

October 10, 2018 @ CCNU, Wuhan

Electromagnetic (EM) field in HICs

Strong magnetic field in nature: magnetars

$$eB \sim e \cdot 10^{14-15} \ G < \Lambda_{QCD}^2 \sim m_{\pi}^2$$

Strongest magnetic field: heavy-ion collisions (HICs)

$$eB \sim e \cdot 10^{18-20} G \sim m_{\pi}^2 - 10 m_{\pi}^2$$

Skokov etal 2009; Deng-XGH 2012; Blonzynski-XGH-Liao-Zhang 2012;

Experimental detection: Talk by Z. Xu

Electromagnetic (EM) field in HICs

Strong electric field in HICs

 HIC: a machine that generate quark gluon matter in strong EM field

A era to study QCD \times QED: (inverse) magnetic catalysis, Schwinger mechanism, chiral magnetic effect, chiral separation effect, EM-induced directed flow, photon elliptic flow, photoproduction of hadrons,

Fluid vorticity in heavy-ion collisions

$$\boldsymbol{\omega} = \nabla \times \boldsymbol{v}$$

Local angular velocity

Liang-Wang 2005

Averaged vorticity from 7.7 GeV-200 GeV: $\omega \approx (9\pm1) \times 10^{21} s^{-1}$ "Most vortical fluid!"

LETTER

doi:10.1038/nature23004

What are their effects to transport properties QGP

Anomalous chiral transport

Chiral magnetic/vortical effects

A probe of nontrivial topology of QCD using B/ω

 $eB{\sim}m_\pi^2-10m_\pi^2$ in RHIC and LHC

Next talk by H. Huang

What are their effects to the QCD phase structure

Explore the new dimensions of the QCD phase diagram

QCD phases under electromagnetic field and rotation

Xu-Guang Huang Fudan University, Shanghai

- QCD vacuum in EM field:
 Neutral pion condensed vacuum (G. Cao, L. Wang, P. Zhuang)
- QCD vacuum in rotation: chiral soliton lattice (K. Nishimura, N. Yamamoto)
- Chiral condensate in rotation + magnetic field:
 Rotational magnetic inhibition (H.L. Chen, K. Fukushima, K. Mameda)

QCD vacuum under EM field: Neutral pion condensed vacuum

QCD vacuum under EM fields

Triangle anomaly connects QCD and QED

• The inverse process of $\pi_0 o \gamma\gamma$: $\pmb{E}\cdot \pmb{B} o \langle \pmb{\pi_0} \rangle$

QED anomaly induced neutral pion condensation in QCD vacuum?

Calculation by using hadronic degree of freedom: the chiral perturbation theory

We start with the two-flavor ChPT described by the Lagrangian

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{WZW}$$

where \mathcal{L}_0 is the usual chiral Lagrangian given by (we keep only $O(p^2)$ terms)

$$\mathcal{L}_0 = \frac{f_\pi^2}{4} \operatorname{tr} \left[D_\mu U^\dagger D^\mu U + m_\pi^2 (U + U^\dagger) \right],$$

and the Wess-Zumino-Witten term \mathcal{L}_{WZW} is given by

$$\mathcal{L}_{\text{WZW}} = \frac{N_c}{48\pi^2} A_{\mu} \epsilon^{\mu\nu\alpha\beta} \left[\text{tr} \left(Q L_{\nu} L_{\alpha} L_{\beta} + Q R_{\nu} R_{\alpha} R_{\beta} \right) - i F_{\alpha\beta} T_{\nu} \right], \qquad m^* = \sqrt{(\pi^0)^2 + \sigma^2}$$

$$\sigma \sim \langle \bar{\psi} \psi \rangle \text{ and } \pi^0 \sim \langle \bar{\psi} i \gamma_5 \tau_3 \psi \rangle$$

