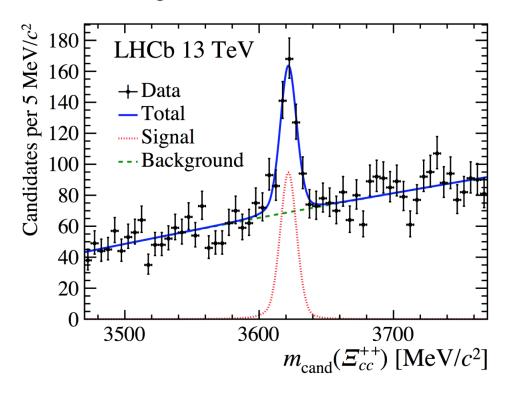
Discovery of \mathcal{Z}_{cc}^{++}

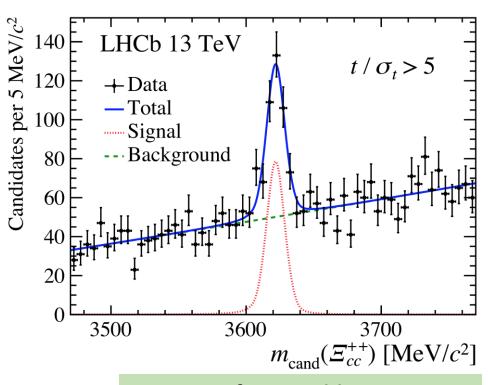
Searching for \mathcal{Z}_{cc}^{++} (ccu)

- \circ Longer lifetime than \mathcal{Z}_{cc}^+ , therefore, higher efficiency at LHCb
- O Decay mode: $\mathcal{E}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$, branching fraction up to 10%
- Data sample: LHCb RunII at 13 TeV, ~ 1.7 fb-1
 - Dedicated exclusive trigger ensuring high efficiency, full event reconstruction at trigger level
 - → Run I data (2012) also analyzed for cross-check


Selections

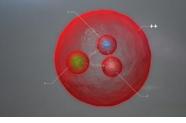
- $\bigcirc \Lambda_c^+ \rightarrow pK^-\pi^+$:
 - $\Rightarrow p, K^-, \pi^+$ tracks: positive particle ID, not produced from primary vertices
 - $\rightarrow \Lambda_c^+$: good vertex quality, separated from primary vertices
 - $\Rightarrow p, K^-, \pi^+$ tracks and Λ_c^+ have large p_T
- Multivariate Selection:


Mass spectrum

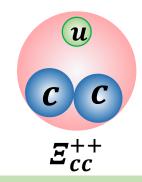

- A significant structure in right sign (RS) combinations
- Not present in wrong sign (WS) combinations
- \circ Not observed for Λ_c^+ background candidates
- Distributions similar except the peak in RS

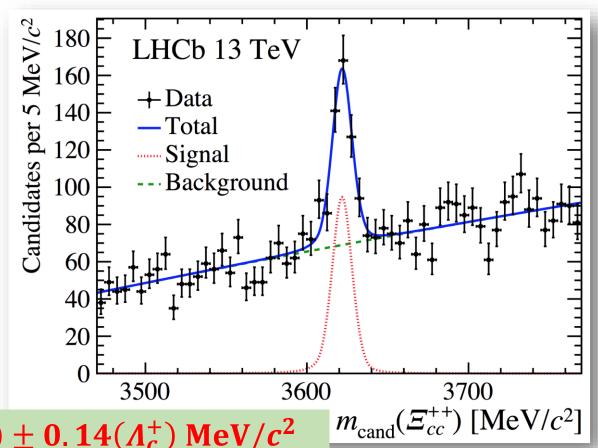
Mass fitting

- Signal yield: 313 ± 33
- Resolution: 6.6 ± 0.8 MeV, consistent with simulated value
- Local significance $> 12\sigma$

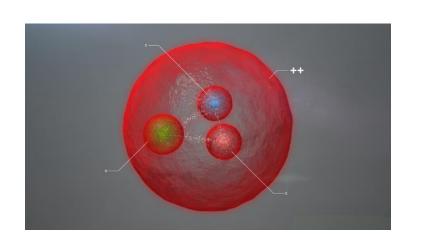


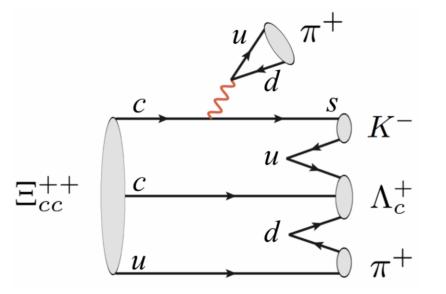
 $(> 12\sigma)$ after requiring $t > 5\sigma_t$. Doubly-Charmed Baryon Results It is indeed a weak decay.

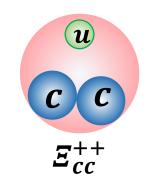

06/07/2017


Observation of \mathcal{E}_{cc}^{++}

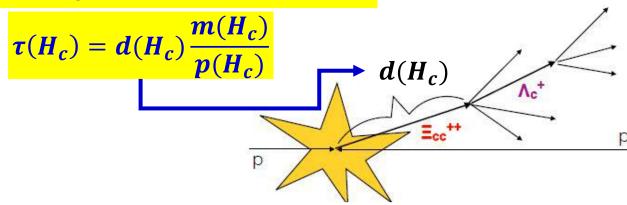
Phys. Rev. Lett. 119, 112001 (2017)



