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How much entropy is produced in strongly coupled
Quark-Gluon Plasma (sQGP) by dissipative effects?

M.Lublinsky and E.Shuryak

Department of Physics and Astronomy, State University of New York, Stony Brook NY 11794-3800, USA
(Dated: June 14, 2013)

We argue that estimates of dissipative effects based on the first-order hydrodynamics with shear
viscosity are potentially misleading because higher order terms in the gradient expansion of the
dissipative part of the stress tensor tend to reduce them. Using recently obtained sound dispersion
relation in thermal N=4 supersymmetric plasma, we calculate the resummed effect of these high
order terms for Bjorken expansion appropriate to RHIC/LHC collisions. A reduction of entropy
production is found to be substantial, up to an order of magnitude.

PACS numbers:

Hydrodynamical description of matter created in high
energy collisions have been proposed by Landau [1] more
than 50 years ago, motivated by large coupling at small
distance, as followed from the beta functions of QED and
scalar theories known at the time. Hadronic matter is of
course described by QCD, in which the coupling runs in
the opposite way. And yet, recent RHIC experiments
have shown spectacular collective flows, well described
by relativistic hydrodynamics. More specifically, one ob-
served three types of flow: (i) outward expansion in trans-
verse plane, or radial flow, (ii) azimuthal asymmetry or
“elliptic flow” [2, 3], as well as recently proposed (iii)
“conical flow” from quenched jets [4]. These observation
lead to conclusion that QGP at RHIC is a near-perfect
liquid, in a strongly coupled regime [5]. The issue we
discuss below is at what “initial time” τ0 one is able to
start hydrodynamical description of heavy ion collisions,
without phenomenological/theoretical contradictions.

Phenomenologically, it was argued in [2, 3] that elliptic
flow is especially sensitive to τ0. Indeed, ballistic motion
of partons may quickly erase the initial spatial anisotropy
on which this effect is based. In practice, hydrodynamics
at RHIC is usually used starting from time τ0 ∼ 1/2fm,
otherwise the observed ellipticity is not reproduced.

Can one actually use hydrodynamics reliably at such
short time? How large is τ0 compared to a relevant “mi-
croscopic scales” of sQGP? How much dissipation occurs
in the system at this time? As a measure of that, we will
calculate below the ratio of the amount of entropy pro-
duced at τ > τ0 to its “primordial” value at τ0, ∆S/S0.

To set up the problem, let us start with a very crude
dimensional estimate. If we think that the QCD effective
coupling is large αs ∼ 1 and the only reasonable micro-
scopic length is given by temperature [14], then the rele-
vant micro-to-macro ratio of scales is simply T0τ0. With
T0 ∼ 400 MeV at RHIC, one finds this ratio to be close
to one. We are then lead to a pessimistic conclusion: at
such time application of any macroscopic theory, thermo-
or hydro-dynamics, seems to be impossible, since order
one corrections are expected.

Let us then do the first approximation, including the
explicit viscosity term to the first order. Zeroth order (in

mean free path) stress tensor used in the ideal hydrody-
namics has the form

T (0)
µν = (ϵ + p)uµuν + p gµν (1)

while dissipative corrections are induced by gradients of
the velocity field. The well known first order corrections
are due to shear (η) and bulk (ξ) viscosities

δT (1)
µν = η(∇µuν + ∇νuµ − 2

3
∆µν∇ρuρ) + ξ(∆µν∇ρuρ)(2)

In this equation the following projection operator onto
the matter rest frame was used:

∇µ ≡ ∆µν∂ν , ∆µν ≡ gµν − uµuν (3)

The energy-momentum conservation ∂µ Tµν at this order
corresponds to Navier-Stokes equation.

Because colliding nuclei are Lorentz-compressed, the
largest gradients at early time are longitudinal, along the
beam direction. The expansion at this time can be ap-
proximated by well known Bjorken rapidity-independent
setup [6], in which hydrodynamical equations depend on
only one coordinate – proper time τ =

√
t2 − x2.

1

ϵ + p

dϵ

dτ
=

1

s

ds

dτ
= −1

τ

(

1 − (4/3)η + ξ

(ϵ + p)τ

)

(4)

where we have introduced the entropy density s = (ϵ +
p)/T . Note that for traceless Tµν (conformally invariant
plasma), the bulk viscosity ξ = 0.

For reasons which will become clear soon, let us com-
pare this eqn to another problem, in which large longi-
tudinal gradients appear as well, namely sound wave in
the medium. The dispersion relation (the pole position)
for a sound wave with frequency ω and wave vector q is,
at small q

ω = csq − i

2
q2Γs, Γs ≡ 4

3

η

ϵ + p
(5)

Notice that the right hand side of (4) contains precisely
the same combination of viscosity and thermodynamical

'Special moments’ can also provide  simple tools to 

understand the emergence of hydrodynamical behavior 

in expanding quark-gluon plasmas 



The hydrodynamic description of matter produced in 
heavy ion collisions works amazingly well !…

even in situations where, a priori, it should not …

Fluid behavior requires (some degree of) local equilibration 
(='thermalization'). How is this achieved?  


• microscopic degrees of freedom relax quickly towards local equilibrium
• long wavelength modes, associated to conservation laws, relax on longer time scales

(e.g. in presence of strong gradients)

Usual picture:



Thermalization

Two main issues

ii) isotropy of momentum distribution

i) relative populations of different momentum modes 

Main topic for the 
rest of this talk

"Isotropization"



Longitudinal expansion hinders isotropization

The fast expansion of the matter along the 
collision axis tends to drive the momentum 
distribution to a very flat distribution along the z 
direction

Translates into the 
existence of two 
different pressures

41
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FIG. 15. Comparison between the exact solution of the kinetic equation (symbols) and the equation of L-moment (lines).
Di↵erent colors correspond to di↵erent initial conditions, Red: T0 = 0.8, ⌧0 = 0.05; Green: T0 = 0.1, ⌧0 = 8.16; Blue: T0 = 0.8,
⌧0 = 2.34.
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(longitudinal) (transverse)



"Hydrodynamization"

Hydrodynamic behavior may emerge 
before local isotropization if achieved 

Anisotropy relaxes slowly, 

like a 'collective' variable associated to a conservation law

First hints came from holographic descriptions



Ideal hydrodynamics of boost invariant systems
(Bjorken flow)

Relaxation time approximation

Jean-Paul Blaizot(1)

March 29, 2018

1. Institut de Physique Théorique (URA 2306 du CNRS), CEA/DSM/Saclay,
91191, Gif-sur-Yvette Cedex, France

Abstract

1 Boost invariant hydro

Hydro equations

@µT
µ⌫ = 0, (1)

with

Tµ⌫ = (✏+ P )uµu⌫ � Pgµ⌫ +⇧µ⌫ . (2)

In case of a boost invariant system, the energy momentum tensor is of the form (in local rest
frame where uµ = (1, 0, 0, 0))

Tµ⌫ =

0

BB@

✏ 0 0 0
0 P? 0 0
0 0 P? 0
0 0 0 PL

1

CCA (3)

with

PT = T xx = T yy = P +⇧xx, PL = T zz = P +⇧zz. (4)

For massless partons, Tµ
µ = 0, and ✏ = 2P? + PL.

The equation @µTµ⌫ leads to

@✏

@t
+

✏+ PL

t
= 0. (5)

In case of complete local equilibrium, P? = Pk, and ✏ = 3P . Then the equation above yields

✏(t) ⇠ t�4/3.

1

conformal symmetry

Three independent components ✏, P?, PL

Equation of motion @⌧(⌧✏) = �PL
@✏

@⌧
= � ✏ + PL

⌧

but:

P? = PL = ✏/3In local equilibrium

Then ✏ ⇠ ⌧�4/3 T ⇠ ⌧�1/3 (✏ ⇠ T 4)

(equation of state)

energy density

Viscous hydrodynamics (gradient expansion)P? � PL =
⌘

⌧
In boost invariant systems, the gradient expansion is an 
expansion in inverse powers of 1

w
=

1/T
⌧
⇠ Knudsen number ⇠ micro

macro



Viscous hydro can cope with partial thermalization, and large

differences between longitudinal and transverse pressures

w ⌘ ⌧Te f f

‘Exact’

3rd,1st, 2nd  
order hydro

Holographic description of a boost invariant  plasma 
(Heller, Janik, Witaszczyk, [1103.3452])

23

VI. THE HYDRODYNAMIC FIXED POINT

R =
PT � PL

✏
(117)

1. Equilibrium fixed point.

In the simple situation where we neglect the expansion, the equations of motion become

@L0

@⌧
= 0,

@L1

@⌧
=

L1

⌧R
. (118)

The solution is trivial

L0(⌧) = L0(0),

L1(⌧) = L1(0) e
�⌧/⌧R . (119)

The energy density remains constant, while the anisotropy of the momentum distribution is washed out.