$$T_{\nu} = \text{tr} \left[Q^{2} (L_{\nu} + R_{\nu}) + \frac{1}{2} \left(Q U Q U^{\dagger} L_{\nu} + Q U^{\dagger} Q U R_{\nu} \right) \right],$$

$$L_{\mu} = U \partial_{\mu} U^{\dagger}$$

$$R_{\mu} = \partial_{\mu} U^{\dagger} U.$$

In the above, the covariant derivative is given by

$$D_{\mu}U = \partial_{\mu}U + A_{\mu}[Q, U],$$

Minimizing the effective action gives:

$$\frac{\pi^{0}}{m^{*}} = \begin{cases} \frac{N_{c}}{4\pi^{2} f_{\pi}^{2} m_{\pi}^{2}} (q_{u}^{2} - q_{d}^{2}) \mathbf{E} \cdot \mathbf{B} & \text{for } |I_{2}| < I_{2}^{c} \\ \text{sgn}(I_{2}) & \text{for } |I_{2}| > I_{2}^{c} \end{cases}$$

$$m^* = \sqrt{(\pi^0)^2 + \sigma^2}$$

 $\sigma \sim \langle \bar{\psi}\psi \rangle$ and $\pi^0 \sim \langle \bar{\psi}i\gamma_5\tau_3\psi \rangle$

 Calculation by using quark degree of freedom: the Nambu-Jona-Lasinio model

$$\mathcal{L}_{\text{NJL}} = \bar{\psi} (i \not\!\!\!D - m_0) \psi + G[(\bar{\psi} \psi)^2 + (\bar{\psi} i \gamma_5 \tau \psi)^2]$$

$$\Omega = \frac{(m - m_0)^2 + (\pi^0)^2}{4G} - \frac{1}{V_4} \text{Tr} \ln S^{-1}$$

$$S(x, x') = -(i \not\!\!D - m - i \pi^0 \gamma_5 \tau_3)^{-1} \delta^{(4)} (x - x')$$
Same result as ChPT

For E=B case, $I_2 = \mathbf{E} \cdot \mathbf{B}$

In the presence of $E \cdot B$, the QCD vacuum contains neutral pion condensate!

Cf: the Disoriented Chiral Condensate (DCC) which is out-of-equilibrium

Cao-XGH 2015
Wang-Cao-XGH-Zhuang 2018

- Calculation by using Wigner function (Fang-Pang-Wang-Wang 2016; Guo-Zhuang 2017)
- Similar argument can apply to η condensation (Wang-Cao-XGH-Zhuang 2018)
- Possible experimental signal: $\frac{\pi_0}{\pi}$ ratio in UPC

$$\frac{N_{\pi_0}}{N_{\pi^+} + N_{\pi^-} + N_{\pi^0}} > \frac{1}{3}???$$

Cf. the detection of DCC. Experimentally challenging.

QCD vacuum under rotation: chiral soliton lattice

Chiral vortical effect

Chiral fermions + fluid vorticity ⇒ chiral vortical effect (CVE)

(Erdmenger etal 2008; Barnerjee etal 2008, Son, Surowka 2009; Landsteiner etal 2011):

$$\vec{J}_R = \frac{1}{4\pi^2} \mu_R^2 \vec{\omega} + \frac{T^2}{12} \vec{\omega}, \quad \vec{J}_L = -\frac{1}{4\pi^2} \mu_L^2 \vec{\omega} - \frac{T^2}{12} \vec{\omega}$$

Vorticity is larger at lower collision energy

Very low energy, hadronic degree of freedom, then ...