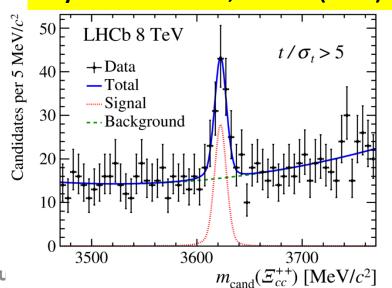

- \circ $\mathcal{Z}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ observed by LHCb using 2016 data
 - → Signal yield: 313 ± 33
 - Local significance > 12σ
 - Decaying only via weak interaction



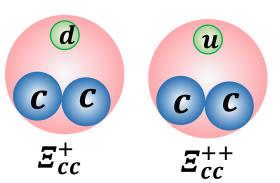
 $3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+) \text{ MeV}/c^2$



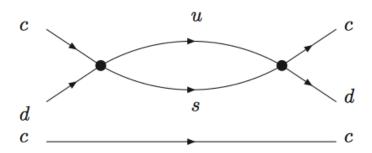
First measurement of the lifetime of \mathcal{E}_{cc}^{++}


\mathcal{Z}_{cc}^{++} lifetime

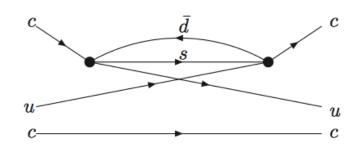
- Inconsistent with zero in the observation paper
- A lifetime measurement is critical:
 - Confirm it is a weakly decay
 - Necessary ingredient for theoretical prediction of BR
 - \Rightarrow Important information for experimental exploration of \mathcal{Z}_{cc}^{++}
 - Test various predictions in QCD models


Decay time measurement:

Phys. Rev. Lett. 119, 112001 (2017)



Predictions: long lived \mathcal{Z}_{cc}^{++}



- \circ Predicted $\tau(\mathcal{Z}_{cc}^{++})$ in range of [0.20, 1.05] ps
 - Diquark model, effective constituent model, NRQCD potential model, harmonic oscillator model ...
 - Significant non-spectator contribution from Pauli-Interference diagrams

W-exchange

Pauli-interference

- \circ $\tau(\Xi_{cc}^{++}) \sim 3 4 \ \tau(\Xi_{cc}^{+})$
 - \Rightarrow Destructive Pauli interference in \mathcal{E}_{cc}^{++} decays
 - \Rightarrow W-exchange between c and d quarks only in \mathcal{E}_{cc}^+ decays

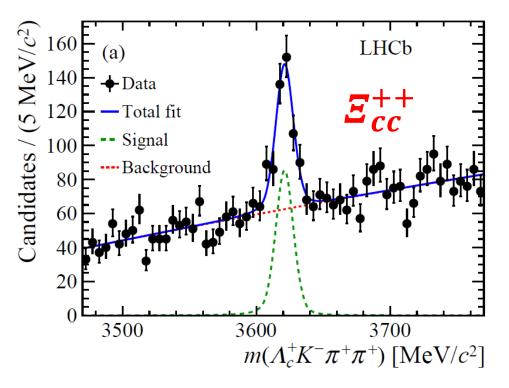
Analysis strategy

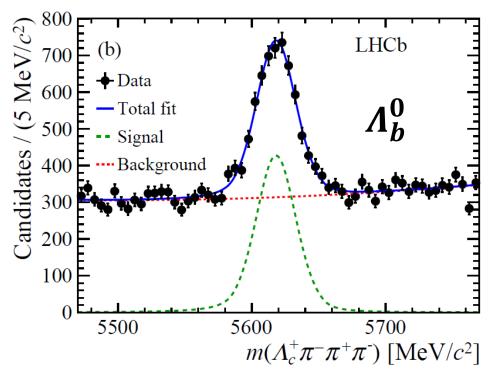
- \circ Same data sample, event selection as previous \mathcal{E}_{cc}^{++} observation
 - Specific trigger requirement to simplify trigger efficiency determination
 - → Signal yields (2016): 313 → 304
- Measure decay time distribution relative to $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$
 - Acceptance correction based on MC
- Weighted unbinned maximum likelihood fit (sFit)

Y. Xie, <u>arXiv:0905.072</u>

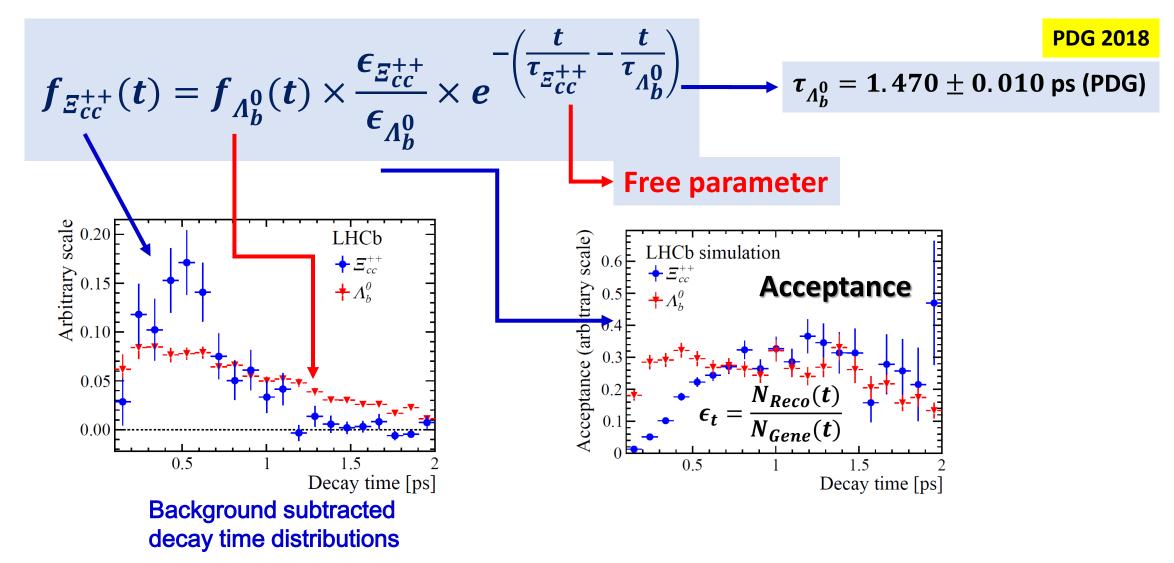
$$f_{\mathcal{Z}_{cc}^{++}}(t) = f_{\Lambda_b^0}(t) imes rac{\epsilon_{\mathcal{Z}_{cc}^{++}}}{\epsilon_{\Lambda_b^0}} imes e^{-\left(rac{t}{ au_{\mathcal{Z}_{cc}^{++}}} - rac{t}{ au_{\Lambda_b^0}}
ight)}$$