The hydrodynamic attractor. When we combine the two e↵ects, expansion and collisions, one may expect
that at large time, ⌧ � ⌧R, the anisotropy of the distribution will be damped and that the system will be described
by viscous hydrodynamics. In fact the free streaming structure “knows” about ideal hydro. Indeed in the case where
L1 is completely damped, i.e., L1 = 0, the equation of motion reduces to

⌧
@L0

@⌧
= �4

3
L0, ✏(⌧) = ✏(0)

⇣
⌧0

⌧

⌘4/3
. (120)

This is the ideal hydrodynamics evolution of the energy density. In fact we can go a bit further. Recall that
L1 = PL � PT , and that ✏ = PL + 2PT . Then, the first equation (118) can be written

d✏

d⌧
= �✏+ PL

⌧
, (121)

which is an exact equation (it follows from the kinetic equation without approximation).
Now, L1 = PL � PT is the only non trivial component of the energy-momentum tensor. It needs to be fixed via a

constitutive equation, usually written as a gradient expansion. In the present case, this is an expansion in powers of
1/⌧ . Thus we may set

L1(⌧) =
↵
0
1

⌧
+

↵
1
1

⌧2
+ · · · (122)

We already know that in leading order viscous hydro, ↵0
1 is proportional to the viscosity, viz

L1(⌧) = �2
⌘

⌧
+ · · · (123)

This expansion (122) together with a simple dimensional analysis is su�cient to determined the hydrodynamic attrac-
tor. Indeed, we know that all the moments have the same dimension as the energy density, that is T 4. This implies
that ↵0

1 has dimension T
3, while ↵

1
1 has dimension T

2. Since in the hydrodynamic regime T ⇠ ⌧
�1/3, it follows that

in this regime L1(⌧) ⇠ ⌧
�2 in leading order. This fixes the hydro attractor for ⌧@⌧ lnL1 = �2, while for L0 we have

⌧@⌧ lnL1 = �4/3.
It is instructive to see how this behavior emerges from the solution of the equations. Let us then return to the

equations of motion for L1

@L1

@⌧
= �1

⌧
[a1L1 + b1L0]�

L1

⌧R
. (124)
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2. Since in the hydrodynamic regime T ⇠ ⌧
�1/3, it follows that
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�2 in leading order. This fixes the hydro attractor for ⌧@⌧ lnL1 = �2, while for L0 we have
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@L1

@⌧
= �1
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[a1L1 + b1L0]�

L1

⌧R
. (124)

Define



The gradient expansion is divergent

The result is a transseries  
 
 

Different “instanton sectors” are related by 
resurgence, which fixes Im(c).  

This leaves Re(c) as an integration constant.  

Matching the attractor requires 

f =
1X

n=0

fnw
�n + c e�

3
2C⌧⇧

w

 
w

C⌘�2C�1
C⌧⇧

1X

n=0

f (1)
n w�n

!
+ . . .

Re(c) = 0.049 6= 0
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has been calculated up to n=240 (!) (Heller, Janik, Witaszczyk , 2013)

Sophisticated resummation yields a 'transseries'

(Heller, Spalinski , 2015)

Similar features are observed in kinetic theory
(Heller, Kurkela, Spalinski , Svensson, 2016)
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I. INTRODUCTION.

We want to solve the equation

h
@⌧ � pz

⌧
@pz

i
f(p/T ) = �f(p, ⌧)� feq(p, ⌧)

⌧R
. (1)

This equation describes the competition between two e↵ects

• Expansion, which drives the momentum distribution to a flat distribution along the pz direction.

• Collisions, which drive the momentum distribution to a spherical distribution.

In this paper, we shall assume that ⌧R is either a constant, or that ⌘/s is a constant, in which case T ⌧R is a constant.
Recall that ✏ = ⇡

2
T

4
/30 in equilibrium, and this relation defines also T (⌧) also out-of equilibrium.

Simple kinetic equation
•Relaxation time approximation

•Solved long ago by Baym [PLB 138 (1984) 18] 

3

A. Solution for constant relaxation time

The kinetic equation with constant ⌧R was solved by Gordon Baym long ago (Phys. Lett. B138, 18 (1984)). We
shall discuss now this solution.

We note first that we can rewrite the kinetic equation as follows

⌧R

✓
@f

@⌧
� pz

⌧

@f

@pz

◆
+ f = feq(⌧). (12)

The solution of this equation, with the initial condition

f(p?, pz, ⌧0) = f0(p?, pz), p
2 = p2

? + p
2
z, (13)

is

e⌧/✓f(p?, pz, ⌧) = e⌧0/✓f0(p?, pz⌧/⌧0) +

Z ⌧

⌧0

d⌧
0

⌧R
e⌧

0/⌧R feq(
q

p2? + (pz⌧/⌧ 0)2, ⌧
0). (14)

To see that, set first f(p?, pz, ⌧) = e�⌧/✓
f̃(p?, pz, ⌧). The equation for f̃ reads

 
@f̃

@⌧
� pz

⌧

@f̃

@pz

!
=

e⌧/⌧R

⌧R
feq(⌧). (15)

The homogeneous part of the equation corresponds to free streaming. Solving this homogeneous equation, one gets

 
@f̃

@⌧
� pz

⌧

@f̃

@pz

!
= 0, f̃(p?, pz, ⌧) = f̃0(p?, pz⌧/⌧0) = e⌧0/⌧Rf0(p?, pz⌧/⌧0). (16)

Next, we note that

✓
@

@⌧
� pz

⌧

@

@pz

◆
feq

✓q
p2? + (pz⌧/⌧ 0)2, ⌧

0
◆

= 0, (17)

so that
Z ⌧

⌧0

d⌧ 0

⌧R
e⌧

0/⌧R feq

✓q
p2? + (pz⌧/⌧ 0)2, ⌧

0
◆

(18)

is a particular solution of the equation for f̃ which vanishes for ⌧ = ⌧0. The solution in Eq. (14) then follows as the
sum of the general free streaming solution plus the particular solution of the full equation.

By integrating the kinetic equation and using the matching condition, Eq. (10), one derives an equation for the
energy density

✏(⌧) = e�(⌧�⌧0)/✓✏
(0)(⌧) + e�⌧/✓

Z ⌧

⌧0

d⌧ 0

⌧R
e⌧

0/⌧R ⌧
0

⌧
✏(⌧ 0)h(⌧ 0/⌧). (19)

with

h(x) ⌘
Z 1

0
dµ

p
1� µ2 + µ2x2. (20)

One can also write this equation as

⌧e⌧/⌧R✏(⌧) = ⌧0e
⌧0/⌧R✏(⌧0)h(⌧0/⌧) +

Z ⌧

⌧0

d⌧ 0

⌧R
e⌧

0/⌧R⌧
0
✏(⌧ 0)h(⌧ 0/⌧). (21)

This equation is a (cloesd) integral equation for ✏(⌧). Once its solution is known, one can determine the pressures PL

and PT , thereby getting the full enerlgy momentum tensor.
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(derivative at constant     ) pz⌧

(free streaming)

•Free streaming (e.g. in absence of collisions)
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III. THE FREE STREAMING FIXED POINT

The solution of the free streaming equation
h
@⌧ � pz

⌧
@pz

i
f(p/T ) = 0 (45)

is of the form

f(t,p) = f0(p?, pzt/t0), (46)

where f0(p) is the initial condition at time t0. That is, f(t,p) depends on pz and t only through the combination pzt.

A. General solution for isotropic initial condition

We assume that at t = t0 the distribution is isotropic, i.e., f0(p?, pz) = f(p).

1. The first two moments

For this free streaming solution, the energy density reads

✏
(0)(t) =

Z
d
3
p

(2⇡)3
p f(p?, pz, t)

=

Z
d
3
p

(2⇡)3

q
p2
? + p2z f0(p?, pzt/t0)

=
t0

t

Z
d
2
p?

(2⇡)2
dp

0
z

2⇡
f0(p̄) p̄

q
1� (1� t20/t

2) cos2 ✓p

=
t0

t

✓Z
d3p

(2⇡)3
f0(p)p

◆ ✓
1

2

Z 1

�1
d cos ✓p

q
1� (1� t20/t

2) cos2 ✓p

◆
. (47)

We have set p0z = pzt/t0 = p̄ cos ✓p and p? = p̄ sin ✓p, p̄2 = p
2
? + p

02
z . The angular integration decouples, as indicated,

and we get

✏
(0)(t) =

✏0t0

t
h(t0/t), (48)

with

h(x) ⌘
Z 1

0
dµ

p
1� µ2 + µ2x2, h(0) =

⇡

4
, h(1) = 1. (49)

We have set ✏0 = ✏(t0), that is ✏0 is the initial energy density. Note that in addition of the factor t0/t that reflects
the dilution of the energy in the expanding covolume, there is another source of decrease of the energy density in the
factor h(t0/t). This is due to the fact that, when t � t0, the distribution is peaked around pz = 0, and the energy
density is made up of the transverse momenta only

✏
(0)(t) ⇡ t0

t

Z
d
3
p

(2⇡)3
p sin ✓ f0(p) =

⇡

4

✏0t0

t
. (50)

Let us calculate similarly the longitudinal pressure

P
(0)
L =

Z
d
3
p

(2⇡)3
p
2
z

p
f(p?, pz, t)

=

Z
d
3
p

(2⇡)3
p
2
zp

p2? + p2z

f0(p?, pzt/t0)

=

✓
t0

t

◆3 Z
d
3
p

(2⇡)3
p f0(p)

Z 1

0
dµ

µ
2

p
1� µ2(1� (t0/t)2)

=

✓
t0

t

◆2

✏0h
0(t0/t), (51)

(angular integral)



Here come the special moments
(JPB, Li Yan , 2017, 2018)
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II. THE L-MOMENTS OF THE DISTRIBUTION FUNCTION

Why should we use moments ?