Axial chiral vortical effect

Axial current induced by vorticity:

$$\mathbf{j}_a^5 = N_c \left(d_{abc} \frac{\mu_b \mu_c}{2\pi^2} + b_a \frac{T^2}{6} \right) \mathbf{\Omega},$$

$$d_{abc} = \frac{1}{2} \text{Tr} \left[\tau_a \{ \tau_b, \tau_c \} \right], \qquad b_a = \text{Tr}(\tau_a)$$

Low-energy effective lagrangian for aCVE (anomaly matching):

 Look for consequences of a CVE for low T dense matter under rotation

A chiral soliton lattice (I)

• The Hamiltonian for the neutral pion ($\phi \equiv \pi^0/f_\pi$)

$$\mathcal{H} = \frac{f_{\pi}^{2}}{2} \left[(\partial_{r}\phi)^{2} + \frac{1 - (\Omega r)^{2}}{r^{2}} (\partial_{\theta}\phi)^{2} + (\partial_{z}\phi)^{2} \right] + m_{\pi}^{2} f_{\pi}^{2} (1 - \cos\phi) - \frac{\mu_{B}\mu_{I}}{2\pi^{2}} \Omega \partial_{z}\phi$$

The ground state is given by

$$\langle \partial_r \pi_0 \rangle = \langle \partial_\theta \pi_0 \rangle = 0$$
 $\partial_z^2 \phi = m_\pi^2 \sin \phi$

Its solution is given by zero of the Jacobi elliptic function

$$\cos \frac{\phi(\bar{z})}{2} = \sin(\bar{z}, k)$$
 with $\bar{z} \equiv z m_{\pi}/k$

with period

$$\ell = rac{2kK(k)}{m_\pi}$$
 with $K(k)$ the 1st complete elliptic integral

A chiral soliton lattice (II)

 This is a one dimensional chiral soliton lattice. It is the ground state when

$$|\Omega| \ge \Omega_{\rm CSL} \equiv \frac{8\pi m_{\pi} f_{\pi}^2}{\mu_{\rm B}|\mu_{\rm I}|}$$

Each lattice cell carries topological charges

$$\frac{J_z}{A} = \frac{\mu_{\rm B}\mu_{\rm I}}{\pi}$$
, $\frac{N_{\rm B}}{A} = \frac{\mu_{\rm I}\Omega}{\pi}$, $\frac{N_{\rm I}}{A} = \frac{\mu_{\rm B}\Omega}{\pi}$

with crossed correlation between baryon and isospin

The energy density

$$\frac{\mathcal{E}_{\text{tot}}}{V} = 2m_{\pi}^2 f_{\pi}^2 \left(1 - \frac{1}{k^2} \right) < 0$$

Topological Barnett-Einstein-de Haas effect

Introducing also the magnetic field (chiral limit)

$$\mathcal{H} = \frac{1}{2} (\nabla \pi_0)^2 - \frac{\mu_{\rm B}}{4\pi^2 f_{\pi}} \nabla \pi_0 \cdot (2\mu_{\rm I} \mathbf{\Omega} + \mathbf{B})$$

Integrating out pion

$$\mathcal{H}_{ ext{mix}} = -rac{\mu_{ ext{B}}^2 \mu_{ ext{I}}}{8\pi^4 f_{\pi}^2} \mathbf{\Omega} \cdot \mathbf{B}$$

 This induces cross-correlated response between rotation and magnetic field

$$m{j}=\chi_{jB}m{B}$$
 ~ Einstein-de Haas effect $m{m}=\chi_{m\Omega}m{\Omega}$ ~ Barnett effect with $\chi_{jB}=\chi_{m\Omega}=rac{\mu_{
m B}^2\mu_{
m I}}{8\pi^4f_\pi^2}$

ChSB under both B field and rotation: rotational magnetic inhibition

Analogy between rotation and density

Hamiltonian: rotation vs chemical potential

$$H_{\rm rot} = H - \omega J_z$$
 $H_{\mu} = H - \mu N$

This indicates ωJ_z plays similar role as chemical potential term μN . However

Causality: $v_{\rm edge} = \omega R < 1$

Rotating system must be finite!

Excitation gap due to finite size: J_z/R Effective chemical pot.: $\omega J_z < J_z/R$

Pure rotation does not excite any modes. (Ebihara-Fukushima-Mameda 2017)

Figures drawn by Mameda

Analogy between rotation and density

• To see rotational effect we need T, μ, B, \dots

T: Jiang-Liao 2016; Chernodub-Gongyo 2017

 μ : XGH-Nishimura-Yamamoto 2017

B: Chen-Fukushima-XGH-Mameda 2015

Indeed, rotation is commonly associated with B

We consider the interplay btw B and ω

Dirac fermion in rotation and B field

The spectrum can be obtained from the Dirac Eq.

$$\left[i\gamma^{\mu}(\nabla_{\mu}+\Gamma_{\mu})-m\right]\psi=0$$

$$g_{\mu\nu} = \begin{pmatrix} 1 - r^2 \Omega^2 & y\Omega & -x\Omega & 0 \\ y\Omega & -1 & 0 & 0 \\ -x\Omega & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Consider the situation where

$$1/\sqrt{eB} \ll R \le 1/\Omega$$

so that we can take the quasi-thermodynamic limit

The spectrum reads

$$[E + \Omega(\ell + s_z)]^2 = p_z^2 + (2n + 1 - 2s_z)eB + m^2$$

Angular momentum

Landau levels

Dirac fermion in rotation and B field

The enhancement of IR density of state

Magnetic field:
$$\int \frac{dp_x dp_y}{(2\pi)^2} \to \frac{eB}{2\pi} \sum_{n=0}^{\infty},$$

Magnetic field + Rotation:
$$\int \frac{dp_x dp_y}{(2\pi)^2} \to \frac{1}{S} \sum_{n=0}^{\infty} \sum_{\ell=-n}^{N-n} \frac{1}{S} \sum_{\ell=-n}^{N-n} \frac{1}{S}$$

Consider a four fermion interaction

$$\frac{G}{2}[(\overline{\psi}\psi)^2+(\overline{\psi}\gamma_5\psi)^2]$$

Dirac fermion in rotation and B field

- (1) eB increases \longrightarrow M increases
- Magnetic Catalysis
- (2) *eB* increases M decreases

Inverse of MC

'Rotational magnetic inhibition'

Chen-Fukushima-XGH-Mameda 2015

See also: Jiang-Liao 2016; Chernodub-Gongyo 2016; Liu-Zahed 2017;

Chen-Fukushima-XGH-Mameda 2017; Wang-Wei-Li-Huang 2018 ...

Summary

New dimension of QCD phase diagram

ΕΜ, ω

Magnetic catalysis at T=0; Inverse magnetic catalysis at Tc; Neutral pion condensation; Chiral soliton lattice in B field and/or in rotation;

Suppression of spin-0 condensate due to rotation;

Rotational magnetic inhibition;

Thank you!

• • • • • •

Fluid vorticity in heavy-ion collisions

 Vortices: common phenomena in fluids across a very broad hierarchy of scales

- Vafa-Witten theorem: no parity odd condensate in QCD vacuum if theta term vanishes. But in E field
- 2 flavor quarks, Dirac operator,

$$\mathcal{D} = \gamma_{\mu}(\partial_{\mu} - ig\mathcal{A}_{\mu}) + Q\gamma_{4}A_{0} + iQ\gamma_{i}A_{i} + M$$

 Dirac positivity and thus Vafa-Witten theorem is violated in E field

Important consequences: Schwinger mechanism, sign problem, pion condensation in vacuum

Note that in B field, Dirac positivity is NOT violated. So in B field, no parity odd or vector-like condensates can occur in QCD vacuum

Outline

- QCD vacuum in EM field: Neutral pion condensed vacuum (G. Cao, L. Wang, P. Zhuang)
- QCD vacuum in rotation: chiral soliton lattice (K. Nishimura, N. Yamamoto)
- Chiral condensate in rotation + magnetic field:
 Rotational magnetic inhibition (H.L. Chen, K. Fukushima, K. Mameda)
- Summary