Selected candidates

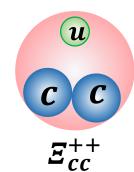

Signal: Double-sided Crystal-Ball + Gaussian

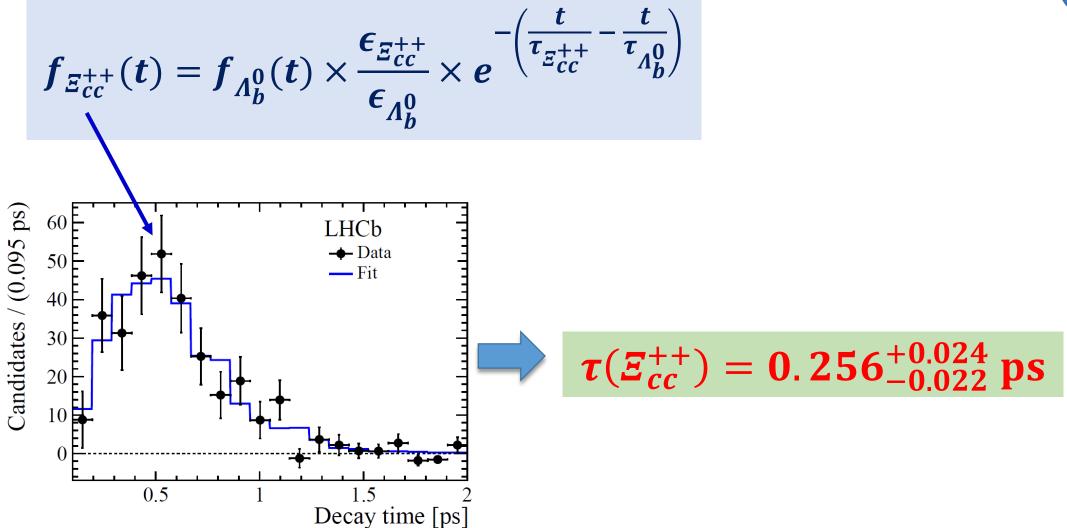

Background: 2nd order Chebychev

Yields: (2016)


 \mathcal{Z}_{cc}^{++} : 304±35

 Λ_h^0 : 3379 \pm 119





Lifetime fit

Lifetime fit

Systematic Uncertainty

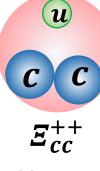
Source	Uncertainty (ps)
Signal and background mass models	0.005
Correlation of mass and decay-time	0.004
Binning	0.001
Data-simulation differences	0.004
Resonant structure of decays	0.011
Hardware trigger threshold	0.002
Simulated Ξ_{cc}^{++} lifetime	0.002
Λ_b^0 lifetime uncertainty	0.001
Sum in quadrature	0.014

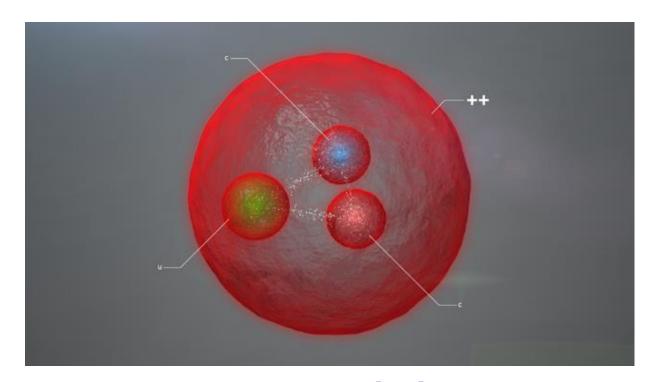
■ O Binning:

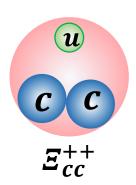
Systematics due to binned acceptance estimated with pseudo experiments

Resonant:

→ Weight MC to match $M(K^-\pi^+\pi^+)$ (for \mathcal{E}_{cc}^{++}), and $M(\pi^-\pi^+\pi^-)$ (for Λ_b^0) distributions in data

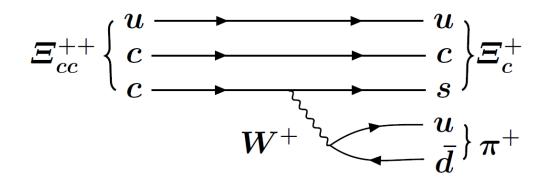

Measured results:

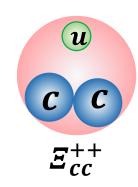

$$\tau(\mathcal{Z}_{cc}^{++}) = 0.256_{-0.022}^{+0.024}(\text{stat}) \pm 0.014 \text{ (syst) ps}$$


Cross-checks and Results

- Various cross-checks had been done: no evidence of other effects
 - \Rightarrow Charge: Ξ_{cc}^{++} vs. $\overline{\Xi}_{cc}^{--}$
 - Magnet polarities: Down vs. Up
 - Number of PV
- \circ Binned χ^2 fit: consistent with nominal result
- \circ Λ_b^0 lifetime using simulation-based acceptance correction, consistent with PDG Value

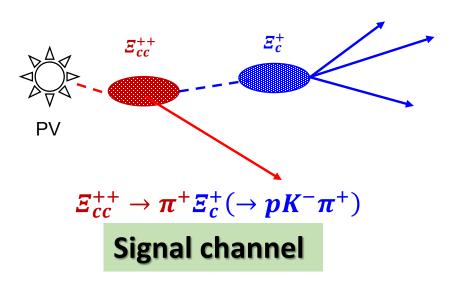
Confirmation of \mathcal{Z}_{cc}^{++} with $\mathcal{Z}_{c}^{+}\pi^{+}$ channel First measurement of \mathcal{Z}_{cc}^{++} lifetime: weakly decay

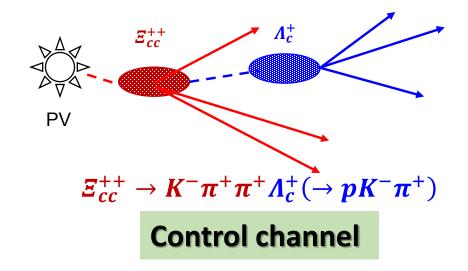




Rediscovery of \mathcal{E}_{cc}^{++}

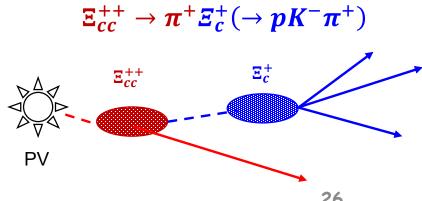
Search for $\mathcal{E}_{cc}^{++} \to \mathcal{E}_{c}^{+} \pi^{+}$


- \circ $\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{+} \pi^{+}$: one of the best channels to confirm \mathcal{Z}_{cc}^{++}
 - $\Rightarrow BR(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) \sim \mathcal{O}(1\%)$ Prediction
 - \Rightarrow $BR(\Lambda_c^+ \to p^+ K^- \pi^+) \sim (6.35\%)$, Measurement $BR(\Xi_c^+ \to p^+ K^- \pi^+) \sim (2\%)$ Prediction
 - → Fewer tracks (4 tracks) → higher efficiency



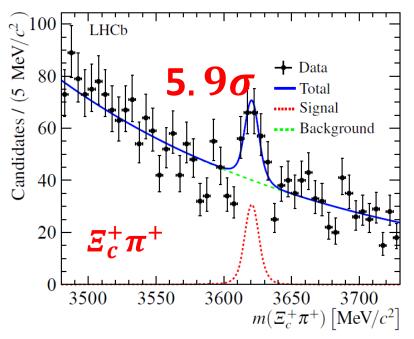
Signal and control channels

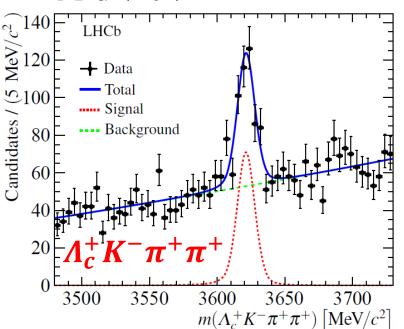
- \bigcirc Signal channel: $\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{+} \pi^{+}$, with $\mathcal{Z}_{c}^{+} \to pK^{-}\pi^{+}$
- Control channels:
 - $\Rightarrow \mathcal{Z}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$, with $\Lambda_c^+ \to p K^- \pi^+$
 - \rightarrow $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^+ \pi^- \pi^-$, $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$, with $\Lambda_c^+ \rightarrow p K^- \pi^+$
 - $\rightarrow \Lambda_b^0$ data is used to calibrate trigger efficiency, and life time measurement



Event selection

- \bigcirc Hadron trigger: hardware trigger (p, K, π) , and high level software trigger (Ξ_c^+)
- \bigcirc Final state hadrons, p, K, π : particle ID, not produced from primary vertex (PV)
- \bigcirc Λ_c^+ or Ξ_c^+ : good vertex quality, separated from PV
- Multivariate selector is used to further suppress the backgrounds
 - $\rightarrow p_T$, decay angle, vertex fitting quality, IP χ^2 , flight distance

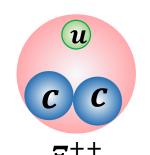

As a follow-up analysis of $\mathcal{Z}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$, $\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{+} \pi^{+}$ has similar selection cuts as in previous analysis.



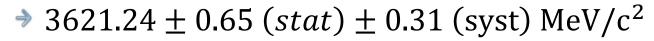
Mass fit

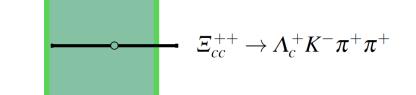
Signal: Double-Sided Crystal-Ball + Gaussian

Background: Exponential function

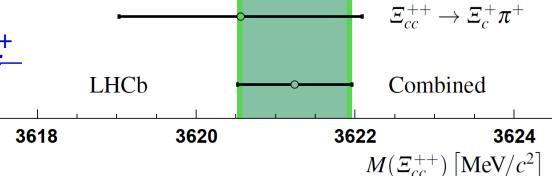


Yields: (2016)

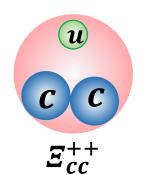

 $\mathcal{Z}_{c}^{+}\pi^{+}$: 91 ± 20


 $\Lambda_c^+ K^- \pi^+ \pi^+$: 289 ± 35

Mass measurement



- \circ The measured \mathcal{Z}_{cc}^{++} mass is (with $\mathcal{Z}_{c}^{+}\pi^{+}$ channel):
 - ⇒ 3620.56 ± 1.5 (stat) ± 0.4 (syst) ± 0.3 (\mathcal{E}_c^+) MeV/ c^2
- \bigcirc Consistent with $\mathcal{Z}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ result:
 - ⇒ 3621.40 ± 0.72 (stat) ± 0.27 (syst) ± 0.14 (Λ_c^+) MeV/c²
- Combined results:



Confirm previous LHCb observation of Ξ_{cc}^{++}

Branching fraction measurement

The ratio of branching fraction is defined as:

$$\mathcal{R} = \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \times \frac{\mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})}$$

$$= \frac{N(\Xi_{c}^{+}\pi^{+})}{N(\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \cdot \frac{\varepsilon(\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})}{\varepsilon(\Xi_{c}^{+}\pi^{+})}$$

No direct branching fraction measurement of $\mathcal{E}_c^+ \to pK^-\pi^+$ from experiments.

- Measure the signal yields and efficiency for each channel
- \bigcirc $\mathcal{R} = 0.035 \pm 0.009 (stat) \pm 0.003 (syst)$
 - Consistent with prediction

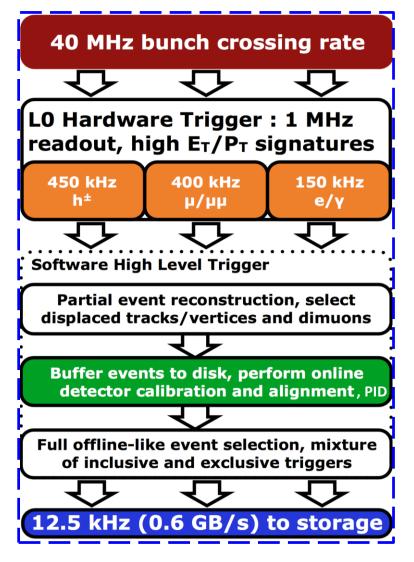
Uncertainty

 ${\cal Z}_{cc}^{++}
ightarrow {\cal Z}_c^+ {m \pi}^+$ channel

Source	Mass $[\text{MeV}/c^2]$	$\mathcal{R}(\mathcal{B})$ [%]
Momentum calibration	0.38	
Selection bias correction	0.10	
Fit model	0.05	5.2
Relative efficiency		6.5
Simulation modelling		1.2
Selection		0.7
Sum in quadrature	0.40	8.5

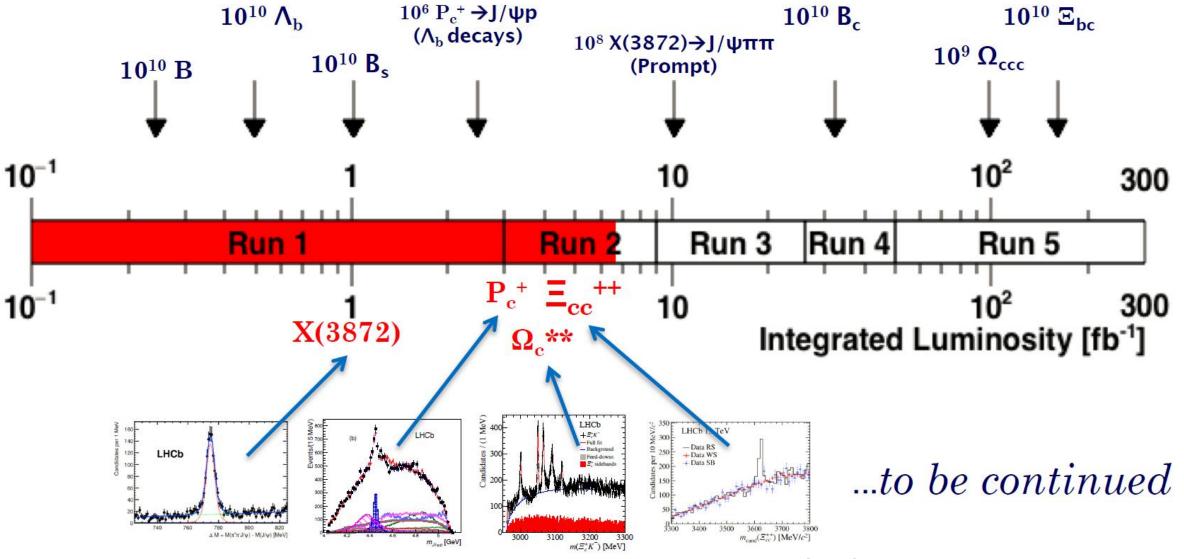
With limited statistics of both signal and control samples, the dominated uncertainty is statistical uncertainty (1.5 MeV, 0.009)

Summary


- LHCb detector is designed for the heavy flavour physics
- \circ LHCb has made significant progresses in the study of doubly-charmed baryon: \mathcal{Z}_{cc}^{++}
 - \Rightarrow Discovery of \mathcal{Z}_{cc}^{++}
 - \Rightarrow Confirmation of the observation of \mathcal{Z}_{cc}^{++} using $\mathcal{Z}_{c}^{+}\pi^{+}$ channel
 - \Rightarrow Measurement of \mathcal{Z}_{cc}^{++} lifetime: long lifetime as expected
- More data collected in Run-II

Stay tuned for new results!

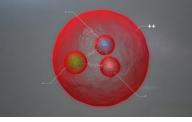
Backup


LHCb trigger

- Run real-time alignment and calibration of the detector
- Data buffered out of first software trigger stage
- Second software trigger runs asynchronously
- Permits Turbo real-time analysis strategy
 - Candidates reconstructed at the trigger level saved directly for offline analysis + (online alignment and calibration)

The first two analyses of today's talk benefit from the Turbo stream.

Hadron spectroscopy @ LHCb

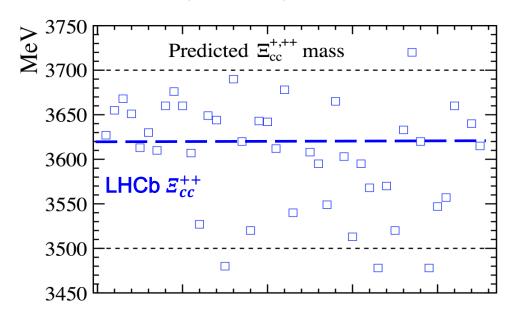

Prospects

- Searching for Ξ_{cc}^{++} with more channels: $\Xi_{c}^{+}\pi^{+}$, $\Lambda_{c}^{+}\pi^{+}$, $pD^{+}K^{-}\pi^{+}$...
- Measurement of the E_{cc} lifetime
- Measurement of the production cross-section
- Confirming its spin-parity: ½+
- ©Searching for its isospin partner Ξ_{cc}^+ in a larger sample than the previous measurement
- \circ Searching for Ω_{cc}^+
- © Doubly heavy baryons with bottom quark: Ξ_{bc} , Ω_{bc} , Ξ_{bb} ...
- The excited states?
- And new systems for CP violations

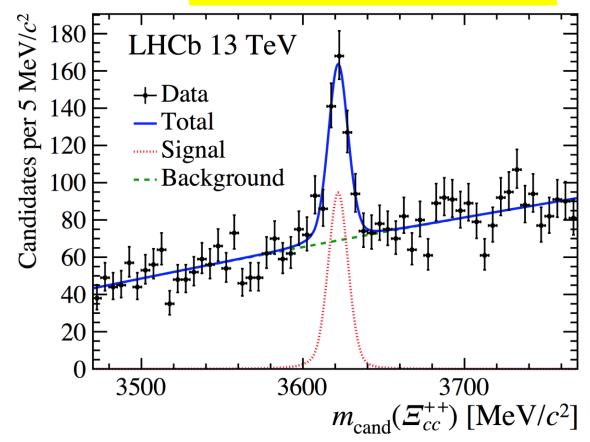
A little history

- China theorists preparation (2007 -- present):
 - Before LHCb taking data
 - GenXicc Generator: Chao-Hsi Chang etc.
- LHCb-China group (Tsinghua-LHCb group)
 - Before LHCb Run-II (2010-2015)
 - Search for Ξ_{cc}^+ : JHEP12 (2013) 090
 - Plan to search with more decays, but lack of MC and manpower
- LHCb-China group: analysis restarted in the summer 2016, focus on Ξ_{cc}^+
- China theorists input:
 - In a UCAS seminar at Dec. 2016, Fu-Sheng Yu pointed out $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ is the most promising channel (Invited by Jibo He): Fu-Sheng Yu etc.
- LHCb-China group (2017):
 - Tsinghua, CCNU, UCAS, Wuhan
 - The Ξ_{cc}^{++} paper submitted at July 2017

Observation of \mathcal{Z}_{cc}^{++}

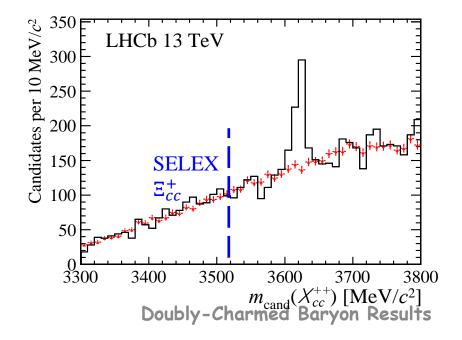


 $\bigcirc \mathcal{Z}_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ observed by LHCb experiment using 2016


data

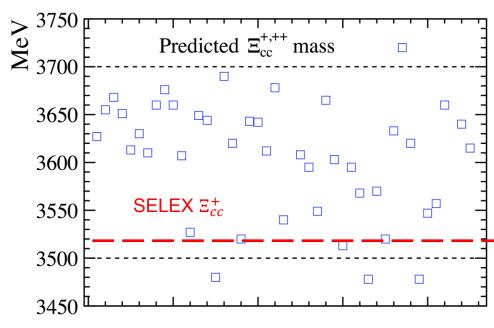
→ Signal yield: 313 ± 33

- Local significance > 12
- Weakly decay



Phys. Rev. Lett. 119, 112001 (2017)

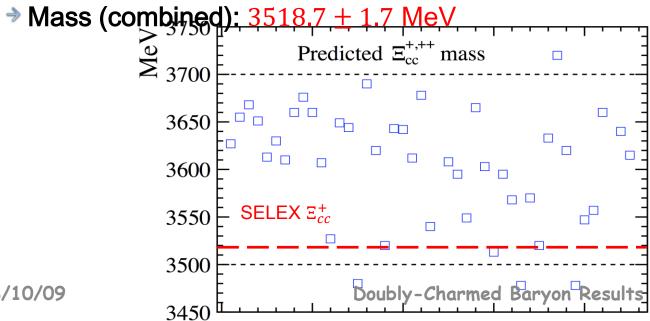
Compared with SELEX results


- © Large mass difference: $m(\Xi_{cc}^{++})_{LHCb} m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2$ MeV
 - Inconsistent with being isospin partners
- \circ Production: $N(\Xi_{cc})/N(\Lambda_c^+)$ much smaller in LHCb result

2018/10/09

SELEX result in tension with predictions

- Models to determine masses of ground state and excitations:
 - (non-) relativistic QCD potential models, triple harmonic-oscillator potential model, QCD sum rules, bag model or quark model ...
 - ⇒ Predicted $\mathcal{E}_{cc}^{+,++}$ masses in range 3.5 3.7 GeV,
 - \Rightarrow Masses of \mathcal{Z}_{cc}^+ and \mathcal{Z}_{cc}^{++} only differ by a few MeV due to u,d symmetry

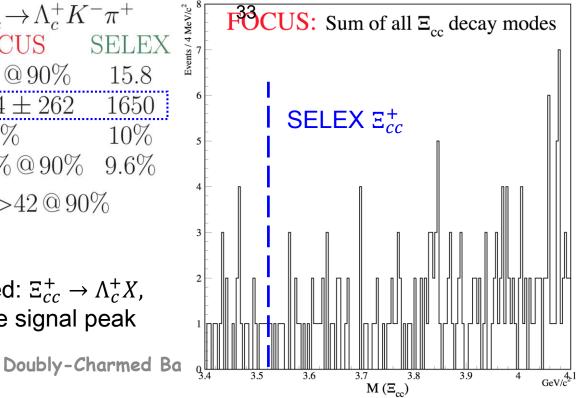


Analysis strategy $\mathcal{E}_c^+\pi^+$ (Blinded analysis)

- \circ Event selection of $\mathcal{E}_c^+\pi^+$ candidates, 2016 data
- Multivariate selector to suppress combinatorial background
 - Simulation as signal, data upper sideband as background
- Open signal window
 - \Rightarrow > 3 σ signal: mass measurement, ratio of branching fraction
 - Otherwise: upper limit setting

Studies of Ξ_{cc} by SELEX experiment

- \bigcirc SELEX (Fermilab E781) collides high energy hyperon beams (Σ^- , p) with nuclear targets, dedicated to study charm baryons
- Observed $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to pD^+ K^-$ decays
 - \Rightarrow Signal yields: 15.9 ($\Lambda_c^+ K^- \pi^+$) and 5.62 ($pD^+ K^-$)
 - ⇒ Short lifetime: $\tau(\Xi_{cc}^+)$ < 33 fs @90% CL, but not zero
 - ⇒ Large production: $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Xi_{cc}^+)} \sim 20\%$

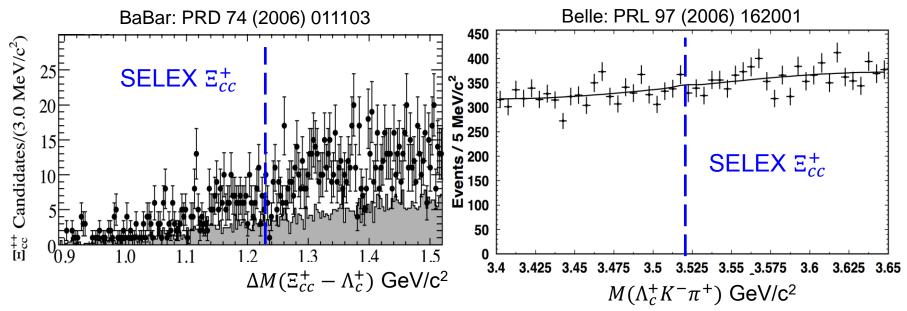

Very puzzling

Studies of Ξ_{cc} by FOCUS

- OFOCUS (Fermilab E831) studies charm hadrons produced in photon-nuclear fixed target collisions
- \circ FOCUS didn't confirm Ξ_{cc}^+ observed by SELEX in $\Lambda_c^+K^-\pi^+$ decay

Decay Mode	$\Xi_{cc}^+ \to \Lambda_c^+ K$	$-\pi^+$
Experiment	FOCUS	SELEX
Ξ_{cc} Events	< 2.21 @ 90%	15.8
Reconstructed Λ_c	$19,444 \pm 262$	1650
Relative Efficiency	5%	10%
Ξ_{cc}/Λ_c^+	<0.23% @ 90%	9.6%
$\frac{\text{SELEX}}{\text{FOCUS}} \text{ Rel } \frac{\Xi_{cc}}{\Lambda_c} \text{ Prod}$	>42 @ 90	%

• Other modes also studied: $\Xi_{cc}^+ \to \Lambda_c^+ X$, $D^0 X \ D^+ X$, no SELEX-like signal peak observed



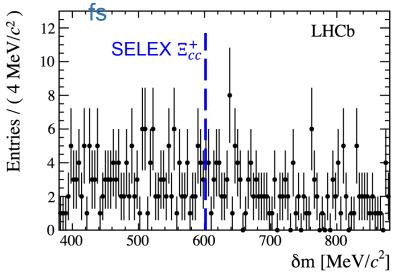
Nucl. Phys. Proc. Suppl. 115 (2003)

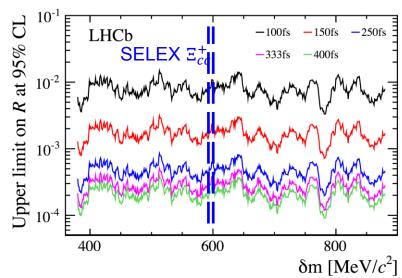
Studies of Ξ_{cc} by BaBar and Belle

- $\bigcirc e^+e^-$ colliders working at $\Upsilon(4S)$ mass $\sqrt{s}=10.58$ GeV
- ○Large Λ_c^+ yields: ≈ 0.6 M at BaBar, ≈ 0.8 M at Belle
- OSELEX-like Ξ_{cc}^+ signal not confirmed in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decays

 $R = \frac{\sigma(\Xi_{cc}^{+}) \times BF(\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+})}{\sigma(\Lambda_{c}^{+})} < 2.7 \times 10^{-4} \text{ (BaBar)} \quad 1.5 \times 10^{-4} \text{ (Belle)} \quad \textcircled{@} 95\% \text{ CL}$

Studies of Ξ_{cc}^+ by LHCb: Run-I


JHEP 12 (2013) 090

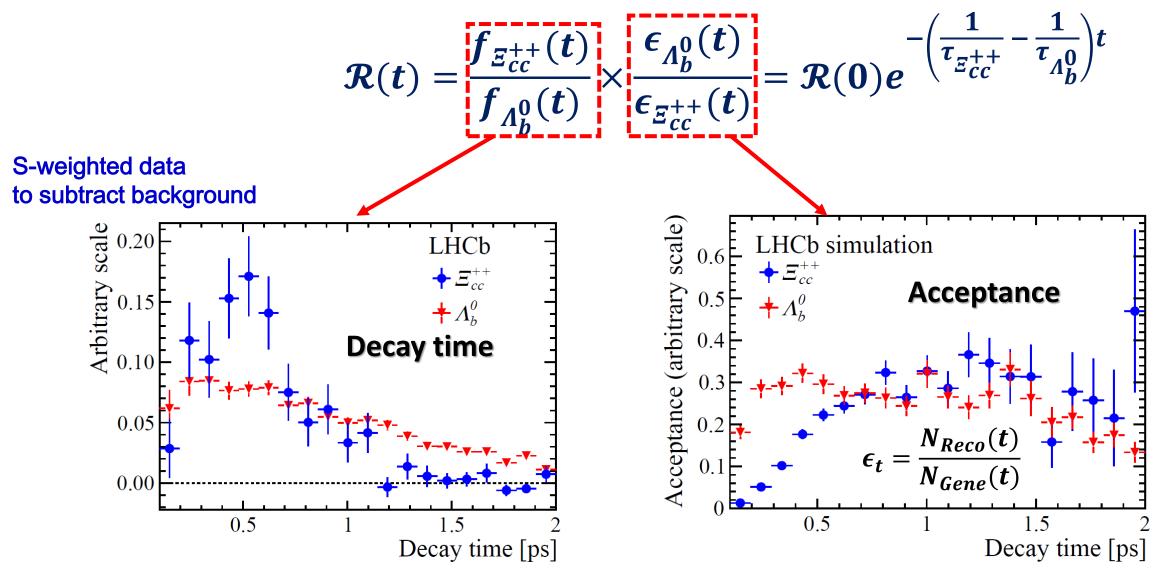

- ○LHCb searched for $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decay with 0.65 fb⁻¹ of 7 TeV data
- $\bigcirc N(\Lambda_c^+) \approx 0.8 \text{ M}$, requiring high- p_T
- ONo significant peaking structure observed with $m \in [3.3, 3.8]$ GeV
- ©Experiment sensitivity strongly depends on $\Xi_{\mathcal{CC}}^+$ lifetime $R = \frac{\sigma(\Xi_{cc}^+) \times \mathrm{BF}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} < 0.01$

< 0.013 for $\tau = 100$ fs,

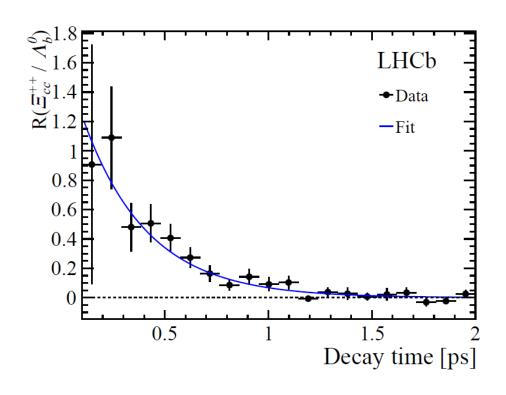
Increased by ~40 from 100 fs to 400

 $< 3.3 \times 10^{-4} \text{ for } \tau = 400 \text{ fs}$ @95%

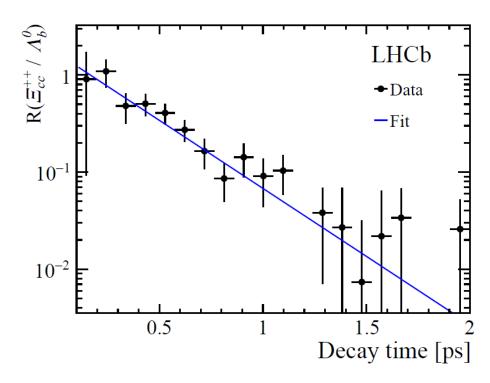
$$\delta m = m \Big([pK^- \pi^+]_{\Lambda_c^+} K^- \pi^+ \Big) - m \Big([pK^- \pi^+]_{\Lambda_c^+} \Big) - m(K^-) - m(\pi^+)$$


$\mathcal{Z}_c^+\pi^+$ Prediction

$$\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = \left(\frac{\tau_{\Xi_{cc}^{++}}}{300 \, fs}\right) \times 7.2\%.$$


$$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+) = (2.2 \pm 0.8)\%.$$

as $\mathcal{B}(\Xi_c^+ \to p\overline{K}^{*0})/\mathcal{B}(\Xi_c^+ \to pK^-\pi^+) = 0.54 \pm 0.10$ [33].
Besides, the relation $\mathcal{A}(\Xi_c^+ \to p\overline{K}^{*0}) = \mathcal{A}(\Lambda_c^+ \to \Sigma^+K^{*0})$
holds under *U*-spin symmetry. With the measurement
of $\mathcal{B}(\Lambda_c^+ \to \Sigma^+K^{*0}) = (0.36 \pm 0.10)\%$ [34], the branching


$$\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_{c}^{++}(2455)\overline{K}^{*0}) = \left(\frac{\tau_{\Xi_{cc}^{++}}}{300 \text{fs}}\right) \times (3.8 \sim 24.6)\%, \tag{11}$$

Decay time distributions and acceptance

$\mathcal{Z}_{cc}^{++}/\Lambda_b^0$ lifetime ratio comparison