• There is too much information in the momentum distribution. Most of this information is not accessible, in
particular for the initial data.

Why our moments are simpler?

• Because they focus on the angular distribution, the profile being fixed on average by the energy density.

A. The moments Ln

We define

Ln ⌘
Z

p
p
2
P2n(cos ✓)f(p), (2)

where P2n is a Legendre polynomial of order 2n, and cos ✓ = pz/p. Recall that

P0(z) = 1, P2(z) =
1

2
(3z2 � 1). (3)

For an expanding system with Bjorken geometry, odd order moments vanish as a consequence of the invariance
of the distribution function under parity (or under reflection with respect to the z = 0 plane, i.e. pz ! �pz and
✓ ! ⇡ � ✓).

Note the relations

L0 = ", L1 = PL � PT . (4)

The moments Ln of higher order are associated to finer structures of the momentum anisotropy of the distribution
function.

Note that the energy-momentum tensor in kinetic theory is given by

T
µ⌫ =

Z

p
f(p)pµp⌫ (5)

and it involves only L1 and L0 by construction.

B. The equations for the L-moments

We consider the equation for the L-moments,

@Ln

@⌧
=� 1

⌧
[anLn + bnLn�1 + cnLn+1]�

(1� �n0)Ln

⌧R
, (6)

where the coe�cients an, bn, cn are pure numbers

an =
2(14n2 + 7n� 2)

(4n� 1)(4n+ 3)
' 7

4
+

5

64n2
� 5

128n3
+O

✓
1

n

◆4

(7)

bn =
(2n� 1)2n(2n+ 2)

(4n� 1)(4n+ 1)
' n

2
+

1

4
� 7

32n
+

1

64n2
� 7

512n3
+O

✓
1

n

◆4

(8)

cn =
(1� 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
' �n

2
+

7

32n
� 3

32n2
+

27

512n3
+O

✓
1

n

◆4

(9)

entirely determined by the free streaming part of the kinetic equation. The approximate equalities are valid for large
values of n. The first few coe�cients are given by

a0 = 4/3, a1 = 38/21, b1 = 8/15, c0 = 2/3, (10)
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Special moments

Why moments ?

• There is too much information in the distribution function

• We want to focus on the angular degrees of freedom 

(Legendre polynomial)

The energy momentum tensor is described by first two moments
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entirely determined by the free streaming part of the kinetic equation. The approximate equalities are valid for large
values of n. The first few coe�cients are given by

a0 = 4/3, a1 = 38/21, b1 = 8/15, c0 = 2/3, (10)
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II. THE L-MOMENTS OF THE DISTRIBUTION FUNCTION

Why should we use moments ?

• There is too much information in the momentum distribution. Most of this information is not accessible, in
particular for the initial data.

Why our moments are simpler?

• Because they focus on the angular distribution, the profile being fixed on average by the energy density.
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2

Ln’s contain little information on the radial shape of the
momentum distribution, preventing us for instance to re-
construct from them the full distribution. However, this
radial shape plays a marginal role in the isotropization of
the momentum distribution, which is our main concern
here. Note that all the Ln have the same dimension.

By using the recursion relations among the Legendre
polynomials, we can recast Eq. (1) into the following (in-
finite) set of coupled equations

@Ln

@⌧
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⌧
[anLn + bnLn�1 + cnLn+1]�

Ln

⌧R
(n � 1)
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⌧
[a0L0 + c0L1] , (3)

where the coe�cients an, bn, cn are pure numbers

an =
2(14n2 + 7n� 2)

(4n� 1)(4n+ 3)
, bn =

(2n� 1)2n(2n+ 2)

(4n� 1)(4n+ 1)
,

cn =
(1� 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
, (4a)

entirely determined by the free streaming part of the ki-
netic equation. Note that the collision term does not
a↵ect directly the energy density, but only the moments
with n � 1. In fact, if one ignores the expansion, i.e., set
an = bn = cn = 0, the moments evolve according to

L0(⌧) = L0(0), Ln(⌧) = Ln(0) e
�⌧/⌧R . (5)

This solution illustrates the role of the collisions in eras-
ing the anisotropy of the momentum distribution as the
system approaches equilibrium. Of course, the expansion
prevents the system to ever reach this trivial equilibrium
fixed point: instead, the system goes into an hydrody-
namical regime, as we shall discuss later.

The system of Eqs. (3) lends itself to simple trunca-
tions. Thus by ignoring all moments of order higher
than n, one obtains a finite set of n + 1 equations that
can be easily solved. The accuracy of such a proce-
dure can be judged from Fig. 1, where the moments ob-
tained from various truncations are compared with those
of the numerical solution of Eq. (1) for an initial distri-
bution typical of a heavy ion collision: f(t0, pT , pz) =

f0⇥
⇣
Qs �

p
⇠2p2z + p2T

⌘
with f0 = 0.1, ⇠ = 1.5, corre-

sponding to an initial momentum anisotropy PL/PT ⇡
0.5, and ⌧0 = Q�1

s [12]. Already the lowest order trun-
cation at n = 1 captures the qualitative behaviour of
the full solution. Note that the approach to the ex-
act solution is alternating, which o↵ers an estimate of
the truncation error. The energy density approaches
smoothly the hydrodynamic regime as ⌧ >⇠ ⌧R, while
the non monotonous behaviour of the ratio L1/L0 re-
flects the competition between expansion and collisional
e↵ects that we now analyze in more detail, starting with
the free streaming regime.

The free streaming fixed point. The free stream-
ing regime is described by Eq. (3) where one ignores
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FIG. 1. Comparison of the L-moment equations obtained
from various truncation of Eqs. (3) (lines), with those of the
numerical solution of the kinetic equation (1) (symbols).

the collision term. It is not hard to see that the result-
ing equation possesses a stable solution at large time, in
which all moments decay as 1/⌧ and are proportional to
each other: Ln(⌧) = AnL0(⌧), where the dimensionless
constants An characterize the moments of a distribution
that is flat in the pz direction [12]

An = P2n(0) = (�1)n
(2n� 1)!!

(2n)!!
. (6)

Note that A1 = �1/2, corresponding to a vanishing lon-
gitudinal pressure. As for the factor 1/⌧ it reflects the
conservation of the energy in the increasing comoving
volume (⌧"(⌧) = cste). Defining

gn(⌧) = ⌧@⌧ lnLn, (7)

we get from Eq. (3)

gn(⌧) = �an � bn
Ln�1

Ln
� cn

Ln+1

Ln
� (1� �n0)

⌧

⌧R
. (8)

The solution above corresponds to a fixed point for the
gn’s. Dropping the last term, and using the expression
(6) for the ratio of moments, one indeed verifies easily
that for all n, gn(⌧) = �1. If the initial ratios of moments
are chosen according to Eq. (6), the gn’s remain constant
in time (all equal to �1), whereas for arbitrary initial
conditions, they will reach the fixed point at late time.
Note that the fixed point obtained from a truncation at
a finite order di↵ers slightly from �1: for instance, in
the simplest truncation at n < 2, g0 = g1 = �0.92937
instead of -1, and A1 ⇡ �0.6 instead of �0.5.

The hydrodynamic fixed point. We know from
our previous study [12] that, at late times, Ln(⌧) admits
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II. THE L-MOMENTS OF THE DISTRIBUTION FUNCTION

Why should we use moments ?

• There is too much information in the momentum distribution. Most of this information is not accessible, in
particular for the initial data.

Why our moments are simpler?

• Because they focus on the angular distribution, the profile being fixed on average by the energy density.

A. The moments Ln

We define

Ln ⌘
Z

p
p
2
P2n(cos ✓)f(p), (2)

where P2n is a Legendre polynomial of order 2n, and cos ✓ = pz/p. Recall that

P0(z) = 1, P2(z) =
1

2
(3z2 � 1). (3)

For an expanding system with Bjorken geometry, odd order moments vanish as a consequence of the invariance
of the distribution function under parity (or under reflection with respect to the z = 0 plane, i.e. pz ! �pz and
✓ ! ⇡ � ✓).

Note the relations

L0 = ", L1 = PL � PT . (4)

The moments Ln of higher order are associated to finer structures of the momentum anisotropy of the distribution
function.

Note that the energy-momentum tensor in kinetic theory is given by

T
µ⌫ =

Z

p
f(p)pµp⌫ (5)

and it involves only L1 and L0 by construction.

B. The equations for the L-moments

We consider the equation for the L-moments,
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entirely determined by the free streaming part of the kinetic equation. The approximate equalities are valid for large
values of n. The first few coe�cients are given by

a0 = 4/3, a1 = 38/21, b1 = 8/15, c0 = 2/3, (10)
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values of n. The first few coe�cients are given by
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•The competition between expansion and collisions is made obvious

• Interesting system of coupled linear equations

•Emergence of hydrodynamics is transparent: equations for 
the lowest moments

(Free streaming)
(collisions)

• The coefficients                are pure numbersan, bn, cn

•Provides much insight on various versions of viscous hydrodynamics

c0 = 2/3



Free streaming solution
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The calculation of the transverse pressure proceeds similarly
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These calculations can be easily extended to the general moments. We get
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Note that for n = 0, since P0(x) = 1, we have

F0(x) = h(x), (30)

where h(x) is the function introduced above. Similarly for n = 1, we use P2(x) =
1
2 (3x

2 � 1) to get

F1(x) =
3

2
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2
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which agrees with the expression given above for L1.
This function Fn(x) has the following limits:

Fn(x ! 0) ! ⇡
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P2n(0), Fn 6=0(x ! 1) ! 0, F0(x ! 1) ! 1. (32)
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where

Fn(x) ⌘
1

2

Z 1

�1
dy
⇥
1� (1� x

2)y2
⇤1/2

P2n

 
xy

[1� (1� x2)y2]1/2

!
. (29)

Note that for n = 0, since P0(x) = 1, we have

F0(x) = h(x), (30)

where h(x) is the function introduced above. Similarly for n = 1, we use P2(x) =
1
2 (3x

2 � 1) to get

F1(x) =
3

2
xh

0(x)� 1

2
h(x), (31)

which agrees with the expression given above for L1.
This function Fn(x) has the following limits:

Fn(x ! 0) ! ⇡

4
P2n(0), Fn 6=0(x ! 1) ! 0, F0(x ! 1) ! 1. (32)
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FIG. 4. (Color online) The value of P2n(0) as a function of n, for 0  n  15. The integer values of n correspond to the minima
and maxima.

FIG. 5. (Color online) Time evolution of the first few moments shown through the function Fn(x). Note that x is what we call
1/x in the text. That is, large x here corresponds to large time.

It follows from the previous equations that at late time,

L(0)
n (t) ⇠ ✏0t0

t

⇡

4
P2n(0). (33)

This asymptotic solution is reached in a time scale fixed by t0 (this is controlled by the factor t0/t = x in the function
Fn(x)). This is the free streaming fixed point, to be discussed further later. A plot of this function Fn(x), as a
function of t/t0 = 1/x for the first few n is given in Fig. 5.

Expansion of Fn(x) at x ! 0:

F0(x) =
⇡

4
+

⇡x
2

8
� x

3

3
+

3⇡x4

32
� 4x5

16
+O(x6) (34)

F1(x) =� ⇡

8
+

5⇡x2

16
� 4x3

3
+

33⇡x4

64
� 28x5

15
+O(x6) (35)
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V. SOLVING THE MOMENT EQUATION FOR FREE STREAMING

We now analyze the general results obtained in the previous section from the perspective of the hierarchy of
equations for the L-moments,

@Ln

@⌧
=� 1

⌧
[anLn + bnLn�1 + cnLn+1] . (65)

A priori, we are making things more complicated, but the analysis will be useful in preparation for the hydrodynamic
discussion.

In order to analyze this system of equations, we set t ⌘ log ⌧/⌧0, consider ~L = L1, · · · ,Ln, · · · as a vector (in an
infinite dimensional space), and write Eq. (64) as a matrix equation

@t
~L = �M ~L, (66)

where M is a tridiagonal matrix, with constant elements. This matrix can be diagonalized. Let us call P the matrix
that brings M to the diagonal form, that is, P�1

MP = D, where D = diag(�1, · · · ,�n, · · · ), the diagonal matrix of
eigenvalues �i. Let us set ~L = P ~F . Since P is constant, we have @t

~L = P@t
~F , so that the matrix equation becomes

@t
~F = �D ~F . (67)

This is trivially solved, eacch component Fi being given by

Fi = ↵ie
��it, (68)

where the ↵i’s are arbitrary constants to be fixed eventually by the initial conditions. At this point, we remember
that the ith column of the matrix P is filled with the components of the eigenvector ~Vi corresponding to the eigenvalue
�i. It follows then that the solution for ~L can be written as

~L(t) =
1X

i=0

↵ie
��it ~Vi. (69)

In the following we shall solve this system of equations by truncating it, with matrices M of increasing sizes. And
we shall compare the solution thus obtained with the exact solution obtained earlier. In order to be able to do this
comparison, we fix the initial condition (at ⌧ = ⌧0, i.e. t = 0) so that L(⌧0) = 1 and Ln(⌧0) = 0 for all n > 0.

To determine the coe�cients ↵i from the initial condition, it is convenient to form a vector ~↵ = (↵1, · · · ,↵n. Then
we have

~↵ = P
�1 ~L(t = 0), (70)

or, in matrix form
0

@
↵0

·
↵n

1

A = P
�1

0

@
1
·
0

1

A (71)

Poor convergence: all moments are important at late time

But higher moments take time to grow

n=2

n=0

n=1
n=3

n=4
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VI. THE HYDRODYNAMIC FIXED POINT

Fn(t0/t) (117)

1. Equilibrium fixed point.

In the simple situation where we neglect the expansion, the equations of motion become

@L0

@⌧
= 0,

@L1

@⌧
=

L1

⌧R
. (118)

The solution is trivial

L0(⌧) = L0(0),

L1(⌧) = L1(0) e
�⌧/⌧R . (119)

The energy density remains constant, while the anisotropy of the momentum distribution is washed out.

The hydrodynamic attractor. When we combine the two e↵ects, expansion and collisions, one may expect
that at large time, ⌧ � ⌧R, the anisotropy of the distribution will be damped and that the system will be described
by viscous hydrodynamics. In fact the free streaming structure “knows” about ideal hydro. Indeed in the case where
L1 is completely damped, i.e., L1 = 0, the equation of motion reduces to

⌧
@L0

@⌧
= �4

3
L0, ✏(⌧) = ✏(0)

⇣
⌧0

⌧

⌘4/3
. (120)

This is the ideal hydrodynamics evolution of the energy density. In fact we can go a bit further. Recall that
L1 = PL � PT , and that ✏ = PL + 2PT . Then, the first equation (118) can be written

d✏

d⌧
= �✏+ PL

⌧
, (121)

which is an exact equation (it follows from the kinetic equation without approximation).
Now, L1 = PL � PT is the only non trivial component of the energy-momentum tensor. It needs to be fixed via a

constitutive equation, usually written as a gradient expansion. In the present case, this is an expansion in powers of
1/⌧ . Thus we may set

L1(⌧) =
↵
0
1

⌧
+

↵
1
1

⌧2
+ · · · (122)

We already know that in leading order viscous hydro, ↵0
1 is proportional to the viscosity, viz

L1(⌧) = �2
⌘

⌧
+ · · · (123)

This expansion (122) together with a simple dimensional analysis is su�cient to determined the hydrodynamic attrac-
tor. Indeed, we know that all the moments have the same dimension as the energy density, that is T 4. This implies
that ↵0

1 has dimension T
3, while ↵

1
1 has dimension T

2. Since in the hydrodynamic regime T ⇠ ⌧
�1/3, it follows that

in this regime L1(⌧) ⇠ ⌧
�2 in leading order. This fixes the hydro attractor for ⌧@⌧ lnL1 = �2, while for L0 we have

⌧@⌧ lnL1 = �4/3.
It is instructive to see how this behavior emerges from the solution of the equations. Let us then return to the

equations of motion for L1

@L1

@⌧
= �1

⌧
[a1L1 + b1L0]�

L1

⌧R
. (124)
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gn(⌧! 1)! �1
gn(⌧) ⌘ ⌧@⌧ lnLn

NB
P2n(0)

n
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IV. TRUNCATING THE MOMENT EQUATIONS FOR FREE STREAMING

Main issues to be discussed in this section

• Practical aspect: one can use the coupled moments to solve the kinetic equation and study the

transition to hydro. In this perspective it is useful to analyze the way moments are coupled, and

we have seen that these couplings are entirely determined by free streaming.

• Study the convergence of truncations. We shall indeed find that the lowest non trivial truncation,

involving just L0 and L1, captures much of the qualitative features. The role of the higher moments

is indicated. The analysis should be completed for more general initial conditions.

We now analyze the general results obtained in the previous section from the perspective of the hierarchy of
equations for the L-moments,

@Ln

@⌧
=�

1

⌧
[anLn + bnLn�1 + cnLn+1] . (126)

A priori, we are making things more complicated, but the analysis will be useful in preparation for the hydrodynamic
discussion.

In order to analyze this system of equations, we set t ⌘ log ⌧/⌧0, consider ~L = L1, · · · ,Ln, · · · as a vector (in an
infinite dimensional space), and write Eq. (126) as a matrix equation

@t ~L = �M ~L, (127)

where M is a tridiagonal matrix, with constant elements. This matrix can be diagonalized. Let us call P the matrix
that brings M to the diagonal form, that is, P�1MP = D, where D = diag(�1, · · · ,�n, · · · ), the diagonal matrix of
eigenvalues �i. Let us set ~L = P ~F . Since P is constant, we have @t ~L = P@t ~F , so that the matrix equation becomes

@t ~F = �D ~F . (128)

This is trivially solved, each component Fi being given by

Fi = ↵ie
��it, (129)

where the ↵i’s are arbitrary constants to be fixed eventually by the initial conditions. At this point, we remember
that the ith column of the matrix P is filled with the components of the eigenvector ~Vi corresponding to the eigenvalue
�i. It follows then that the solution for ~L can be written as

~L(t) =
1X

i=0

↵ie
��it ~Vi. (130)

In the following we shall solve this system of equations by truncating it, with matrices M of increasing sizes. And
we shall compare the solution thus obtained with the exact solution obtained earlier. In order to be able to do this
comparison, we fix the initial condition (at ⌧ = ⌧0, i.e. t = 0) so that L(⌧0) = 1 and Ln(⌧0) = 0 for all n > 0.

To determine the coe�cients ↵i from the initial condition, it is convenient to form a vector ~↵ = (↵1, · · · ,↵n. Then
we have

~↵ = P�1 ~L(t = 0), (131)

or, in matrix form
0

@
↵0

·

↵n

1

A = P�1

0

@
1
·

0

1

A (132)

Finally,

~L(⌧) = P exp

✓
�D ln

⌧

⌧0

◆
~↵. (133)
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FIG. 9. (Color online) The function `0(t) (blue) compared to the solution for the lowest order truncation (orange). Right:
ln(`0(t)).

A. Simple truncations

1. Truncation at n = 0

The simplest truncation, which corresponds to all moments vanishing except L0, yields

@L0

@⌧
= �

a0
⌧
L0, L0(⌧) =

⇣⌧0
⌧

⌘a0

= x4/3, (134)

where we have set x ⌘ ⌧0/⌧ and used a0 = 4/3. This is to be compared to the exact result L0(x) = xh(x). This is
displayed in the plot below (Fig. 9), where the functions are plotted as a function of t, using x = e�t.

Note that at small t, that is near x = 1, the behavior of the exact and approximate solutions are remarkably similar.
In fact from the expansion of h(x) for x near 1 given above, we get

xh(x) ' 1 +
4

3
(x� 1) +O(x� 1)2. (135)

Physically, this corresponds to the fact that, at small time, the evolution of the system (as given by the exact solution)
is dominated by the lowest moment: it takes time for the higher order moments to build up and modify the evolution
of `0. Furthermore, as we have already observed, at small times, `0 behave as in ideal hydrodynamics. It is only
through its interaction with `1 that `0 will eventually reach the fixed point behavior `0(⌧) ⇠ 1/⌧ .

2. Truncation at n = 1

The next truncation involves the two moments L0 and L1. The corresponding equations read

@

@t

✓
L0

L1

◆
= �

✓
4
3

2
3

8
15

38
21

◆✓
L0

L1

◆
. (136)

The eigenvalues of the matrix

M =

✓
4
3

2
3

8
15

38
21

◆
(137)

are �0 = 0.929366,�1 = 2.21349 corresponding respectively to the eigenvectors ~V (0) = (v(0)1 , v(0)2 ) = (�1.6503, 1) and
~V (1) = (v(1)1 , v(1)2 ) = (0.75744, 1). Note that the eigenvalues are positive so that the two modes are damped.
Let us call P the matrix that realizes the diagonalization, that is

P�1MP =

✓
�0 0
0 �1

◆
=

✓
0.929366 0

0 2.21349

◆
. (138)
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are �0 = 0.929366,�1 = 2.21349 corresponding respectively to the eigenvectors ~V (0) = (v(0)1 , v(0)2 ) = (�1.6503, 1) and
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◆
. (138)
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FIG. 13. The moment lnL0 as a function of t, for various truncations, compared to the exact result.
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FIG. 14. The moment lnL1 as a function of t, for various truncations, compared to the exact result. Purple: �t, corresponding
to the exact asymptotic behavior. Red= exact solution. Green, orange, blue, truncations n=1,2,3, respectively.

L1 is chosen initially, then the system will remain in that combination for ever.
More generally we shall consider initial conditions such that

✓
L0(⌧0)
L1(⌧0)

◆
=

✓
1
a

◆
(155)

In this case, Eqs.(143) become

L0(t) =
1

detP

n
v(0)1

⇣
v(1)2 � av(1)1

⌘
e��0t + v(1)1

⇣
�v(0)2 + av(0)1

⌘
e��1t

o

L1(t) =
1

detP

n
v(0)2

⇣
v(1)2 � av(1)1

⌘
e��0t + v(1)2

⇣
�v(0)2 + av(0)1

⌘
e��1t

o
.

(156)

Clearly the two fixed points correspond to the values of a for which either v(1)2 �av(1)1 = 0 (a ' 0.6060) or�v(0)2 +av(0)1 =
0 (a ' 1.3202).

n=1

Keeping only the first two moments one gets

Two eigenmodes

(t = ln(⌧/⌧0))

Truncations are reasonably accurate

L1

t

exactn=3
n=2



Free streaming fixed point 
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The two fixed points correspond to the two eigenvalues of the linear problem, one is close to 1 (�0 = 0.929366), the
other close to 2 (�1 = 2.21349). At late time, the ratio L1/L0 is dominated by the smallest eigenvalue, that is

L1

L0
!

v(0)2

v(0)1

= �
1

1.6503
= �0.6060, (157)

independently of the value of a. This behavior is in line with the fact that the fixed point associated with the lowest
eigenvalue is stable while that associated with the largest eigenvalue is unstable.

The stability of the fixed points is best analyzed from the equation for g0, which, in the absence of interaction,
reads

⌧
dg0
d⌧

+ g20 + (a0 + a1)g0 + a0a1 � c0b1 = 0, (158)

which we rewrite, setting ⌧ = ⌧0et, and with a slight abuse of notation

dg0
dt

+ g20 + (a0 + a1)g0 + a0a1 � c0b1 = 0. (159)

The fixed points correspond to the static solutions of this equation, namely to the values g0 = ḡ0 such that

ḡ20 + (a0 + a1)ḡ0 + a0a1 � c0b1 = 0. (160)

It is easy to verify that the solutions of this equation coincide with the eigenvalues �0 and �1 of the linear problem.
Consider then small deviations away from the fixed points, and set g0(t) = ḡ0 + f(t). In linear order in f we get

df

dt
+ 2ḡ0f + (a0 + a1)f = 0, f(t) = f(0)e�(2ḡ0+a0+a1)t. (161)

Now, recall that a0 = 4/3 and a1 = 38/21, so that a0 + a1 ' 3. Thus when ḡ0 ' �1, 2ḡ0 + a0 + a1 > 0 corresponding
to a stable fixed point, while when ḡ0 ' �1, 2ḡ0 + a0 + a1 < 0 corresponding to an unstable fixed point.

REMARK
Recall that

L0 = 2PT + PL, L1 = PL � PT ,

PL =
1

3
L0 +

2

3
L1, PT =

1

3
L0 �

1

3
L1. (162)

In the exact case, we have

�0.5 
L1

L0
 1, (163)

the lower bound corresponding to PL = 0, while the upper bound corresponds to PT = 0. These two bounds are
violated in the truncation of the hierarchy of equations. Indeed near the unstable fixed point, L1/L0 ' 1.3 which
corresponds to a negative transverse pressure (PT < 0). In the vicinity of the stable fixed point L1/L0 ' �0.6x,
which corresponds to a negative longitudinal pressure.

⌧
dg0

d⌧
= �(g0) �(g0) = �g2

0 � (a0 + a1)g0 � a0a1 + c0b1

g⇤0 = ��0 = �0.929g⇤0 = ��1 = �2.21
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One can transform the coupled linear equations into a single non linear 
differential equation

gn(⌧) ⌘ ⌧@⌧ lnLn

Write this as

(stable)(unstable)

gn(⌧! 1)! �1
NB exact fixed point



Including collisions

Simple truncations work well

2

Ln’s contain little information on the radial shape of the
momentum distribution, preventing us for instance to re-
construct from them the full distribution. However, this
radial shape plays a marginal role in the isotropization of
the momentum distribution, which is our main concern
here. Note that all the Ln have the same dimension.

By using the recursion relations among the Legendre
polynomials, we can recast Eq. (1) into the following (in-
finite) set of coupled equations

@Ln

@⌧
=� 1

⌧
[anLn + bnLn�1 + cnLn+1]�

Ln

⌧R
(n � 1)

@L0

@⌧
=� 1

⌧
[a0L0 + c0L1] , (3)

where the coe�cients an, bn, cn are pure numbers

an =
2(14n2 + 7n� 2)

(4n� 1)(4n+ 3)
, bn =

(2n� 1)2n(2n+ 2)

(4n� 1)(4n+ 1)
,

cn =
(1� 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
, (4a)

entirely determined by the free streaming part of the ki-
netic equation. Note that the collision term does not
a↵ect directly the energy density, but only the moments
with n � 1. In fact, if one ignores the expansion, i.e., set
an = bn = cn = 0, the moments evolve according to

L0(⌧) = L0(0), Ln(⌧) = Ln(0) e
�⌧/⌧R . (5)

This solution illustrates the role of the collisions in eras-
ing the anisotropy of the momentum distribution as the
system approaches equilibrium. Of course, the expansion
prevents the system to ever reach this trivial equilibrium
fixed point: instead, the system goes into an hydrody-
namical regime, as we shall discuss later.

The system of Eqs. (3) lends itself to simple trunca-
tions. Thus by ignoring all moments of order higher
than n, one obtains a finite set of n + 1 equations that
can be easily solved. The accuracy of such a proce-
dure can be judged from Fig. 1, where the moments ob-
tained from various truncations are compared with those
of the numerical solution of Eq. (1) for an initial distri-
bution typical of a heavy ion collision: f(t0, pT , pz) =

f0⇥
⇣
Qs �

p
⇠2p2z + p2T

⌘
with f0 = 0.1, ⇠ = 1.5, corre-

sponding to an initial momentum anisotropy PL/PT ⇡
0.5, and ⌧0 = Q�1

s [12]. Already the lowest order trun-
cation at n = 1 captures the qualitative behaviour of
the full solution. Note that the approach to the ex-
act solution is alternating, which o↵ers an estimate of
the truncation error. The energy density approaches
smoothly the hydrodynamic regime as ⌧ >⇠ ⌧R, while
the non monotonous behaviour of the ratio L1/L0 re-
flects the competition between expansion and collisional
e↵ects that we now analyze in more detail, starting with
the free streaming regime.

The free streaming fixed point. The free stream-
ing regime is described by Eq. (3) where one ignores
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FIG. 1. Comparison of the L-moment equations obtained
from various truncation of Eqs. (3) (lines), with those of the
numerical solution of the kinetic equation (1) (symbols).

the collision term. It is not hard to see that the result-
ing equation possesses a stable solution at large time, in
which all moments decay as 1/⌧ and are proportional to
each other: Ln(⌧) = AnL0(⌧), where the dimensionless
constants An characterize the moments of a distribution
that is flat in the pz direction [12]

An = P2n(0) = (�1)n
(2n� 1)!!

(2n)!!
. (6)

Note that A1 = �1/2, corresponding to a vanishing lon-
gitudinal pressure. As for the factor 1/⌧ it reflects the
conservation of the energy in the increasing comoving
volume (⌧"(⌧) = cste). Defining

gn(⌧) = ⌧@⌧ lnLn, (7)

we get from Eq. (3)

gn(⌧) = �an � bn
Ln�1

Ln
� cn

Ln+1

Ln
� (1� �n0)

⌧

⌧R
. (8)

The solution above corresponds to a fixed point for the
gn’s. Dropping the last term, and using the expression
(6) for the ratio of moments, one indeed verifies easily
that for all n, gn(⌧) = �1. If the initial ratios of moments
are chosen according to Eq. (6), the gn’s remain constant
in time (all equal to �1), whereas for arbitrary initial
conditions, they will reach the fixed point at late time.
Note that the fixed point obtained from a truncation at
a finite order di↵ers slightly from �1: for instance, in
the simplest truncation at n < 2, g0 = g1 = �0.92937
instead of -1, and A1 ⇡ �0.6 instead of �0.5.

The hydrodynamic fixed point. We know from
our previous study [12] that, at late times, Ln(⌧) admits

(drop all moments beyond a certain n)



First few moments are relevant
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FIG. 3. (Color online) Time evolution of the first few moments (n = 1, · · · , 4, from top to bottom)
normalized by the energy density, and obtained by solving the Boltzmann with the relaxation time
approximation. The unit of time is Q�1

s , and both the relaxation time ⌧rel and the initial time t0
are set equal to Q�1

s , i.e., ⌧rel = Q�1
s = t0. The dashed lines are the corresponding moments for

the free streaming solution, Eq. (3.6). We observe that by the time t & 15⌧rel, all moments but L1

vanish.

moments decay as 1/t. When t = t0/⇠, the moments with n 6= 0 vanish, which implies in
particular that they vanish at t = t0 if there is no initial momentum anisotropy (⇠ = 1). The
energy density is given by the zeroth moment, with F0(0) = ⇡/2 and F0(1) = 2. To within
the slowly varying function F0(t0/⇠t), the energy density exhibits the expected behavior in
1/t. It can also be verified that the longitudinal pressure drops rapidly, as ⇠ 1/t2, so that
at times t � t0/⇠, the distribution function is peaked around pz = 0, and the energy density
is dominated by transverse degrees of freedom.

For a finite ⌧rel, Eq. (3.4) leads to

Ln(t) = e
�(t�t0)/⌧relLFS

n + 6⇣(4)

Z t

t0

dt
0

(2⇡)2
e
�(t�t0)/⌧rel

⌧rel
T (t0)4

✓
t
0

t

◆
Fn(t

0
/t) , (3.8)

where ⇣(n) is the Riemann-zeta function. In this equation, the first term represents the
contribution of the free-streaming of the initial distribution. This is suppressed in a time
scale ⌧rel, i.e., when collisions start to play a significant role. One thus expects the evolution
of the moments to exhibit a transition between the free-streaming regime at short time,
t ⌧ ⌧rel, and the late time regime, dominated by collisions and represented by the second
term in Eq. (3.8).

Figure 3 displays the evolution of the absolute values of the normalized moments |Ln/L0|
up to n = 4 (recall that L1 and L3 are negative). Also shown are the moments of the
pure free-streaming solution, Eq. (3.6), which saturate at late times to their corresponding

12

moments of free

 streaming solution

damping of higher 
moments by collisions
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V. A SIMPLE MODEL FOR THE APPROACH TO HYDRODYNAMICS

Consider the system of equations truncated at the first two moments

@⌧L0 = �1

⌧
(a0L0 + c0L1) ,

@⌧L1 = �1

⌧
(b1L0 + a1L1)�

1

⌧R
L1. (126)

This system captures the main qualitative features of the free streaming, and the damping factor of the L1 moment
drives the system towards the hydrodynamical regime at late times. These couple equations are in fact very close to
some familiar viscous hydrodynamic equations.

A. Transforming the coupled equations into a second order di↵erential equation

Multiplying by ⌧ the first equation and taking a time derivative on obtains

⌧ L̈0 + L̇0 = �a0L̇0 � c0L̇1. (127)

One can then eliminate L̇1 by using the second equation,

⌧ L̈0 + (1 + a0)L̇0 =
c0

⌧
(b1L0 + a1L1) +

c0

⌧R
L1

=
c0b1

⌧
L0 + c0

✓
a1

⌧
+

1

⌧R

◆
L1, (128)

and then eliminate c0L1 using the first equation

⌧ L̈0 + (1 + a0)L̇0 =
c0b1

⌧
L0 �

✓
a1

⌧
+

1

⌧R

◆⇣
⌧ L̇0 + a0L0

⌘

=
1

⌧

✓
c0b1 � a1a0 �

a0⌧

⌧R

◆
L0 � a1L̇0 �

⌧

⌧R
L̇0. (129)

Finally, we are left with a second order linear di↵erential equation for L0

⌧ L̈0 +

✓
1 + a0 + a1 +

⌧

⌧R

◆
L̇0 +

1

⌧

✓
a1a0 � c0b1 +

a0⌧

⌧R

◆
L0 = 0. (130)

Note that the previous manipulations are valid for an arbitrary (e.g time dependent) relaxation time ⌧R.

1. Recovering the free streaming regime

In the limit where ⌧R ! 1, one recovers the free streaming regime. We may then look for a power law solution of
the form " ⇠ ⌧

↵. Inserting this in the equation, one obtains

↵(↵� 1) + (1 + a0 + a1)↵+ (a0a1 � c0b1) = 0, (131)

or, inserting the numerical values of the coe�cients,

↵(↵� 1) +
29

7
↵+

72

35
= 0, (132)

↵
2 +

22

7
↵+

72

35
= 0. (133)

One recovers the two eigenvalues that we obtained from the diagonalization, that is ↵ = �2.21349, and ↵ = �0.929366.
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⌧R
L1
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⌧
L0 + c0

✓
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⌧
+

1

⌧R

◆
L1, (128)

and then eliminate c0L1 using the first equation

⌧ L̈0 + (1 + a0)L̇0 =
c0b1

⌧
L0 �

✓
a1

⌧
+

1

⌧R

◆⇣
⌧ L̇0 + a0L0

⌘

=
1

⌧

✓
c0b1 � a1a0 �

a0⌧

⌧R

◆
L0 � a1L̇0 �

⌧

⌧R
L̇0. (129)
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⌧ L̈0 +

✓
1 + a0 + a1 +

⌧

⌧R

◆
L̇0 +

1

⌧

✓
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Note that the previous manipulations are valid for an arbitrary (e.g time dependent) relaxation time ⌧R.

1. Recovering the free streaming regime

In the limit where ⌧R ! 1, one recovers the free streaming regime. We may then look for a power law solution of
the form " ⇠ ⌧

↵. Inserting this in the equation, one obtains

↵(↵� 1) + (1 + a0 + a1)↵+ (a0a1 � c0b1) = 0, (131)

or, inserting the numerical values of the coe�cients,

↵(↵� 1) +
29

7
↵+

72

35
= 0, (132)

↵
2 +

22

7
↵+

72

35
= 0. (133)

One recovers the two eigenvalues that we obtained from the diagonalization, that is ↵ = �2.21349, and ↵ = �0.929366.

A simple model can be constructed

This simple equations capture much of the physics and illuminates the analytic 
features of the transition to viscous hydrodynamics

("Almost" viscous hydrodynamics…

in fact, better!)
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D. Gradient expansion of g0(w), A(w), L0(w), L1(w)

We now turn to a more systematic derivation of the gradient expansion in the hydrodynamical regime, that is, we
examine the large w behavior of the solution of the equations

w
⇣
1 +

g0
4

⌘
g00 + g20 + (a0 + a1 + w)g0 + wa0 + a0a1 � b1c0 = 0, ⌧RT = Cste, (196)

wg00 + g20 + (a0 + a1 + w)g0 + wa0 + a0a1 � b1c0 = 0, ⌧R = Cste, (197)

assuming that this solution admits a gradient expansion. Recall that

g0(w) =
d lnL0(⌧)

d ln ⌧
, w =

⌧

⌧R
. (198)

As already stated, we assume the mapping between w and ⌧ to be invertible. We may then consider L0 as a function
of w, i.e. L0(⌧(w)), so that (with a slight abuse of notation)

d lnL0(w)

d lnw
= w

d lnL0(w)

dw
=

w

⌧

d lnL0

d ln ⌧

1

dw/d⌧
(199)

If ⌧R is a constant, dw/d⌧ = 1/⌧R = w/⌧ , and

d lnL0(w)

d lnw
= g0. (200)

If ⌧RT is a constant, then dw/d⌧ = (w/⌧)(1 + g0/4), and

d lnL0(w)

d lnw
=

g0
1 + g0/4

. (201)

We have used the fact that L0(⌧) = ✏(⌧) / T 4(⌧) so that

d lnT

d ln ⌧
=

g0
4
. (202)

Similarly, we have

d lnL1(w)

d lnw
=

w

⌧

d lnL1

d ln ⌧

1

dw/d⌧
=

g1
1 + g0/4

, g1 =
d lnL1(w)

d lnw
(203)

1. Gradient expansion of g0(w)

We look for a solution of the form

g0(w) =
X

n=0

↵n

wn
, (204)

with the understanding that we terminate the sum at some finite order (it is known to be divergent). For instance

g0(w) = ↵0 +
↵1

w
+

↵2

w2
+

↵3

w3
+

↵4

w4
+

↵5

w5
+ · · · (205)

By plugging this expansion into Eq. (196), we can determine the coe�cients ↵n. We obtain then, for the case
⌧RT = Cste,

↵0 = �a0 = �
4

3
, ↵1 = b1c0 =

16

45
, ↵2 =

b1c0
4

(3a0 � 4a1 + 4) =
64

945
,

↵3 = �
b1c0
8

�
�3a20 + 2 (5a1 � 8) a0 � 8a21 + 24a1 + 6b1c0 � 16

�
= �

1216

33075
,

↵4 =
1

32
b1c0

�
4a0

�
12a21 � 52a1 � 9b1c0 + 52

�
� 16

�
a1 (22� 4b1c0) + 2a31 � 12a21 + 7b1c0 � 12

�

+3a30 + (52� 22a1) a
2
0

�
= �

179456

2083725
(206)
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⌧
L0 + c0

✓
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⌧
+

1

⌧R

◆
L1, (128)

and then eliminate c0L1 using the first equation
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✓
a1
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1

⌧R

◆⇣
⌧ L̇0 + a0L0

⌘

=
1

⌧

✓
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a0⌧

⌧R
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⌧

⌧R
L̇0. (129)
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✓
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⌧

⌧R

◆
L̇0 +

1

⌧

✓
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a0⌧

⌧R

◆
L0 = 0. (130)

Note that the previous manipulations are valid for an arbitrary (e.g time dependent) relaxation time ⌧R.

1. Recovering the free streaming regime

In the limit where ⌧R ! 1, one recovers the free streaming regime. We may then look for a power law solution of
the form " ⇠ ⌧

↵. Inserting this in the equation, one obtains
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⌧R
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L1, (128)

and then eliminate c0L1 using the first equation
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⌧
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✓
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⌧
+

1

⌧R

◆⇣
⌧ L̇0 + a0L0

⌘

=
1

⌧

✓
c0b1 � a1a0 �

a0⌧

⌧R

◆
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⌧

⌧R
L̇0. (129)

Finally, we are left with a second order linear di↵erential equation for L0

⌧ L̈0 +

✓
1 + a0 + a1 +

⌧

⌧R

◆
L̇0 +

1

⌧

✓
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⌧R

◆
L0 = 0. (130)

Note that the previous manipulations are valid for an arbitrary (e.g time dependent) relaxation time ⌧R.
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In the limit where ⌧R ! 1, one recovers the free streaming regime. We may then look for a power law solution of
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The hydrodynamic fixed point
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FIG. 16. The function �(g0, w) as a function of g0 for di↵erent values of w. Red: w = 0.01, green: w = 0.5, orange: w = 1,
blue: w = 2. The attractive fixed point is on the right, the repulsive one on the left. For very small values of w, the stable fixed
point corresponds to the free streaming fixed point g0 = �0.929. As w increases, this fixed point moves continuously towards
the hydrodynamical fixed point g0 = �4/3. Note the existence of a point where all curve cross. This occurs for g0 = �4/3.

so that fixing the initial condition for g0 is equivalent to fixing the ration L0/L1. In the exact case, we have, as
discussed earlier,

�0.5 
L1

L0
 1, (235)

the lower bound corresponding to PL = 0, the upper bound to PT = 0. In terms of g0,

�a0 � c0 <
⇠ g0 <

⇠ �a0 +
c0
2
, �2 <

⇠ g0 <
⇠ �1, (236)

with the lower bound corresponding now to PT = 0, the upper bound to PL = 0.
It is convenient to write Eq. (197) as follows

wg00 =
dg0(w)

d lnw
= �(g0, w), �(g0, w) = �g20 � (a0 + a1 + w)g0 � wa0 � a0a1 + b1c0. (237)

A plot of the function �(g0, w) as a function of g0 for di↵erent values of w is given in Fig. 16. This plots allows an
easy identification of the stable (or attractive) fixed point and of the unstable (or repulisve) fixed point when w = 0.
For non zero w, these fixed points are not truly fixed points, but they still control the behavior of the solution. We
shall refer to these as pseudo fixed points. Note that as w becomes large the unstable fixed point is pushed to large
negative values of g0, while the stable pseudo fixed point approaches the hydrodynamic fixed point. The expansion
of the location of the stable pseudo fixed point at large w reads

gfp = �
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3
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45w
�

32

189w2
�

4544

99225w3
+O

✓
1

w4

◆
(238)

Note that the first two terms in this expansion coincide with the first two terms in the gradient expansion of g0(w).

As we discussed in the PLB paper, the attractor corresponds to the solution that relates the two fixed points. This
solution is obtained by solving the equation for g0 with initial condition corresponding to the free streaming fixed
point, that is g0 = �0.929. It is convenient to set

w = et, ⌧ = ⌧Re
t. (239)

The equation becomes then (with a slight abuse of notation)

dg0
dt

+ g20 +
�
a0 + a1 + et

�
g0 + eta0 + a0a1 � b1c0 = 0. (240)

A plot of the function g0(t) is given in Fig. 17.
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The transition from free streaming to hydrodynamics

3

the following expansion, analogous to a gradient expan-
sion1

Ln(⌧) =
1

⌧n

1X

m=0

↵(m)
n

⌧m
. (9)

The coe�cients in Eq. (9) are nothing but transport co-
e�cients, except for the first moment, equal to the en-

ergy density, i.e., ↵(m)
0 = "�m0. The behavior of "(⌧)

at large time is obtained from Eq. (3), ignoring the
contribution of L1. Since a0 = 4/3, this behavior is
that of ideal hydrodynamics, "(⌧) ⇠ ⌧�4/3, and hence
T (⌧) ⇠ ⌧�1/3. The leading and sub-leading transport
coe�cients in Eq. (9) can be determined analytically. To
do so, we return to Eq. (8) and note that a cancellation
of the relaxation term has to occur in order to elimi-
nate the exponential decaying contributions to the mo-
ments. This cancellation determines the leading order

coe�cient, viz. ↵(0)
n = (�⌧R)n"

Qn
i=1 bi. In particular,

↵(0)
1 = �b1⌧R" = �2⌘, with ⌘ the shear viscosity. In

a conformal invariant setting [14], we allow ⌧R to de-
pend on the temperature, with ⌧RT (⌧) kept constant2.

Then, one gets ↵(0)
n ⇠ ⌧�(4�n)/3 which implies that in

leading order, Ln(⌧) ⇠ ⌧�(4+2n)/3. This defines the hy-
drodynamic fixed point, gn(⌧) = �(4+2n)/3.3 The sub-
leading coe�cients in Eq. (9) are then fixed by imposing
this asymptotic power law, which yields
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◆
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n

#
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The first few coe�cients reproduce the values of known

transport coe�cients [12, 15], for instance ↵(0)
2 =

64
105 "⌧

2
R = 4

3 (�1 + ⌘⌧⇡), ↵
(1)
1 = � 32

315 "⌧
2
R = 4

3 (�1 � ⌘⌧⇡),
with �1 and ⌧⇡ as defined in [14].

The attractor. One may define an attractor so-
lution as the particular solution of Eqs. (3) which, at
short time, coincides with the free streaming fixed point
gn = �1, and at large time goes over to the hydrody-
namic fixed point. It can be determined numerically, by
solving Eqs. (3) with initial conditions specified by the
constants (6). We have checked that g0 obtained in this
way is consistent with what was found by other meth-
ods in Ref. [3, 4]. The solution, obtained by truncating
Eqs. (3) at n < 20, is displayed in Fig. 2 for the first

1
For Bjorken flow, the gradient expansion coincides with an ex-

pansion in powers of ⌧R/⌧ , which may also be viewed as an ex-

pansion in Knudsen number.
2
The constant is given by ⌧RT (⌧) = 5⌘/s, with the entropy den-

sity given by s = 4"/(3T ).
3
In the conformal invariant setting, this result could also be

obtained from a simple dimensional analysis. For a time-

independent relaxation time, the hydrodynamic fixed point is

instead gn(⌧) = �(4 + 3n)/3.
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FIG. 2. Attractor solutions (black solid lines) to the L-
moment equations cut at n < 20, in terms of g0, g1 and
g2. Dotted lines correspond to the hydrodynamic fixed point.
Solutions with random initial conditions are shown in grey.

few gn(⌧). The universal character of the curves is worth
emphasizing. All the gn’s behave in the same way, in-
terpolating between the two fixed point gn ⇡ �14 and
gn = �(4+2n)/3, the transition occurring when ⌧ ⇠ ⌧R.

Hydrodynamics. At this point, we note that the
truncations of the equations (3) for the moments are
closely related to successive viscous corrections to hydro-
dynamics. We have already seen that the lowest order
truncation, i.e., with only L0 non vanishing, is identical
to ideal hydrodynamics. The truncation at order n = 1
yields two coupled equations that can be cast in the form

@⌧ ✏ = �4

3

✏

⌧
+

⇧

⌧
, @⌧⇧ =

4

3

⌘

⌧⌧R
� a1

⇧

⌧
� ⇧

⌧R
, (11)

where ⇧ ⌘ �c0L1, and we used the leading order re-
lation 4⌘/(3⌧⌧R) = c0b1"/⌧. These are just the second
order viscous hydrodynamic equations, in the version of
Ref. [16] with �⇡⇡ = a1 = 38/21. The first order viscous
hydrodynamics uses the solution of the second equation
(11) for small ⌧R, viz. ⇧ ' 4⌘/(3⌧) = (16/45)"(⌧R/⌧).
The much studied (lack of) convergence of the hydrody-
namic gradient expansion in the context of Bjorken flow

concerns the series of the coe�cients ↵(n)
1 in Eq. (9) for

L1 ⇠ ⇧, as can be deduced from the solution of the cou-
pled equations (11) at large time [5].
Taking higher moments into account is tantamount to

including higher order viscous corrections. For instance,

4
Because of the truncation at n < 20, the fixed point does not lie

exactly at �1, but at �1.00294

gn(⌧) = ⌧@⌧ lnLn

Early and late times are controlled by the free streaming and the hydrodynamic 
fixed points, respectively

Free streaming 

fixed point

gn = �1

Hydro fixed point 

gn = �
4 + 2n

3
(Universal!)

( Attractor solution )



Renormalization of the viscosity
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FIG. 3. Renormalization constant Z⌘/s as a function of ⌧/⌧R.
The leading order corresponds to Eq. (14), the next-to-leading
order include the correction due to g3(⌧).

the lowest order contribution of L2 to the equation for
L1 reads

c0c1L2

⌧
=

c1b2
c0b1"

⇧2

⌧
(12)

where we have used Eqs. (9) and (10) to write L2 =

↵2(0)/⌧2 = ↵(0)
2 /(↵(0)

1 c0)2⇧2. It can be verified that
the correction (12) coincides with the third order vis-
cous correction derived in Ref. [17]. Obviously, it would
be straightforward to obtain in this way higher order vis-
cous corrections, if needed. Note that since bn ⇠ n at

large n, ↵(0)
n / n!, and the series of the ↵(0)

n su↵ers from

the same lack of convergence as that of the ↵(n)
1 deter-

mining the viscous part of the energy momentum tensor.

Renormalization of ⌘/s. Alternatively, the e↵ects
of the higher moments can be treated as a renormaliza-
tion of the viscosity entering the equations for L0 and
L1. To see that, rewrite the equation for L1 as

@⌧L1 = �1

⌧
(a1L1 + b1L0)�


1 +

c1⌧R
⌧

L2

L1

�
L1

⌧R
, (13)

with Z�1
⌘/s ⌘

h
1 + c1⌧R

⌧
L2
L1

i
. The dimensionless ratio

L2/L1 is analytically related to the attractor g2(⌧), the

leading order result being

L2

L1
= � b2

a2 + ⌧/⌧R + g2(⌧)
. (14)

Sub-leading contributions involving higher gn’s can be
obtained iteratively. The quantity Z⌘/s in Eq. (13) then
defines a multiplicative renormalizaiton of ⌘/s (or equiv-
alently of ⌧R: ⌧R ! Z⌘/s⌧R), whose variation with ⌧R
is displayed in Fig. 3. Since successive corrections al-
ternate in sign, the grey band provides an estimate of
the error. At large times, corresponding to a system in
local thermal equilibrium, Z⌘/s is close to unity. For sys-
tems far-from-equilibrium, Z⌘/s tends to vanish. Thus,
in systems out-of-equilibrium, higher order viscous cor-
rections e↵ectively reduce the value of ⌘/s entering the
second order viscous hydrodynamic equations, an e↵ect
first pointed out by Lublinsky and Shuryak [18]. As can
be seen on Fig. 1 (grey dashed line), this simple renor-
malization brings the solution of the lowest non trivial
truncation quite close to the exact solution. That is,
with this correction, second order viscous hydrodynam-
ics reproduces accurately the exact solution of the kinetic
theory.
In summary, we have seen that it is possible for vis-

cous hydrodynamics to describe accurately the evolution
of boost invariant plasmas, even in regimes where the
usual conditions of applicability of hydrodynamics are
not satisfied. This is because the viscous hydrodynamic
equations can be mapped into equations for moments of
the momentum distribution that account exactly for the
underlying kinetic theory. Although the present discus-
sion relies on specific properties of Bjorken flow and the
use of a simplified kinetic equation, we expect some gen-
eral features to be robust, such as the existence of the free
streaming and the hydrodynamic fixed points5, joined by
an attractor solution, or the renormalization of the e↵ec-
tive viscosity. Clearly these results may have impact on
the interpretation of heavy ion data and deserve further
study.
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L1 reads

c0c1L2

⌧
=

c1b2
c0b1"

⇧2

⌧
(12)

where we have used Eqs. (9) and (10) to write L2 =

↵2(0)/⌧2 = ↵(0)
2 /(↵(0)

1 c0)2⇧2. It can be verified that
the correction (12) coincides with the third order vis-
cous correction derived in Ref. [17]. Obviously, it would
be straightforward to obtain in this way higher order vis-
cous corrections, if needed. Note that since bn ⇠ n at

large n, ↵(0)
n / n!, and the series of the ↵(0)

n su↵ers from

the same lack of convergence as that of the ↵(n)
1 deter-

mining the viscous part of the energy momentum tensor.

Renormalization of ⌘/s. Alternatively, the e↵ects
of the higher moments can be treated as a renormaliza-
tion of the viscosity entering the equations for L0 and
L1. To see that, rewrite the equation for L1 as

@⌧L1 = �1

⌧
(a1L1 + b1L0)�


1 +

c1⌧R
⌧

L2

L1

�
L1

⌧R
, (13)

with Z�1
⌘/s ⌘

h
1 + c1⌧R

⌧
L2
L1

i
. The dimensionless ratio

L2/L1 is analytically related to the attractor g2(⌧), the

leading order result being

L2

L1
= � b2

a2 + ⌧/⌧R + g2(⌧)
. (14)

Sub-leading contributions involving higher gn’s can be
obtained iteratively. The quantity Z⌘/s in Eq. (13) then
defines a multiplicative renormalizaiton of ⌘/s (or equiv-
alently of ⌧R: ⌧R ! Z⌘/s⌧R), whose variation with ