
Oct. 9, 2018 @ CCNU (Wuhan)

Views of Confinement, 
Deconfinement, and Inbetween

Kenji Fukushima 
Department of Physics 

The University of Tokyo

!1



Oct. 9, 2018 @ CCNU (Wuhan)

Congratulations!

!2

16:00 – 16:45 Zhangbu Xu (BNL/SDU) 
   “Probe Strong Magnetic Field in QGP with Dielectrons from  

Photon-Photon Collisions” 
 

16:45 – 17:30 Qun Wang (USTC) 
   “Wigner Function as An Effective Description of Chiral and  

Polarization Effect” 
 
18:00   Dinner 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part II: Forty Years of Quark-Gluon Plasma 
 
 

 
 
 
 
 
 

2
,

0
4
1

 
1/
35

This Talk



Oct. 9, 2018 @ CCNU (Wuhan)

Question to be addressed

!3

Chemical Potential  μNuclear Superfluid B

1st-order transition of “deconfinement” ?
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INT-PUB-18-043

Anyonic particle-vortex statistics and the nature of dense quark matter

Aleksey Cherman,1, ⇤ Srimoyee Sen,1, † and Laurence G. Ya↵e2, ‡

1Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 USA
2Department of Physics, University of Washington, Seattle, WA 98195 USA

We show that Z3-valued particle-vortex braiding phases are present in high density quark matter.
Certain mesonic and baryonic excitations, in the presence of a superfluid vortex, have orbital angular
momentum quantized in units of ~/3. Such non-local topological features can distinguish phases
whose realizations of global symmetries, as probed by local order parameters, are identical. If
Z3 braiding phases and angular momentum fractionalization are absent in lower density hadronic
matter, as is widely expected, then the quark matter and hadronic matter regimes of dense QCD
must be separated by at least one phase transition.

Introduction. The behavior of QCD as a function
of baryon density, at vanishing temperature, is of funda-
mental importance to nuclear physics and astrophysics
[1–4]. At low density, quarks and gluons have strong
interactions and are bound into colorless hadrons, pro-
ducing hadronic nuclear matter. At asymptotically high
densities, one instead finds weakly-coupled quark mat-
ter [5]. Can the hadronic and quark matter regimes be
smoothly connected, or are they necessarily separated by
a phase transition?

It is interesting to consider this question in the simpli-
fied, more symmetric setting of three-color, three-flavor
QCD with degenerate quark masses and SU(3)V flavor
symmetry.1 The increase in symmetry gives some hope
that questions of principle can be addressed in a sharper
fashion. In this flavor-symmetric setting, there is a very
interesting conjecture of quark-hadron continuity due to
Schäfer and Wilczek [9]. This conjecture is supported by
a comparison of the expected pattern of low energy exci-
tations and the realizations of conventional global sym-
metries at both high and low densities.

At asymptotically high densities, ‘color superconduc-
tivity’ leads to a diquark ‘condensate’ hqqi 6= 0, which in
turn induces non-zero gauge-invariant condensates with
the schematic forms h(qq)3i and hq̄q̄qqi [10]. The h(qq)3i
condensate signals spontaneous breaking of the U(1)B
baryon number symmetry down to Z2, while the hq̄q̄qqi
condensate signals, in the limit massless quarks, sponta-
neous chiral symmetry breaking of the form SU(3)L ⇥
SU(3)R ! SU(3)V . The spontaneous breaking of U(1)B
indicates that high density quark matter is a superfluid.
At low densities, one expects an identical chiral symme-
try breaking pattern in the massless limit, while U(1)B
symmetry breaking is believed to arise (in the flavor sym-
metric theory) from condensation of pairs of ⇤ hyperons
with flavor content uds. The matching symmetry real-

1 When electromagnetic and weak interactions are included, and
quarks have their physical masses, various phase transitions as-
sociated with, e.g., kaon condensation occur at high, but non-
asymptotic, density [5–8]. Focusing on the flavor symmetric limit
avoids these complications.

ization, along with apparently compatible patterns of low
energy excitations, make it plausible that the quark and
hadronic phases of QCD are smoothly connected, at least
in the flavor symmetric limit [9].
However, there is no guarantee that distinct phases can

always be distinguished by this Landau-Ginzburg style
analysis based on local order parameters. Some transi-
tions separating distinct phases can only be diagnosed
by changes in behavior of topological observables such as
the ground state degeneracy on large topologically non-
trivial manifolds, or suitable non-local order parameters
from which one infers, for example, particle-vortex braid-
ing statistics [11–13].
Given this motivation, we examine topological ground

state degeneracies and quark-vortex braiding statistics
in asymptotically high-density quark matter, and com-
pare results with the expected properties of hadronic nu-
clear matter. In high density quark matter, we find that
quarks acquire non-trivial Z3 Aharonov-Bohm phases,
arising from color holonomies, when encircling a super-
fluid vortex with minimal circulation. In terms of dressed
gauge-invariant quasiparticle excitations, this means that
certain mesonic and baryonic excitations have orbital an-
gular momentum quantized in units of ~/3 in the pres-
ence of a minimal superfluid vortex. These results can
also be interpreted in terms of anyonic particle-vortex
braiding statistics.
These topological features contrast sharply with the

expected properties of superfluid hadronic matter, in
which one expects conventional quantization of quasipar-
ticle orbital angular momentum in units of ~. If the stan-
dard picture of the low density hadronic regime is cor-
rect, then the hadronic and quark matter regimes must
be separated by at least one phase transition.
U(1) superconductors. To set the stage for our

QCD discussion we first review related aspects of BCS
superconductors at zero temperature. (See, for example,
Ref. [14] for more detail.) Such systems can be modeled
by an Abelian Higgs model,

L = |Dµ�|2 +m
2|�|2 + 1

2�|�|
4 � 1

4e2
F

2
µ⌫ . (1)

The complex scalar field � is assumed to have charge q
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A counter example of quark-hadron duality?
Unbelievable… (but hard to falsify it…)

Very interesting paper, but…
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Confinement of Quarks and Gluons

Controllable parameter (T, µ, B, w) to approach  
confinement from (deconfined) extreme matter

Ultimate goal of theory

(Examples)
KvBLL instantons (dyons)
QCD-like theories on S1×R3 with adjoint fermions
Quark-hadron continuity at high baryon density
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(a) (b)
 HRG Lattice

Figure 1. Schematic figures of the normalized pressure as a function of T .

Such a claim is true if all the S -matrix poles are picked up by existing bound states and/or resonances. There may
be, however, missing contribution from branch cut associated with threshold behavior and from hidden states not
listed on the particle database. The theoretical foundation for the validity of the HRG estimate should deserve future
investigations.

In any case, the fact is that the coincidence between the lattice QCD and the HRG is becoming better and better up
to Tc as the lattice QCD approaches the continuum limit and the physical quark mass. Above Tc, eventually, the HRG
badly blows up, which is to be regarded as the breakdown of the HRG model. Here, I would point out two non-trivial
problems in this HRG results, which will provide us with a useful insight when we address dense matter.

The first problem is that we can no longer consider that the rapid rise in p/T 4 should be attributed to color
deconfinement. It could be induced by hundreds of hadrons even without colored particles at all. This is why I
wrote; it is not wrong but not completely satisfactory to say that deconfinement takes place when p/T 4 shows a quick
increase. Then, you may wonder, as a radical extreme, if it makes logical sense that the system keeps hadrons as
relevant degrees of freedom for any T including T > Tc. We already know that the standard HRG is not valid above
Tc, but the question is what exactly breaks down there. Does the hadronic description lose its meaning at all or is it
only a part of assumption made in the HRG that goes invalid?

This question is deeply related to my second problem; that is, how is it possible that the thermodynamics is taken
over from the HRG to the QGP as observed in the lattice QCD [see Fig. 1 (a)] even though the pressure of the HRG is
greater. It is a firm thermodynamic principle that any state with a larger pressure would be more favored. Therefore,
if the HRG is somehow legitimate above Tc, the hadronic state should be more stable than the QGP, which is not
the case in reality. It is not very di�cult to propose a consistent picture that resolves my two problems. Hadrons or
mostly mesons are accompanied by interaction clouds inside of a non-zero radius ⇠ ⇤�1

QCD. Thus, the Hagedorn-like
behavior of the HRG pressure should be saturated by the interaction clouds of mesons. It follows that each border of
meson is not really well-defined and quarks and gluons can hop around between overlapping wave-functions of blurred
mesons. This is nothing but a percolation picture of color deconfinement. So, we do not have to abandon the hadronic
description even above Tc only if we incorporate not point-like mesons but extending mesonic wave-functions, and
this is equivalent to introducing colored particles in the thermal system after all.

Now we have a right answer to the question about the onset of deconfinement. Your answer should be that decon-
finement takes place when the growth in p/T 4 is saturated due to hadronic interactions. Such a strongly interacting
mesonic state is more naturally and e�ciently handled by (resummed) perturbation theory of hot QCD and the hard
thermal loop approximation is so successful to account for the lattice thermodynamics from the high temperature side
up to the temperature around ⇠ 2Tc as sketched in Fig. 1 (b). We notice that the most non-trivial region near Tc is to be
characterized by a sort of duality between strongly interacting mesons and weekly interacting quarks and gluons. Be-
cause this region looks so special, we are tempted to name it, and actually a well-known name has already been given;
that is, the strongly-correlation QGP or shortened as the sQGP. Some other people named it as the semi-QGP [3] and
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Figure 1. Schematic figures of the normalized pressure as a function of T .

Such a claim is true if all the S -matrix poles are picked up by existing bound states and/or resonances. There may
be, however, missing contribution from branch cut associated with threshold behavior and from hidden states not
listed on the particle database. The theoretical foundation for the validity of the HRG estimate should deserve future
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deconfinement. It could be induced by hundreds of hadrons even without colored particles at all. This is why I
wrote; it is not wrong but not completely satisfactory to say that deconfinement takes place when p/T 4 shows a quick
increase. Then, you may wonder, as a radical extreme, if it makes logical sense that the system keeps hadrons as
relevant degrees of freedom for any T including T > Tc. We already know that the standard HRG is not valid above
Tc, but the question is what exactly breaks down there. Does the hadronic description lose its meaning at all or is it
only a part of assumption made in the HRG that goes invalid?

This question is deeply related to my second problem; that is, how is it possible that the thermodynamics is taken
over from the HRG to the QGP as observed in the lattice QCD [see Fig. 1 (a)] even though the pressure of the HRG is
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meson is not really well-defined and quarks and gluons can hop around between overlapping wave-functions of blurred
mesons. This is nothing but a percolation picture of color deconfinement. So, we do not have to abandon the hadronic
description even above Tc only if we incorporate not point-like mesons but extending mesonic wave-functions, and
this is equivalent to introducing colored particles in the thermal system after all.

Now we have a right answer to the question about the onset of deconfinement. Your answer should be that decon-
finement takes place when the growth in p/T 4 is saturated due to hadronic interactions. Such a strongly interacting
mesonic state is more naturally and e�ciently handled by (resummed) perturbation theory of hot QCD and the hard
thermal loop approximation is so successful to account for the lattice thermodynamics from the high temperature side
up to the temperature around ⇠ 2Tc as sketched in Fig. 1 (b). We notice that the most non-trivial region near Tc is to be
characterized by a sort of duality between strongly interacting mesons and weekly interacting quarks and gluons. Be-
cause this region looks so special, we are tempted to name it, and actually a well-known name has already been given;
that is, the strongly-correlation QGP or shortened as the sQGP. Some other people named it as the semi-QGP [3] and
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[As I emphasized at QM2016]

Confinement    —    Deconfinement
“Inbetween”

Quark-Hadron Duality / sQGP / Quarkyonic
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µ

P Extrapolation  
from Nuclear

Extrapolation  
from Quark

Nuclear Matter

Quark Matter

Smoothly 
connected

Quark-Hadron Duality
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Diquark Bose Condensates in High Density Matter and Instantons

R. Rapp1, T. Schäfer2, E.V. Shuryak1 and M. Velkovsky3
1 Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800

2 Institute for Nuclear Theory, Department of Physics, University of Washington, Seattle, WA 98195, USA
3 Nuclear Theory Group, Brookhaven National Laboratory, Upton, NY 11973-5000

(August 29, 2018)

Instantons lead to strong correlations between up and down quarks with spin zero and anti-
symmetric color wave functions. In cold and dense matter, nb > nc ≃ 1fm−3 and T < Tc ∼ 50
MeV, these pairs Bose-condense, replacing the usual ⟨q̄q⟩ condensate and restoring chiral symmetry.
At high density, the ground state is a color superconductor in which diquarks play the role of Cooper
pairs. An interesting toy model is provided by QCD with two colors: it has a particle-anti-particle
symmetry which relates ⟨q̄q⟩ and ⟨qq⟩ condensates.

The properties of hadronic matter under extreme con-
ditions are subject to intense theoretical studies, nu-
merical simulations on the lattice, and experimental ef-
forts using high energy heavy-ion collisions. Substantial
progress has been made with respect to high tempera-
ture QCD matter, while the (more difficult) problem of
cold dense matter is much less understood. This is partly
due to the fact that up to now, lattice simulations have
not been able to overcome the numerical problems associ-
ated with the fact that at non-zero chemical potential the
fermionic determinant is complex (see [1] for a recent re-
view). This is unfortunate, because the phase structure
of dense matter may be very rich. Several intermedi-
ate phases between nuclear and quark matter have been
proposed, e.g. states with mesonic (pion or kaon [2])
condensates.
Due to the asymptotic freedom of QCD one expects

very dense matter to resemble an ideal Fermi gas of
quarks. The system is quite similar to a cool electron
plasma, with Debye-screening of color fields at momen-
tum scales p < MD ∼ gµ, collective plasmon excitations,
etc. [3]. Since the Coulomb interaction between quarks of
different colors is attractive, it was realized early on that
the quark plasma should be a superconductor, due to the
formation of Cooper pairs on the Fermi surface [4]. The
magnitude of the corresponding gap ∆ and the critical
temperature Tc were estimated to be in the MeV range.
In this article we show that non-perturbative effects

lead to diquark condensates with ∆, Tc about two or-
ders of magnitude larger. These condensates are gener-
ated by the instanton-induced interactions between light
quarks [5]. For two flavors (up and down) the (q̄q) inter-
action is

L = G
1

8N2
c

[

(ψ̄τ−ψ)2 + (ψ̄τ−γ5ψ)
2
]

, (1)

where we have added the interaction in the direct and
exchange channels and dropped color octet terms. Nc

is the number of colors and τ− = (τ⃗ , i) is an isospin
matrix. We will specify the coupling constant G below.
There is pervasive evidence for the importance of this
interaction from (i) phenomenological studies of current
correlation functions in QCD, (ii) the success of hadronic
spectroscopy in the instanton liquid model, and (iii) stud-

ies of instantons and their effects on the lattice, see [6]
for a review of these issues.
The result (1) can be Fierz-rearranged into a (qq) in-

teraction. One obtains

L = G

{

−
1

16Nc(Nc − 1)

[

(ψTCτ2λ
n
Aψ)(ψ̄τ2λ

n
ACψ̄

T ) (2)

+ (ψTCτ2λ
n
Aγ5ψ)(ψ̄τ2λ

n
Aγ5Cψ̄

T )
]

+
1

32Nc(Nc + 1)
(ψTCτ2λ

n
Sσµνψ)(ψ̄τ2λ

n
SσµνCψ̄

T )

}

Here, C is the charge conjugation matrix, τ2 is the anti-
symmetric Pauli matrix, λA,S are the anti-symmetric
(color 3̄) and symmetric (color 6) color generators. The
effective lagrangian (2) provides a strong attractive in-
teraction between an up and a down quark with anti-
parallel spins (JP = 0+) in the color anti-triplet channel,
and a repulsive interaction in the 0− channel. 0+ quark
pairs couple to the diquark current Sa

dq = ϵabcuT
b Cγ5dc.

Phenomenological implications of the instanton-induced
interaction in this channel were first discussed in con-
nection with spin-dependent forces in baryons [7], chal-
lenging the conventional wisdom that spin splittings are
due to one-gluon exchange. The importance of diquark
degrees of freedom is perhaps most obvious in baryons
that contain one very heavy quark. Quantitative studies
of instanton effects in baryon spectroscopy (both light
and heavy-light systems) were done in [8]. The conclu-
sion was that the instanton effects encoded in (2) are
indeed strong enough to reproduce the observed spin-
splittings, and that the nucleon has a very large over-
lap with the current ϵabc(uT

aCγ5d
b)uc = Sa

dqu
a. Since

there is no confinement in the instanton model, one can
compare the diquark mass to the two constituent quark
threshold. The result is a deeply bound scalar diquark
2mq−mSdq ≃ 200−300 MeV [9], whereas all other chan-
nels (vectors and axial-vectors, color 6 diquarks, etc.) are
at most weakly bound.
The possible role of diquark clusters in quark matter

was discussed in [10]. It was noted that a loosely bound
“third” quark in the nucleon may find a partner in dense
matter. However, as we show below, this effect is less im-
portant than Bose condensation. In general, even if we
focus only on the instanton-induced interaction, the situ-

1

hep-ph/9711396

Diquarks (Anselmino et al. 1992)

“Good” Diquark

Instanton-induced interaction leads to large diquark cond.
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November 1998 IASSNS-HEP 98/100

Continuity of Quark and

Hadron Matter

Thomas Schäfer1

and

Frank Wilczek2

School of Natural Sciences
Institute for Advanced Study

Princeton, NJ 08540

Abstract

We review, clarify, and extend the notion of color-flavor locking.
We present evidence that for three degenerate flavors the qualitative
features of the color-flavor locked state, reliably predicted for high
density, match the expected features of hadronic matter at low density.
This provides, in particular, a controlled, weak-coupling realization of
confinement and chiral symmetry breaking in this (slight) idealization
of QCD.

1Research supported in part by NSF PHY-9513835.
e-mail: schaefer@sns.ias.edu

2Research supported in part by DOE grant DE-FG02-90ER40542.
e-mail: wilczek@sns.ias.edu
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Fradkin-Shenker (1979)

Connected  
smoothly
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Photon-Gluon Mixing
Diquarks have both electric and QCD charges

Q̃ = Q+
1p
3
T8

<latexit sha1_base64="AX6mR0+eJltq+n64nBjelw9fi40="></latexit><latexit sha1_base64="AX6mR0+eJltq+n64nBjelw9fi40="></latexit><latexit sha1_base64="AX6mR0+eJltq+n64nBjelw9fi40="></latexit><latexit sha1_base64="AX6mR0+eJltq+n64nBjelw9fi40="></latexit>

Electric  
charge

Color 
charge

Modified  
electric  
charge

Quarks carry integer      with diquark condensates  
just like baryons in the hadronic phase !

ẽ
<latexit sha1_base64="ZOQ1e9KM9ROPHeUGm24xQ6sD52w="></latexit><latexit sha1_base64="ZOQ1e9KM9ROPHeUGm24xQ6sD52w="></latexit><latexit sha1_base64="ZOQ1e9KM9ROPHeUGm24xQ6sD52w="></latexit><latexit sha1_base64="ZOQ1e9KM9ROPHeUGm24xQ6sD52w="></latexit>

One realization of the quark-hadron continuity
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Hadronic Matter Quark Matter

Baryons 8+1 (low-lying) Quarks 3color × 3flavor = 9

8 vector mesons 8 gluons

8 pseudo-scalar mesons 8 tetra-quark mesons

qqq
qqq

Condensate
ExcitationFlavor 

Triplet

All the condensates and excitations have correspondence

Heuristic view to understand the same physics
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Another view to understand the same physics

The phase diagram of dense QCD 32

quark-hadron continuity

s = 0
D ~ 0

s ~ 0
D = 0

s > D = 0\
\

\~ D > s = 0\~

U(1)A BrokenU(1)A Symmetric

induced by D s2

mq

Figure 9. Schematic figure of the realization of the quark-hadron continuity
by the presence of the σ∆2 interaction term which induces σ ̸= 0 driven by
substantially large ∆ near the first-order phase boundary.

An interesting question is, if the Quark-Hadron continuity is the case, how
collective excitations in respective phases can be smoothly connected to each other.
The nature of the Nambu-Goldstone bosons, i.e. the (CFL) pions and kaons should
reflect the ground state properties. Using the chiral effective Lagrangian approach
[187] their energy dispersions are, in the presence of ms ̸= 0 and µe ̸= 0, read as
[188, 189]

ϵπ±(p) = ±µe +
√

v2p2 + M2
π± ,

ϵK±(p) = ±µe ∓
m2

s

2µq
+

√
v2p2 + M2

K± ,

ϵK0(p) = − m2
s

2µq
+

√
v2p2 + M2

K0 , (79)

where v2 = 1/3 at high density. The CFL meson masses are given by

M2
π± = a(mu + md)ms + χ(mu + md),

M2
K± = a(mu + ms)md + χ(mu + ms),

M2
K0 = a(md + ms)mu + χ(md + ms). (80)

Here a = 3∆2/(π2f2
π) with f2

π = (21 − 8 ln 2)µ2
q/(36π2) at high density and χ

parametrizes the contribution of U(1)A-breaking instanton effects which generate ⟨ψ̄ψ⟩
and therefore contribute to the CFL meson masses.

In the absence of the instanton term (χ = 0), if ms ! m1/3∆2/3 where m is either
mu or md, the energies for K+ and K0 become negative. The electron contribution to
the thermodynamic potential favours the K0 condensation. This opens a new phase
region on the dense-QCD phase diagram in which the superfluidity of K0 meson
is realized. Such a CFL state with K0 condensation is called the CFL-K0 phase
[190, 191, 192, 193]. The phase structure with inclusion of the CFL-K0 phase and its
variants is also investigated in the NJL-type model [194, 195]. The onset of the K0

condensation depends on the instanton χ strength.
In view of (80) the meson mass ordering is Mπ± > MK± ≃ MK0 for ms ≫ mu ≈

md and χ ≈ 0, which is inverse of the ordinary ordering [188]. This is, however,
natural from the diquark picture as already implied by the order parameter (15) in
which CFL-σ meson consists of two diquarks, i.e. q̄q̄qq. The Nambu-Goldstone bosons
are accordingly composed from q̄q̄qq; CFL-π+ contains a d̄s̄ diquark that transforms
like u quarks and an su diquark like d̄ quarks, while CFL-K+ a d̄s̄ diquark and a
ud diquark like s̄ quarks. Therefore CFL-K+ has a d quark instead of an s quark as

Instanton-induced interaction

det[ ̄(1± �5) ] ⇠ �2�
<latexit sha1_base64="bjPt2xJgEiLedWPAAxPagoCq4xc="></latexit><latexit sha1_base64="bjPt2xJgEiLedWPAAxPagoCq4xc="></latexit><latexit sha1_base64="bjPt2xJgEiLedWPAAxPagoCq4xc="></latexit><latexit sha1_base64="bjPt2xJgEiLedWPAAxPagoCq4xc=">AAACn3ichVHLShxBFD22eejk4Rg3gpsxg8FshttiMOhGYiBZhfExapiaDNU95VjYL7prBszgD/gDLtwkQhDJZwRCdmaThZ8QslTIJovc7mkIKkluUVX3nnvPrVNVTuTpxBCdDViDN27euj00XLhz9979keLog/Uk7MSuqrmhF8abjkyUpwNVM9p4ajOKlfQdT204O0tpfqOr4kSHwZrZjVTDl+1Ab2lXGoaaxXnRUqYuHBn3RJTovWlbRL5oS9+XzSePU6ghFkSifbFQEs+VZ+SbmRLHbc4Xy1ShzErXHTt3ysitGhaPIdBCCBcd+FAIYNj3IJHwqMMGIWKsgR5jMXs6yyvsocDcDlcprpCM7vDa5qieowHHac8kY7t8isczZmYJU/SNTuicvtBH+k6//tqrl/VItezy7vS5KmqO7I+v/vwvy+fdYPsP65+aDbbwNNOqWXuUIekt3D6/+/bgfHV+Zar3iI7oB+t/T2f0iW8QdC/cD8tq5RAF/gD76nNfd9ZnKjZV7OXZ8uKz/CuGMIGHmOb3nsMiXqKKGp/7Dp9xiq/WpPXCemVV+6XWQM4ZwyWzXv8Gk4egGg==</latexit>

Linear in terms of the chiral condensate s !
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Hadronic Phase : Chiral broken by the chiral condensate.

Quark Phase : Chiral broken by the diquark condensate.

Breaking patters is indistinguishable (due to anomaly)

Anomaly 
induced 

Interaction

q
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Hyper Nuclear Matter CFL

Chiral ⟨σ⟩ ∼ ⟨q̄q⟩ ̸= 0 ⟨σ⟩ = 0

Symmetry ⟨σ̃⟩ ∼ ⟨q̄2q2⟩ ∼ small ⟨σ̃⟩ ̸= 0

π ∼ q̄q + (q̄q̄)(qq) + · · · π̃ ∼ (q̄q̄)(qq) + · · ·

Z(2) −→ ZV(2) (instanton)←− ZL(2)× ZR(2)

Super- ∆NN = ⟨Σ2 + Λ2 +NΞ⟩ ̸= 0 ∆NN ∼ small

-fluidity ⟨H⟩ ̸= 0 ⟨H⟩ ̸= 0

χH ∼ 2 nucleons + 3 diquarks χH ∼ 3 diquarks

confinement–Higgs crossover

TABLE I: Summary of qualitative changes from nuclear matter to CFL quark matter.

Hyper Nuclear Matter CFL

BEC of colorless H BEC of colored qq BCS

pion

phason

small

qq

qq
_

qq
__

qq
q
_qq

__

qq

qqq

qqq

qq qq

qq

qq qq

none (apart from UA(1) breaking)

q q

q
_

q q

q q

q q µ

FIG. 1: Schematic picture of the structural change and the two-step crossover.

phase where colored diquarks play an essential role. From the point of view of the NG

bosons this can be seen as dissociation of the hadrons into constituent diquarks. As far as

H is concerned, we can say in the following way; the hadronic phase has a Bose-Einstein

condensate (BEC) of the color-singlet H-dibaryon, while the dissociated colored diquarks

lead to a superconducting state at higher baryon density, and yet they compensate for their

color charge to be a color-singlet in the CFL phase. In this sense, the attractive force

between diquarks controls the state of matter. If the interaction is strong enough, the state

is BEC-like, and otherwise, it is BCS-like. This BEC-BCS crossover looks quite different

11

mentioning…

[23] the diquark interaction through the ’t Hooft term is affected by the chiral condensate.

This may cause an entanglement between the chiral condensate and the diquark, in other

words, between the pions and the phason. It would be intriguing to study how far the phase

transition with respect to the pions can bring about the structural change of the phason.

In this work the explicit breaking of the UA(1) symmetry has been regarded as an ex-

ternal perturbation smearing a sharp distinction based on chiral symmetry. It would be a

challenging problem to study its effect not only on the pions but also on the superfluid struc-

ture. Since it is known that a strong three-body repulsion induced by the instanton effect

makes the H-dibaryon weakly bound or unbound theoretically [43], the instanton-induced

interaction will affect the content of the superfluid component.

Our speculation implies that diquarks would become important for the hadronic phase if

it is close to CFL quark matter at high baryon density. This must be a robust consequence

even in the presence of finitems as long as there is no first order phase transition. The nature

of diquarks in the hadronic phase deserves further investigation not only in the vacuum [44]

but rather at high baryon density. This is partially because the importance of diquarks

would be seen once the chiral condensate is vanishingly small. A possible suggestion is that,

near the chiral phase transition at high temperature where the chiral condensate melts,

the diquark correlation can be relevant to thermodynamic quantities, as has been already

pointed out [45].

In order to make our argument applicable, for instance, to neutron star physics, it is

necessary to take account of finite ms and the neutrality conditions. The CFL phase is

robust as long as m2
s/µ < 2∆CFL [46]. As discussed in [17], if ms is large enough to suppress

the hyperon number density, the transition from ordinary nuclear matter to the CFL phase

is discontinuous. Detailed calculations, however, suggest the presence of H matter in the

neutron star [38], though further analyses are needed to reveal the actual properties of H

matter in the cores of compact stellar objects. Since the diquark picture tends to give rise

to tightly-bound H-dibaryon, we may well think that the calculation with diquarks taken

into account would result in the existence of H matter and our discussion here is not altered

qualitatively. If our scenario is realized, then it would be quite interesting to see how the

nature of H (or χH) affects the internal structure of the vortices in a superfluid along the

lines of [47].

We believe that our pictorial understanding could shed light on the non-perturbative

13
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Questioned by Gordon Baym 15 years later…

Pour quarks into your 
“bucket” 
Upper part : Hadronic Matter 
Lower part : Quark Matter

Quark Matter

Hadronic Matter

? ? ? Is there any interface? 
  

Not necessarily!

We already know the ans: 
Quark-Hadron Continuity
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Quark Vortex

Hadronic Vortex

How can they be connected?

Rotate the bucket filled  
with quarks 
Upper part : Hadronic Vortex 
Lower part : Quark Vortex

? ? ?

Questioned by Gordon Baym 15 years later…
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in the CFL phase at finite rotation for the future.

II. VORTEX QUANTIZATION AND
CIRCULATION

We first review the basics of vortex quantization, circu-
lation, and angular momentum which are common to all
the vortices we discuss here: hadronic vortices, Abelian
CFL vortices, and CFL vortices carrying non-Abelian
color flux.

Quantized vortices arise in superfluids under rotation.
A superfluid can be described by a complex scalar field;
the ground state expectation value �(~r, t) of the field,
in the conventional description in terms of broken sym-
metry, represents the condensate of bosons (or Cooper
pairs of fermions) that gives rise to superfluidity. The
Hamiltonian for the field is invariant under a global U(1)
symmetry, so that the number of bosons or fermions is
conserved by the dynamics. However, if � is nonzero
then the ground state of the Hamiltonian spontaneously
breaks the U(1) symmetry.

In general, the condensate can be written in terms of
its modulus and phase � as,

� = ei�|�| . (3)

In the local rest frame of the condensate,

� = �µst , (4)

where µs is the chemical potential of the conserved par-
ticles in the ground state, namely the minimum energy
required to add one boson or one pair of fermions to the
system. Boosting to a frame in which the condensate is
in uniform motion [24], we find

� = p⌫x
⌫ = ~p · ~r � µt , (5)

where p⌫p⌫ = �µ2
s and µ = �(v)µs with �(v) ⌘

1/
p
1� v2. The superfluid velocity is simply

~v =
~p

|p0|
=

~p

µ
. (6)

We can thus write the momentum carried by the unit of
conserved charge and the chemical potential as

~p = ~r�(~r, t) , µ = �@�(~r, t)

@t
(7)

for general space-time dependent �.
For a static superfluid vortex, �(~r, t) = �(~r)�µt; thus

�(~r ) = ei�(~r )�iµt|�(~r )| , (8)

where |�(~r )| is zero at the center of the vortex and in
uniform density matter is independent of position well
outside the vortex core. Far from the vortex core the
only spatial variation is in the phase �(~r ).

For the mathematically simplest vortex aligned along
the z axis, � = ⌫', where ' is the azimuthal angle. Thus
the momentum per particle or pair is

~p (r) = ~r� =
⌫

r
'̂ (9)

where r is the distance from the vortex core and '̂ is a
unit vector in the ' direction. From Eq. (6) the super-
fluid velocity is

v(r) =
⌫

µr
'̂ . (10)

Integrating ~p along a closed contour C surrounding the
vortex we obtain the total change �� in the phase,

�� =

I

C
~p · d~̀= 2⇡ ⌫ . (11)

In a three dimensional system, the winding number ⌫
must be an integer. From Eqs. (6) and (11) [or from
Eq. (10)] the superfluid velocity obeys the circulation
condition,

C =

I

C
~v · d~̀= 2⇡

⌫

µ
, (12)

as mentioned in the introduction.
Lastly we compute the angular momentum, Lz, of a

vortex centered on the z axis. From Eq. (7) the local az-
imuthal momentum density is p'n where n is the particle
density (as distinguished from the condensate density),
which is independent of '. Thus

Lz =

Z
d3r rp' n(r) = ⌫

Z
2⇡rdrdz n(r) = N⌫ ,(13)

where N is the total number of particles or pairs. The
angular momentum per particle for bosons or per fermion
pair is simply ⌫, the winding number of the vortex.

III. VORTICES IN HADRONIC AND CFL
QUARK MATTER

We now consider the circulation and the angular mo-
mentum associated with vortices in hadronic and CFL
quark matter.

A. Hadronic vortices

In SU(3) flavor symmetric matter we expect the
baryons to pair in the flavor-singlet spin-singlet chan-

nel, which is h�
q

1
8⇤⇤+

q
3
8⌃ ·⌃+

q
4
8N ·⌅i [25] where

N = (p, n) is the nucleon doublet, ⌅ = (⌅0,⌅�) is the
“cascade” doublet, and ⌃ = (⌃+,⌃0,⌃�) is the sigma
triplet.
The chemical potential entering Eq. (12) is 2µB, that

of a pair of baryons. A hadronic vortex with winding

Circulation

Winding number n should match.

Circulation differs between nuclear and quark matter? 
(Difference comes from chemical potentials)

Quark Vortices

Hadronic 
Vortices

Boojum ?
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Wikipedia

Boojum
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Proton
vortex

npe
phase

CFL
phase

Interface

Boojum
(Dirac monopole)

J✓

~BM

~B0

(a)

Neutron
vorticesnpe

phase

CFL
phase

Interface
Boojum

Color and U(1)em
magnetic monopole

Pure color-magnetic
monopole

b̄ r̄

ḡ
ḡḡ

(b)

FIG. 1: (a) A superconducting proton vortex ending on the interface between the npe and CFL

phases. A boojum forms at the contact point in the CFL phase region. The pure magnetic flux of

the vortex splits into a ~BM component, which is screened by a surface current and bent along the

interface, and a ~B0 component emanating from the boojum, which looks like a Dirac monopole.

(b) Three neutron vortices ending in a boojum at the interface. The three BDM (r̄), CP 1
+ (ḡ) and

CP 1
+ (b̄) vortices are depicted. The black arrows along the three vortices represent U(1)em magnetic

flux. The two monopole junctions described in the text are also depicted.

a neutron vortex in the npe phase. In the CFL phase, the order parameter is hqqi, which

behaves hqqi ⇠ ei✓ for a U(1)B vortex or a triplet of semi-superfluid vortices, indicating that

the quark fields get a phase 2⇡/2 corresponding to 1/2 U(1)B winding, when they travel

around a U(1)B vortex or a triplet of semi-superfluid vortices. Then, one concludes that

three neutron vortices have to join at the boojum.

At a typical distance ⇠ from the interface, though, the BDM and the CP 1
� solutions will

“decay” to the CP 1
+ vortex, due to their instability. We can estimate the length scale ⇠ by

referring to the low-energy effective action (10). Following the same steps of [38] we obtain:

⇠ ⇠ m�1
s

✓
µ

�✏

◆2

log

✓
µ

�✏

◆�1/2

⇠ 4GeV�1 , (13)

with the physical quantities being: µ ⇠ 10GeV,�✏ ⇠ 100MeV, K3 = 9. This length has

to be compared with the thickness d of the interface, which can be seen as a domain wall

between the two different phases [15]. Using the same values for physical parameters, we

get d ' 10�10⇠. Then the vortices decay at large distances from the interface. Since vortices

decay into others with different fluxes, each junction corresponds in fact to a monopole.

8

Cipiriani-Vinci-Nitta (2012)

Conjectured based  
on color-flux conservation
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Non-Abelian CFL vortices ~ Hadronic vortices
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We study how vortices in dense superfluid hadronic matter can connect to vortices in superfluid
quark matter, as in rotating neutron stars, focusing on the extent to which quark-hadron continuity
can be maintained. As we show, a singly quantized vortex in three-flavor symmetric hadronic
matter can connect smoothly to a singly quantized non-Abelian vortex in three-flavor symmetric
quark matter in the color-flavor locked (CFL) phase, without the necessity for boojums appearing
at the transition.

I. INTRODUCTION

In a rotating neutron star, the superfluid components –
the nuclear liquid at lower densities and a possible color-
flavor locked (CFL) quark phase [1] at higher densities
in the interior – carry angular momentum in the form
of quantized vortices. How, we ask, are the vortices in
these two phases connected? Can one have continuity
or must there be a discontinuity? How do the possible
connections depend on the particular flavor structure of
the matter? In the ground state of dense matter, the
picture of quark-hadron continuity [2, 3] is that as the
baryon density is increased matter undergoes a smooth
crossover from the hadronic phase to the quark phase. By
studying how such vortices connect we can shed further
light on whether the notion of quark-hadron continuity
can be extended to angular momentum carrying states
of dense hadronic matter.

To summarize the problem in matching hadronic with
CFL vortices we note that superfluid vortices in the BCS-
paired hadronic phase have quantized circulation, CB,
i.e.,

CB =

I

C
~v · d~̀= 2⇡

⌫B

2µB

, (1)

where the contour C of integration encircles the vortex,
µB is the baryon chemical potential, and ⌫B is an integer.
We detail this result further below. (We work in units
~ = c =1.) All but singly quantized vortices (⌫B = ±1)
are unstable. In a BCS-paired CFL quark phase on the
other hand, the simple Abelian vortex [4, 5], the analog
of the hadronic vortex, has circulation [6]

CA =

I

C
~v · d~̀= 2⇡

⌫A

2µq
, (2)

where µq = µB/3 is the quark chemical potential, and
again ⌫A is an integer. Singly quantized U(1)B Abelian
vortices in the quark phase have three times the circula-
tion of singly quantized hadronic vortices.

(a)

Hadronic Vortices

Abelian
Vortex

(b)

Non-Abelian
Vortices

(c)

FIG. 1. Schematic illustrations for connecting vortices: (a) If
angular momentum in the CFL phase is carried by Abelian
CFL vortices then in the crossover to the hadronic phase a
“boojum” (shaded circle) joins three hadronic vortices to a
single Abelian CFL vortex; (b) because Abelian CFL vor-
tices are unstable, three hadronic vortices match onto three
non-Abelian CFL vortices through a modified boojum; or (c)
each hadronic vortex matches onto a single non-Abelian CFL
vortex without the need for a boojum.

Thus if one were to imagine a singly quantized hadronic
vortex turning into a singly quantized Abelian CFL vor-
tex, the baryon velocity would have to jump discontinu-
ously by a factor of three from the hadronic to the quark
phase, eliminating any possibility of quark-hadron conti-
nuity. Indeed, to make the velocity continuous one would
have to join three hadronic vortices to a single Abelian
quark vortex, as illustrated in Fig. 1(a). Such a join is
known as a “boojum” [7].
Single Abelian vortices in the CFL phase, however, are

unstable against separating into three non-Abelian vor-
tices [8–10], each of which has 1/3 the circulation of the
Abelian vortex.1 Thus one might envisage a join with a
continuous baryon velocity, as shown in Fig. 1(b), where a

1
In Ref. [8] these configurations were referred to as “semi-

superfluid strings,” however we will call them “non-Abelian vor-

tices” to emphasize the presence of non-Abelian color magnetic
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Abelian vortex.1 Thus one might envisage a join with a
continuous baryon velocity, as shown in Fig. 1(b), where a
boojum connects three hadronic vortices with three non-
Abelian CFL vortices [10, 11]. However, as we discuss in
this paper, one does not have to make a join involving
three vortices in the hadronic phase, but rather one can
make a baryon-velocity conserving join between a single
hadronic vortex and a single non-Abelian vortex in the
CFL phase, as shown in Fig. 1(c), without any need for a
boojum. To the extent that the various flavor quantum
numbers permit a smooth transition from the hadronic
to the CFL quark phase, angular momentum carrying
states remain consistent with quark-hadron continuity.

To spell out this picture in detail, we first discuss more
precisely the nature of quark-hadron continuity between
the hadronic and quark phases. On the deconfined quark
side the (ideal) CFL phase contains u (up), d (down),
and s (strange) quarks, all with the same mass, with a
Fermi sea equally populated with all three flavors and
all three colors of quarks. The corresponding hadronic
phase, three-flavor hyperonic matter, contains all mem-
bers of the light baryon flavor octet – n, p, ⇤, ⌃0, ⌃±,
⌅0, and ⌅� – all of the same mass. In the ground state
at finite density, the particles populate a Fermi sea with
all states of the octet equally present.

Both phases break chiral symmetry [1] and U(1)B, with
the same symmetry breaking pattern [SU(3)L⌦SU(3)R⌦
U(1)B ! SU(3)V]. In both phases BCS pairing leads
to breaking of U(1)B symmetry and superfluidity. The
hadronic dibaryon condensate is a flavor singlet formed
from two paired flavor octets. The CFL phase is usu-
ally described in the unitary gauge, in which the ground
state has a diquark condensate with the same color-flavor
orientation everywhere.2 In the hadronic phase, chiral
symmetry is spontaneously broken by a quark-antiquark
chiral condensate, producing a light octet of pseudoscalar
mesons, i.e., ⇡0, ⇡±, K0, K̄0, K±, and ⌘. The CFL con-
densate spontaneously breaks chiral symmetry, produc-
ing a light octet of pseudoscalar mesons [14–16]. Pre-
vious studies [2, 3, 17, 18] have established the conti-
nuity between the low-energy excitations of such three-
flavor hadronic and three-flavor quark matter.3 The nine
single-quark excitations of di↵erent colors and flavors can
be mapped, in the unitary gauge, onto the baryon octet
plus a baryon singlet which is usually not mentioned in
discussions of the confined phase because it is much heav-
ier than the octet baryons [3].

1
In Ref. [8] these configurations were referred to as “semi-

superfluid strings,” however we will call them “non-Abelian vor-

tices” to emphasize the presence of non-Abelian color magnetic

flux in the core combined with vortex-like global rotation of the

quark condensate.
2
With full three-flavor symmetry, CFL pairing is the most sta-

ble [12, 13].
3
This continuity is an example of the complementarity between

the confined and Higgs phases of a non-Abelian gauge theory

[19].

q

qq q qq q

q
qq
qq

FIG. 2. Schematic illustration of the smooth evolution of

a hadronic vortex into a non-Abelian CFL vortex. In the

hadronic phase, the phase of the condensate corresponding

to paired baryons (six quarks) increases by 2⇡ in winding

around the vortex core. In the CFL phase in the gauge-fixed

picture, one component of the order parameter picks up a

phase 2⇡ in winding, as shown. In the gauge-invariant picture

the phase of the entire six-quark order parameter changes by

2⇡ in winding.

One can further understand quark-hadron continuity
in terms of the anomaly-induced coupling between the
chiral and diquark condensates [20, 21]. The implica-
tions of quark-hadron continuity for the QCD phase di-
agram are reviewed in Ref. [22], and for neutron stars in
Ref. [23].

Figure 2 summarizes our results. In the confined phase
(upper half of the figure) the hadronic vortex carries an-
gular momentum via the circulation of a gauge-invariant
dibaryon condensate which acquires a phase of 2⇡ when
transported around the core. This vortex can be con-
tinuously connected to a non-Abelian CFL vortex [8] in
the CFL quark phase (lower half of the figure) where the
vortex has the same baryon circulation, but it arises in
the unitary gauge from three diquark condensates, one of
which acquires a phase of 2⇡ when transported around
the core. On the other hand, in the gauge-invariant pic-
ture, described in detail in Sec. IIID, the phase increase
is attributed to the entire six quark order parameter.

This paper is organized as follows. In Sec. II we re-
view the generic properties of vortices in a superfluid. In
Sec. III we discuss the vortex configurations that exist
in three-flavor hadronic and quark matter. After dis-
cussions of hadronic vortices in Sec. III A, we describe
two di↵erent vortex configurations that have been con-
structed in three-flavor quark matter, the Abelian CFL
vortices in Sec. III B and the non-Abelian CFL vortices
in Sec. III C. and then we show how the non-Abelian
vortex can be continuously connected with the hadronic
vortex. In Sec. IIID we show how these non-Abelian
vortices can be understood in a gauge-invariant descrip-
tion, and in Sec. III E we explore the consequences of
explicit breaking of the SU(3) flavor symmetry. Finally,
in Sec. IV we discuss the role of color magnetic flux. We
focus throughout on the properties of connecting single
vortices, and leave the discussion of an array of vortices

Alford-Baym-Fukushima-Hatsuda-Tachibana (2018)
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coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏↵��✏ijk q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A , (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s
flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.

Naively one would expect the angular momentum car-
rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z
axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A , (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

CA =
3⌫A

2µB

I
d~̀ · ~r' =

3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
ei⌫1'f(r) 0 0

0 g(r) 0
0 0 g(r)

1

A , (24)

with corresponding gluon field

A(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A , (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.

Gap matrix in color-flavor space
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4

coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏↵��✏ijk q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A , (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s
flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.

Naively one would expect the angular momentum car-
rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z
axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A , (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

CA =
3⌫A

2µB

I
d~̀ · ~r' =

3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
ei⌫1'f(r) 0 0

0 g(r) 0
0 0 g(r)

1

A , (24)

with corresponding gluon field

A(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A , (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.

Non-Abelian CFL vortex

4

coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏↵��✏ijk q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A , (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s
flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.

Naively one would expect the angular momentum car-
rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z
axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A , (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

CA =
3⌫A

2µB

I
d~̀ · ~r' =

3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
ei⌫1'f(r) 0 0

0 g(r) 0
0 0 g(r)

1

A , (24)

with corresponding gluon field

A(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A , (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.
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To obtain the superfluid velocity and angular momen-
tum per baryon of the non-Abelian vortex, we rewrite
Eq. (24) as

�(1) = �CFLe
i
3 ⌫1'

0

@
e

2i
3 ⌫1'f(r) 0 0

0 e�
i
3 ⌫1'g(r) 0

0 0 e�
i
3 ⌫1'g(r)

1

A .

(27)
In this form the overall factor of e

i
3 ⌫1' is the U(1)B phase,

while the phase factors within the matrix are a color ro-
tation. [We note for later computation of the covariant
derivative of �(1) that the gradients of these phases are
compensated by the color gauge field (25).]

The chemical potential per quark pair is 2µq = 2
3µB ,

so from Eqs. (6), (7), and (9) the total momentum per
quark pair is related to the superfluid velocity ~v by

~p =
1

3
· ⌫1
r
'̂ =

2

3
µB~v . (28)

The circulation around the vortex, Eq. (12), is

C(1) =

I

C
~v · d~̀= ⇡⌫1

µB

. (29)

Correspondingly, the angular momentum per baryon of
the vortex of the form (24) or (27) is

L(1)z

NB
=

1

2
⌫1 . (30)

The same relations also hold for �(2) with ⌫2 and �(3)

with ⌫3.
We see from Eqs. (1) and (29) and from Eqs. (15) and

(30) that singly quantized (⌫B = 1) vortices in hadronic
matter can match onto singly quantized (⌫1 = 1, ⌫2 = 1,
or ⌫3 = 1) non-Abelian vortices in CFL quark matter at
a crossover between these phases, with no discontinuity
in baryon velocity and angular momentum.

This result can be understood intuitively as follows. In
the hadronic vortex, the dibaryon condensate acquires a
phase of 2⇡ as one follows it along a contour encircling
the vortex core. Since the dibaryon can be viewed as 3
diquarks, this corresponds to each diquark acquiring a
phase of 2⇡/3. The non-Abelian vortex in the CFL con-
densate has exactly the same circulation: each diquark
acquires a phase4 of 2⇡/3.

We conclude, in agreement with Ref. [11], that a sin-
gle non-Abelian CFL vortex has the same circulation as
a hadronic vortex. However, Ref. [11] suggests that, in
order to neutralize the color flux contained in the non-
Abelian vortices, three non-Abelian CFL vortices must
merge to form a boojum at the CFL-hadronic bound-
ary to which three hadronic vortices then connect [see

4
If U(1)B were a local gauge symmetry, the vortex would become

a U(1)B flux tube. The hadronic vortex and the non-Abelian

vortex would both have the same U(1)B flux in their cores.

Fig. 1(b)]. As we argue below, there is no need for such a
boojum: a single non-Abelian CFL vortex can smoothly
evolve into a single hadronic vortex [as in Fig. 1(c)]. To
show this, further consideration of the flavor structure
of the vortices is necessary in the hadronic and the CFL
phases, as we discuss in Sec. IIID.

D. Gauge-invariant description

In Sec. III we described the CFL condensate in the
unitary gauge. Although such a gauge-fixed description
is convenient for writing down the non-Abelian vortex
solution explicitly and showing the continuity of the cir-
culation and angular momentum between the hadronic
phase and the CFL phase, it is not clear how the flavor
structures in the two phases are connected. To resolve
this problem, in this section we describe vortices in the
CFL phase in a gauge-invariant manner [28] using di-
quarks in Eqs. (16) and (17) as building blocks. We can
write down meson-like and baryon-like gauge-invariant
combinations of diquark operators,

M̂j
i (~r ) ⌘ �̂†

i↵�̂
↵j , (31)

⌥̂ijk(~r ) ⌘ 1

6
✏↵���̂

↵i�̂�j�̂�k . (32)

We will focus on ⌥̂ijk(~r ) for the moment and will con-
sider M̂j

i (~r ) later in Sec. IIID 3. According to quark-
hadron continuity, h⌥̂ijk(~r )i is nonzero in both the CFL
and hadronic phases because both phases break baryon
number, via diquark and dibaryon condensates respec-
tively. In Secs. IIID 1 and IIID 2 below we will discuss
the projection of ⌥̂ijk(~r ) onto specific flavor representa-
tions.
In the CFL phase, in the mean field approximation,

⌥ijk(~r ) ⌘ h⌥̂ijk(~r )i = 1

6
✏↵���

↵i��j��k . (33)

⌥ijk(~r ) provides a gauge-invariant description of the
non-Abelian vortex originally defined through the gauge-
dependent condensate �.
Note that the irreducible flavor SU(3) decomposition

of ⌥ijk(~r ) is

3⇤ ⌦ 3⇤ ⌦ 3⇤ = 1� 8� 8� 10⇤ , (34)

so that not only flavor-singlet but also flavored vor-
tices can be obtained from � by appropriate projections.
These would match to certain of the hadronic vortices
classified in Eq. (14).
According to (33) the total number of 6-quark con-

densates in the CFL phase is 3 ⇥ 3 ⇥ 3 = 27, while the
number of pairs of octet baryons in the hadronic phase is
8⇥8 = 64. One might think that there is a mismatch, but
this is because our diquark condensate � only includes
flavor antisymmetric diquarks. We will discuss this point
in Sec. IIID 2.

Abelian Phase 
(Global Vortex) Non-Abelian Phase (T3 and T8) 

(Gauged Vortex)

4

coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏↵��✏ijk q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A , (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s
flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.

Naively one would expect the angular momentum car-
rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z
axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A , (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

CA =
3⌫A

2µB

I
d~̀ · ~r' =

3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
ei⌫1'f(r) 0 0

0 g(r) 0
0 0 g(r)

1

A , (24)

with corresponding gluon field

A(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A , (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.

Non-Abelian vortex carries Non-Abelian Magnetic Flux
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To obtain the superfluid velocity and angular momen-
tum per baryon of the non-Abelian vortex, we rewrite
Eq. (24) as

�(1) = �CFLe
i
3 ⌫1'

0

@
e

2i
3 ⌫1'f(r) 0 0

0 e�
i
3 ⌫1'g(r) 0

0 0 e�
i
3 ⌫1'g(r)

1

A .

(27)
In this form the overall factor of e

i
3 ⌫1' is the U(1)B phase,

while the phase factors within the matrix are a color ro-
tation. [We note for later computation of the covariant
derivative of �(1) that the gradients of these phases are
compensated by the color gauge field (25).]

The chemical potential per quark pair is 2µq = 2
3µB ,

so from Eqs. (6), (7), and (9) the total momentum per
quark pair is related to the superfluid velocity ~v by

~p =
1

3
· ⌫1
r
'̂ =

2

3
µB~v . (28)

The circulation around the vortex, Eq. (12), is

C(1) =

I

C
~v · d~̀= ⇡⌫1

µB

. (29)

Correspondingly, the angular momentum per baryon of
the vortex of the form (24) or (27) is

L(1)z

NB
=

1

2
⌫1 . (30)

The same relations also hold for �(2) with ⌫2 and �(3)

with ⌫3.
We see from Eqs. (1) and (29) and from Eqs. (15) and

(30) that singly quantized (⌫B = 1) vortices in hadronic
matter can match onto singly quantized (⌫1 = 1, ⌫2 = 1,
or ⌫3 = 1) non-Abelian vortices in CFL quark matter at
a crossover between these phases, with no discontinuity
in baryon velocity and angular momentum.

This result can be understood intuitively as follows. In
the hadronic vortex, the dibaryon condensate acquires a
phase of 2⇡ as one follows it along a contour encircling
the vortex core. Since the dibaryon can be viewed as 3
diquarks, this corresponds to each diquark acquiring a
phase of 2⇡/3. The non-Abelian vortex in the CFL con-
densate has exactly the same circulation: each diquark
acquires a phase4 of 2⇡/3.

We conclude, in agreement with Ref. [11], that a sin-
gle non-Abelian CFL vortex has the same circulation as
a hadronic vortex. However, Ref. [11] suggests that, in
order to neutralize the color flux contained in the non-
Abelian vortices, three non-Abelian CFL vortices must
merge to form a boojum at the CFL-hadronic bound-
ary to which three hadronic vortices then connect [see

4
If U(1)B were a local gauge symmetry, the vortex would become

a U(1)B flux tube. The hadronic vortex and the non-Abelian

vortex would both have the same U(1)B flux in their cores.

Fig. 1(b)]. As we argue below, there is no need for such a
boojum: a single non-Abelian CFL vortex can smoothly
evolve into a single hadronic vortex [as in Fig. 1(c)]. To
show this, further consideration of the flavor structure
of the vortices is necessary in the hadronic and the CFL
phases, as we discuss in Sec. IIID.

D. Gauge-invariant description

In Sec. III we described the CFL condensate in the
unitary gauge. Although such a gauge-fixed description
is convenient for writing down the non-Abelian vortex
solution explicitly and showing the continuity of the cir-
culation and angular momentum between the hadronic
phase and the CFL phase, it is not clear how the flavor
structures in the two phases are connected. To resolve
this problem, in this section we describe vortices in the
CFL phase in a gauge-invariant manner [28] using di-
quarks in Eqs. (16) and (17) as building blocks. We can
write down meson-like and baryon-like gauge-invariant
combinations of diquark operators,

M̂j
i (~r ) ⌘ �̂†

i↵�̂
↵j , (31)

⌥̂ijk(~r ) ⌘ 1

6
✏↵���̂

↵i�̂�j�̂�k . (32)

We will focus on ⌥̂ijk(~r ) for the moment and will con-
sider M̂j

i (~r ) later in Sec. IIID 3. According to quark-
hadron continuity, h⌥̂ijk(~r )i is nonzero in both the CFL
and hadronic phases because both phases break baryon
number, via diquark and dibaryon condensates respec-
tively. In Secs. IIID 1 and IIID 2 below we will discuss
the projection of ⌥̂ijk(~r ) onto specific flavor representa-
tions.
In the CFL phase, in the mean field approximation,

⌥ijk(~r ) ⌘ h⌥̂ijk(~r )i = 1

6
✏↵���

↵i��j��k . (33)

⌥ijk(~r ) provides a gauge-invariant description of the
non-Abelian vortex originally defined through the gauge-
dependent condensate �.
Note that the irreducible flavor SU(3) decomposition

of ⌥ijk(~r ) is

3⇤ ⌦ 3⇤ ⌦ 3⇤ = 1� 8� 8� 10⇤ , (34)

so that not only flavor-singlet but also flavored vor-
tices can be obtained from � by appropriate projections.
These would match to certain of the hadronic vortices
classified in Eq. (14).
According to (33) the total number of 6-quark con-

densates in the CFL phase is 3 ⇥ 3 ⇥ 3 = 27, while the
number of pairs of octet baryons in the hadronic phase is
8⇥8 = 64. One might think that there is a mismatch, but
this is because our diquark condensate � only includes
flavor antisymmetric diquarks. We will discuss this point
in Sec. IIID 2.

6

In the hadronic phase a nonzero expectation value of
⌥̂ijk(~r ) is an order parameter for baryon number viola-
tion, which is manifest with ⌥̂ijk(~r ) rewritten in terms
of the baryon-interpolating operator, B̂i a

j ⌘  ̂↵iq̂a↵j ; the
spin-1/2 is represented by the index a on qa↵j . In writ-

ing B̂i a
j as interpolating operators for spin-1/2 baryons,

we simplify the operator structure by neglecting the ax-
ial vector diquark (called the “bad diquark” in hadron
structures), which is a reasonable approximation for low-
lying baryons. The operator B̂i a

m can be written as a sum
of flavor-singlet and flavor-octet operators as

B̂i a
m = B̂a

1(�
i
m/

p
6) + B̂A a

8 (tA)im, (35)

where the tA are the SU(3) generators (A = 1, . . . , 8) in
flavor space, with the normalization tr(tA)2 = 1/2. Then
B̂a

1 ⌘ 2 tr(B̂a)/
p
6 and B̂A a

8 ⌘ 2 tr(tAB̂a).

Forming B̂i a
j by combining the quark operator with

the diquark operator written in terms of two quarks, (16),
we find the operator relation

⌥̂ijk(~r ) =
1

3
✏kmn(C�5)ab B̂

i a
m B̂j b

n . (36)

Clearly, a dibaryon condensate hB̂B̂i 6= 0 in the hadronic
phase, makes ⌥ijk nonzero.

1. Flavor-singlet vortex

We first consider vortices in the flavor-singlet projec-
tion of the gauge-invariant order parameter,

⌥̂1(~r ) = ✏ijk⌥̂
ijk(~r ) . (37)

We can equivalently express this expectation value using
Eq. (36) in terms of the baryon operators, (35),

⌥1(~r ) =
1

3
(C�5)ab

�
�mi �nj � �ni �

m
j

�
hB̂i a

m B̂j b
n i

=
1

3
(C�5)ab

✓
hB̂a

1B̂
b
1i �

1

2
hB̂A a

8 B̂A b
8 i

◆
; (38)

in hadronic language ⌥1(~r ) corresponds to a flavor-
singlet condensate made with flavor-singlet and flavor-
octet baryons.

In the CFL phase insertion of any of �(1), �(2) or �(3)

gives the same form

⌥1 = ei⌫q'�3
CFLf(r)g

2(r), (39)

which implies that the non-Abelian vortices �(1,2,3) have
a common flavor-singlet component. A singly quantized
(⌫q = 1) vortex has the same circulation 2⇡/2µB as a
singly quantized (⌫B = 1) hadronic vortex in the flavor-
singlet channel; its phase winds by 2⇡ on a contour en-
circling the vortex core, consistent with our finding that
these two vortices match smoothly onto each other, with
quantized vortex circulation 2⇡/2µB .

If, on the other hand, were we to substitute the field
configuration for an Abelian vortex �(A) in Eq. (19) into
Eq. (37), we would find

⌥A = e3i⌫A
'�3

CFLf
3(r) ; (40)

the gauge-invariant form of a singly quantized Abelian
vortex winds three times more (by 6⇡) on a contour en-
circling the vortex core. This winding is consistent with
needing three hadronic vortices to match to one Abelian
vortex [11].
We now consider the vortex energy in terms of the

gauge-invariant order parameter. Because of the bound-
ary condition (26), the extra energy density of a vortex
far away from its core arises from the derivative terms;
for a non-Abelian vortex the energy density is asymptot-
ically

✏(1) = tr |D�(1)|2 , (41)

where the covariant derivative is D = r� igcA, and the
trace is taken with respect to color-flavor matrix indices.
The gluon field (25) in D exactly cancels the derivatives

of the phases in the color-flavor matrix part of �(1)
↵i in

Eq. (27). As a result only the derivative of the U(1)B
phase contributes to the energy density at large distance
from the vortex core,

✏(1) = 3 · ⌫1
2

9r2
|�CFL|2 . (42)

Calculating r⌥1 from Eq. (39) we can write the energy
in terms of the gauge-invariant order parameter as

✏1 =
1

3(�CFL)4
|r⌥1|2 . (43)

This is the kinetic term of a Ginzburg-Landau theory
[29] at large distance for the gauge-invariant flavor-singlet
order parameter ⌥1.
We can write the full gauge-invariant Ginzburg-

Landau free energy in two-dimensions in the form:

F = N
Z

d2r

✓
|r⌥̃1|2 �m2|⌥̃1|2 +

�

2
|⌥̃1|4

◆
, (44)

where we rescale ⌥1 ! ⌥̃1 to make the coe�cient of
the gradient term be unity at the mean-field level. The
full determination of the coe�cients, m2 and �, from
QCD is a challenging future problem. This form of the
Ginzburg-Landau free energy describes the interaction
between the flavor-singlet parts of non-Abelian vortices
(see also Ref. [30]).
As in simple superfluids, e.g., 4He, the interaction en-

ergy of two non-Abelian vortices in the gauge-invariant
picture is essentially the integral of the product of the
two vortex velocities, v1 · v2, which is generally negative
between two similarly quantized vortices; for two singly
quantized vortices whose cores are separated by L, as-
sumed much greater than the coherence length 1/m, the

6 quark objects = 3 diquarks = 2 baryons
Quantum numbers match
Non-Abelian vortices = Flavor singlet + Non-singlets

(~ LL)
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To obtain the superfluid velocity and angular momen-
tum per baryon of the non-Abelian vortex, we rewrite
Eq. (24) as

�(1) = �CFLe
i
3 ⌫1'

0

@
e

2i
3 ⌫1'f(r) 0 0

0 e�
i
3 ⌫1'g(r) 0

0 0 e�
i
3 ⌫1'g(r)

1

A .

(27)
In this form the overall factor of e

i
3 ⌫1' is the U(1)B phase,

while the phase factors within the matrix are a color ro-
tation. [We note for later computation of the covariant
derivative of �(1) that the gradients of these phases are
compensated by the color gauge field (25).]

The chemical potential per quark pair is 2µq = 2
3µB ,

so from Eqs. (6), (7), and (9) the total momentum per
quark pair is related to the superfluid velocity ~v by

~p =
1

3
· ⌫1
r
'̂ =

2

3
µB~v . (28)

The circulation around the vortex, Eq. (12), is

C(1) =

I

C
~v · d~̀= ⇡⌫1

µB

. (29)

Correspondingly, the angular momentum per baryon of
the vortex of the form (24) or (27) is

L(1)z

NB
=

1

2
⌫1 . (30)

The same relations also hold for �(2) with ⌫2 and �(3)

with ⌫3.
We see from Eqs. (1) and (29) and from Eqs. (15) and

(30) that singly quantized (⌫B = 1) vortices in hadronic
matter can match onto singly quantized (⌫1 = 1, ⌫2 = 1,
or ⌫3 = 1) non-Abelian vortices in CFL quark matter at
a crossover between these phases, with no discontinuity
in baryon velocity and angular momentum.

This result can be understood intuitively as follows. In
the hadronic vortex, the dibaryon condensate acquires a
phase of 2⇡ as one follows it along a contour encircling
the vortex core. Since the dibaryon can be viewed as 3
diquarks, this corresponds to each diquark acquiring a
phase of 2⇡/3. The non-Abelian vortex in the CFL con-
densate has exactly the same circulation: each diquark
acquires a phase4 of 2⇡/3.

We conclude, in agreement with Ref. [11], that a sin-
gle non-Abelian CFL vortex has the same circulation as
a hadronic vortex. However, Ref. [11] suggests that, in
order to neutralize the color flux contained in the non-
Abelian vortices, three non-Abelian CFL vortices must
merge to form a boojum at the CFL-hadronic bound-
ary to which three hadronic vortices then connect [see

4
If U(1)B were a local gauge symmetry, the vortex would become

a U(1)B flux tube. The hadronic vortex and the non-Abelian

vortex would both have the same U(1)B flux in their cores.

Fig. 1(b)]. As we argue below, there is no need for such a
boojum: a single non-Abelian CFL vortex can smoothly
evolve into a single hadronic vortex [as in Fig. 1(c)]. To
show this, further consideration of the flavor structure
of the vortices is necessary in the hadronic and the CFL
phases, as we discuss in Sec. IIID.

D. Gauge-invariant description

In Sec. III we described the CFL condensate in the
unitary gauge. Although such a gauge-fixed description
is convenient for writing down the non-Abelian vortex
solution explicitly and showing the continuity of the cir-
culation and angular momentum between the hadronic
phase and the CFL phase, it is not clear how the flavor
structures in the two phases are connected. To resolve
this problem, in this section we describe vortices in the
CFL phase in a gauge-invariant manner [28] using di-
quarks in Eqs. (16) and (17) as building blocks. We can
write down meson-like and baryon-like gauge-invariant
combinations of diquark operators,

M̂j
i (~r ) ⌘ �̂†

i↵�̂
↵j , (31)

⌥̂ijk(~r ) ⌘ 1

6
✏↵���̂

↵i�̂�j�̂�k . (32)

We will focus on ⌥̂ijk(~r ) for the moment and will con-
sider M̂j

i (~r ) later in Sec. IIID 3. According to quark-
hadron continuity, h⌥̂ijk(~r )i is nonzero in both the CFL
and hadronic phases because both phases break baryon
number, via diquark and dibaryon condensates respec-
tively. In Secs. IIID 1 and IIID 2 below we will discuss
the projection of ⌥̂ijk(~r ) onto specific flavor representa-
tions.
In the CFL phase, in the mean field approximation,

⌥ijk(~r ) ⌘ h⌥̂ijk(~r )i = 1

6
✏↵���

↵i��j��k . (33)

⌥ijk(~r ) provides a gauge-invariant description of the
non-Abelian vortex originally defined through the gauge-
dependent condensate �.
Note that the irreducible flavor SU(3) decomposition

of ⌥ijk(~r ) is

3⇤ ⌦ 3⇤ ⌦ 3⇤ = 1� 8� 8� 10⇤ , (34)

so that not only flavor-singlet but also flavored vor-
tices can be obtained from � by appropriate projections.
These would match to certain of the hadronic vortices
classified in Eq. (14).
According to (33) the total number of 6-quark con-

densates in the CFL phase is 3 ⇥ 3 ⇥ 3 = 27, while the
number of pairs of octet baryons in the hadronic phase is
8⇥8 = 64. One might think that there is a mismatch, but
this is because our diquark condensate � only includes
flavor antisymmetric diquarks. We will discuss this point
in Sec. IIID 2.

4

coexist with the flavor-singlet pairing, e.g., the stan-
dard nucleon pairing in the spin-singlet isospin-triplet

channel, �(27)
B = h[NN ]symi, and the possible pairing

in the spin-singlet isospin-doublet channel, �
(8sym)
B =

h� 1
10 [N⇤]sym +

q
9
10 [N⌃]symi [27].

In any of these pairings, the chemical potential enter-
ing Eq. (12) is 2µB , that of a pair of baryons. Therefore,
no matter whether it is flavor singlet or non-singlet, a
hadronic vortex with winding number ⌫B has circulation
2⇡⌫B/(2µB), Eq. (1). The corresponding angular mo-
mentum per baryon is [see Eq. (13)]

LBz

NB
=

1

2
⌫B , (15)

since there are NB/2 pairs in the system.

B. Abelian CFL Vortices

The order parameter of quark matter in the CFL phase
in the unitary gauge can be written in terms of the color
and flavor triplet diquark operator [1]

�̂↵i = N ✏↵��✏ijk q�jC�5q�k , (16)

where C = i�0�2 is the charge conjugation operator, and
Greek and Latin letters denote color and flavor indices,
respectively; N is a normalization constant. The order
parameter is then

�↵i = h�̂↵ii . (17)

The matrix �↵i can be diagonalized by a combination of
color and flavor rotations, so that without loss of gener-
ality we write

� =

0

@
�r̄ū 0 0
0 �ḡd̄ 0
0 0 �b̄s̄

1

A , (18)

where r, g, b (r̄, ḡ, b̄) denote colors (anti-colors) and u, d, s
flavors; in the ground state, �r̄ū = �ḡd̄ = �b̄s̄ = �CFL.

Naively one would expect the angular momentum car-
rying states with lowest energy per unit of angular mo-
mentum, to be global U(1)B or “Abelian CFL” vortices.
In these vortices each of the three non-zero components
of the order parameter winds around the core of the vor-
tex, so for an Abelian CFL vortex aligned along the z
axis the order parameter assumes the form

�A = �CFL e
i⌫

A
'

0

@
f(r) 0 0
0 f(r) 0
0 0 f(r)

1

A , (19)

where f(r) varies monotonically from zero at r = 0 to
unity as r ! 1, with ⌫A the winding number of the
Abelian CFL vortex.

The quark chemical potential is µq = µB/3, and thus
the chemical potential per quark pair is 2µq = 2

3µB , so

from Eqs. (6) and (7) and the total momentum per quark
pair in the condensate is

~p =
2

3
µB ~v , (20)

where as before ~v is the superfluid velocity, so the circu-
lation is

CA =
3⌫A

2µB

I
d~̀ · ~r' =

3⌫A

2
· 2⇡
µB

. (21)

The angular momentum per baryon of the vortex is

LAz

NB
=

3

2
⌫A . (22)

We now ask how the vortices in hadronic matter would
match on to Abelian vortices in CFL quark matter at a
crossover between these phases. If the superfluid veloc-
ity, and hence the circulation, Eq. (12), and angular mo-
mentum per baryon, Eq. (13), do not match in the two
phases, then quark-hadron continuity would be violated.
By comparing Eqs. (1) and (21), or equivalently (15) and
(22), we see that matching would require

⌫B = 3⌫A . (23)

The matching relation (23) implies that three singly
quantized hadronic vortices should merge into one
Abelian CFL vortex, violating quark-hadron continuity
in states with finite angular momentum. This merging
would require a boojum [7] at the interface between the
two phases, as sketched in Fig. 1(a). As we discuss in
the next section, the violation need not be present for
the more stable non-Abelian vortices in the CFL phase.

C. Non-Abelian CFL Vortices

An Abelian CFL vortex is energetically unstable
against formation of three “non-Abelian” vortices [8, 9].
The condensate of the anti-red–anti-up (r̄ū) non-Abelian
vortex is

�(1) = �CFL

0

@
ei⌫1'f(r) 0 0

0 g(r) 0
0 0 g(r)

1

A , (24)

with corresponding gluon field

A(1)
' = � ⌫1

gcr
[1� h(r)]

0

@
� 2

3 0 0
0 1

3 0
0 0 1

3

1

A , (25)

where gc is the QCD coupling and the boundary condi-
tions are

f ! 0, g0 ! 0, h ! 1 as r ! 0 ,
f ! 1, g ! 1, h ! 0 as r ! 1 .

(26)

Single-valuedness of the condensate requires that ⌫1 be an
integer. Anti-green–anti-down (ḡd̄) and anti-blue–anti-
strange (b̄s̄) versions, �(2) with ⌫2 and �(3) with ⌫3, can
be obtained by permuting the diagonal elements.

Calculate the Wilson loop hW3(C)i/hW0(C)i
<latexit sha1_base64="sCXMxCAyg/hZiz2J75uDz93+9Fw="></latexit><latexit sha1_base64="sCXMxCAyg/hZiz2J75uDz93+9Fw="></latexit><latexit sha1_base64="sCXMxCAyg/hZiz2J75uDz93+9Fw="></latexit><latexit sha1_base64="sCXMxCAyg/hZiz2J75uDz93+9Fw="></latexit>

This measures the non-Abelian magnetic flux
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Abelian phase is irrelevant (no gauge potential)

If C is large enough, f →1, g →1, h →0

Center element of the non-Abelian magnetic flux appears 
                                             (making the vortices “anyons”)

hW3(C)i ⇠ tr

0

@
e�

4⇡i
3 ⌫1 0 0
0 e

2⇡i
3 ⌫1 0

0 0 e
2⇡i
3 ⌫1

1

A

⇠ e
2⇡i
3 ⌫1

<latexit sha1_base64="azQmXzyG00pLUqxoVHD86LX88gU="></latexit><latexit sha1_base64="azQmXzyG00pLUqxoVHD86LX88gU="></latexit><latexit sha1_base64="azQmXzyG00pLUqxoVHD86LX88gU="></latexit><latexit sha1_base64="azQmXzyG00pLUqxoVHD86LX88gU="></latexit>
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Abelian vortex.1 Thus one might envisage a join with a
continuous baryon velocity, as shown in Fig. 1(b), where a
boojum connects three hadronic vortices with three non-
Abelian CFL vortices [10, 11]. However, as we discuss in
this paper, one does not have to make a join involving
three vortices in the hadronic phase, but rather one can
make a baryon-velocity conserving join between a single
hadronic vortex and a single non-Abelian vortex in the
CFL phase, as shown in Fig. 1(c), without any need for a
boojum. To the extent that the various flavor quantum
numbers permit a smooth transition from the hadronic
to the CFL quark phase, angular momentum carrying
states remain consistent with quark-hadron continuity.

To spell out this picture in detail, we first discuss more
precisely the nature of quark-hadron continuity between
the hadronic and quark phases. On the deconfined quark
side the (ideal) CFL phase contains u (up), d (down),
and s (strange) quarks, all with the same mass, with a
Fermi sea equally populated with all three flavors and
all three colors of quarks. The corresponding hadronic
phase, three-flavor hyperonic matter, contains all mem-
bers of the light baryon flavor octet – n, p, ⇤, ⌃0, ⌃±,
⌅0, and ⌅� – all of the same mass. In the ground state
at finite density, the particles populate a Fermi sea with
all states of the octet equally present.

Both phases break chiral symmetry [1] and U(1)B, with
the same symmetry breaking pattern [SU(3)L⌦SU(3)R⌦
U(1)B ! SU(3)V]. In both phases BCS pairing leads
to breaking of U(1)B symmetry and superfluidity. The
hadronic dibaryon condensate is a flavor singlet formed
from two paired flavor octets. The CFL phase is usu-
ally described in the unitary gauge, in which the ground
state has a diquark condensate with the same color-flavor
orientation everywhere.2 In the hadronic phase, chiral
symmetry is spontaneously broken by a quark-antiquark
chiral condensate, producing a light octet of pseudoscalar
mesons, i.e., ⇡0, ⇡±, K0, K̄0, K±, and ⌘. The CFL con-
densate spontaneously breaks chiral symmetry, produc-
ing a light octet of pseudoscalar mesons [14–16]. Pre-
vious studies [2, 3, 17, 18] have established the conti-
nuity between the low-energy excitations of such three-
flavor hadronic and three-flavor quark matter.3 The nine
single-quark excitations of di↵erent colors and flavors can
be mapped, in the unitary gauge, onto the baryon octet
plus a baryon singlet which is usually not mentioned in
discussions of the confined phase because it is much heav-
ier than the octet baryons [3].

1
In Ref. [8] these configurations were referred to as “semi-

superfluid strings,” however we will call them “non-Abelian vor-

tices” to emphasize the presence of non-Abelian color magnetic

flux in the core combined with vortex-like global rotation of the

quark condensate.
2
With full three-flavor symmetry, CFL pairing is the most sta-

ble [12, 13].
3
This continuity is an example of the complementarity between

the confined and Higgs phases of a non-Abelian gauge theory

[19].

q

qq q qq q

q
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FIG. 2. Schematic illustration of the smooth evolution of

a hadronic vortex into a non-Abelian CFL vortex. In the

hadronic phase, the phase of the condensate corresponding

to paired baryons (six quarks) increases by 2⇡ in winding

around the vortex core. In the CFL phase in the gauge-fixed

picture, one component of the order parameter picks up a

phase 2⇡ in winding, as shown. In the gauge-invariant picture

the phase of the entire six-quark order parameter changes by

2⇡ in winding.

One can further understand quark-hadron continuity
in terms of the anomaly-induced coupling between the
chiral and diquark condensates [20, 21]. The implica-
tions of quark-hadron continuity for the QCD phase di-
agram are reviewed in Ref. [22], and for neutron stars in
Ref. [23].

Figure 2 summarizes our results. In the confined phase
(upper half of the figure) the hadronic vortex carries an-
gular momentum via the circulation of a gauge-invariant
dibaryon condensate which acquires a phase of 2⇡ when
transported around the core. This vortex can be con-
tinuously connected to a non-Abelian CFL vortex [8] in
the CFL quark phase (lower half of the figure) where the
vortex has the same baryon circulation, but it arises in
the unitary gauge from three diquark condensates, one of
which acquires a phase of 2⇡ when transported around
the core. On the other hand, in the gauge-invariant pic-
ture, described in detail in Sec. IIID, the phase increase
is attributed to the entire six quark order parameter.

This paper is organized as follows. In Sec. II we re-
view the generic properties of vortices in a superfluid. In
Sec. III we discuss the vortex configurations that exist
in three-flavor hadronic and quark matter. After dis-
cussions of hadronic vortices in Sec. III A, we describe
two di↵erent vortex configurations that have been con-
structed in three-flavor quark matter, the Abelian CFL
vortices in Sec. III B and the non-Abelian CFL vortices
in Sec. III C. and then we show how the non-Abelian
vortex can be continuously connected with the hadronic
vortex. In Sec. IIID we show how these non-Abelian
vortices can be understood in a gauge-invariant descrip-
tion, and in Sec. III E we explore the consequences of
explicit breaking of the SU(3) flavor symmetry. Finally,
in Sec. IV we discuss the role of color magnetic flux. We
focus throughout on the properties of connecting single
vortices, and leave the discussion of an array of vortices

No color-center flux

Color-center flux  
(gauge invariant!)

There must be a 
phase transition !
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“Test” Vortex

Contour C

Vortex rings from  
quantum fluctuationsColor-center (triality) can be  

screened by fluctuations…?
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Is this really true ?
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“Test” Vortex

Contour C

Vortex rings from  
quantum fluctuations

No interaction IF 
C is large enough

Gauged vortices have 
short-ranged interactions 
Fluctuations → normalization
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“Test” Vortex

Contour C

Vortex from condensate
Screening can be possible 
in a scenario of center-vortex  
condensation for confinement

[One possibility]
Monopoles
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Vortices with fractional flux
in two-gap superconductors and in extended Faddeev model

Egor Babaev ∗

Institute for Theoretical Physics, Uppsala University, Box 803, 75108 Uppsala, Sweden

NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland

We discuss linear topological defects allowed in two-gap superconductors and equivalent extended
Faddeev model. We show that in these systems there exist vortices which carry an arbitrary fraction
of magnetic flux quantum. Besides that we discuss topological defects which do not carry magnetic
flux and describe features of ordinary one-magnetic-flux-quantum vortices in the two-gap system.
The results could be relevant for the newly discovered two-band superconductor MgB2.

A fundamental property of the Abelian Higgs model
is the quantization of magnetic flux [1]. In an ordinary
superconductor the Abrikosov vortices can carry only in-
teger number of magnetic flux quanta. The intriguing
possibilities of topological defects carrying a fraction of
flux quantum have long attracted interest and several
nontrivial realizations were identified. For example, a
half flux-quantum vortex in a spin-1 condensate is a con-
figuration where a Cooper pair has its spin reversed when
moving around the vortex core (this is an analogue of an
Alice string in high energy physics where a particle mov-
ing around the string flips its charge or enters a “shadow
world”) also a half flux-quantum vortex can be formed
on a junction of 3 grain boundaries in a crystal etc [2]. In
this paper we discuss vortices in two-gap superconductors
[3,4] (known in particle physics as a Higgs doublet model
[5]) and in the extended Faddeev model. We show that
these vortices can carry an arbitrary fraction of magnetic
flux quantum.
Experimentally, two-gap superconductivity has been

observed in the transition metals Nb, Ta,V and in Nb-
doped SrT iO3 [6]. More recent experiments indicate the
two-gap nature of superconductivity in MgB2 [7] and
2H−NbSe2 [8]. Two-gap models appear also in the the-
oretical studies of liquid metallic hydrogen, which should
allow superconductivity of both electronic and protonic
Cooper pairs [9]. In liquid metallic deuterium a deuteron
superfluidity may be present along with superconductiv-
ity of electronic Cooper pairs [9]. Other realizations of
the two-gap system are superconductors with two types
of pairing (e.g. a mixture of s- and p-wave condensates).
A two-gap superconductor is described by a two-

flavour Ginzburg-Landau free energy functional:

F =
1

2m1
|(∇+ ieA)Ψ1|2 +

1

2m2
|(∇+ ieA)Ψ2|2

+V (|Ψ1,2|2) + η[Ψ∗
1Ψ2 +Ψ∗

2Ψ1] +
B2

2
(1)

where Ψα = |Ψα|eiφα and V (|Ψ1,2|2) = −bα|Ψα|2 +

cα
2 |Ψα|4 and η is a characteristic of the interband Joseph-
son coupling strength [4].

Many exotic properties of (1) are obscured in the
Ginzburg-Landau presentation of the free energy func-
tional. In [10] it was shown that there exists an exact
equivalence mapping between the model (1) and an ex-
tended version of Faddeev’s O(3) nonlinear σ-model [11],
which describes the two-gap superconductors in terms
of gauge invariant variables which explicitly show the
degrees of freedom present in the system. This model
consists of a three-component unit vector n⃗ in interac-
tion with a massive vector field C⃗ and a density-related
variable ρ [12]:

F =
ρ2

4
(∇n⃗)2 + (∇ρ)2 +

ρ2

16
C⃗
2 + V (ρ, n3) + ρ2Kn1

+
1

32e2
(∂iCj − ∂jCi − n⃗ · ∂in⃗× ∂jn⃗)

2 (2)

where ∂i =
d

dxi
, V = A+Bn3+Cn2

3. The models (1) and
(2) are connected in the following way [10]: coefficients
A,B,C are given by: A = ρ2[4c1m2

1 + 4c2m2
2 − b1m1 −

b2m2]; B = ρ2[8c2m2
2 − 8c1m2

1 − b2m2 + b1m1]; C =
4ρ2[c1m2

1 + c2m2
2]. The position of the unit vector n⃗ on

the sphere S2 can be characterized by two angles as fol-
lows: n⃗ = (sin θ cos γ, sin θ sin γ, cos θ), where γ = (φ1 −
φ2); |Ψ1,2| =

[√
2m1 ρ sin

(

θ
2

)

,
√
2m2 ρ cos

(

θ
2

)]

; C⃗ =
i

m1ρ2 {Ψ∗
1∇Ψ1 −Ψ1∇Ψ∗

1} + i
m2ρ2 {Ψ∗

2∇Ψ2 − Ψ2∇Ψ∗
2} −

2e
ρ2

(

|Ψ1|
2

m1
+ |Ψ2|

2

m2

)

A. We consider the system in the

presence of an interband Josephson coupling η[Ψ∗
1Ψ2 +

Ψ∗
2Ψ1] = ρ2Kn1 where K ≡ 2η

√
m1m2. The poten-

tial term V in (2) determines the energetically preferred
ground state value for n3, which corresponds to uni-
form density of both condensates. We denote it as

ñ3 ≡
[

N2

m2
− N1

m1

] [

N1

m1
+ N2

m2

]−1
where N1,2 stands for the
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Similar subject studied in cond-mat/0111192

Yes, a phase transition occurs  
between weak and strong 
vortex fluctuation regimes

If so, Cherman et al. may be right…?
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A comment:

The idea has some similarity to “canonical ensemble  
w.r.t. the triality” to define an order parameter.

If the quark number is restricted to multiple of Nc 
(which is possible on lattice), in a finite volute,  
a 1st-order phase transition is seen.

Why could the idea work for vortices, though not quarks?
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Summary

 Quark-hadron duality at high baryon density is 
still a subtle problem. 

 Vortex makes the problem quite complicated 
because they may carry (gauge-invariant!) color 
magnetic flux that cannot penetrate into the 
hadronic phase. 

 Our understanding of (de)confinement is 
challenged by vortex continuity problem.
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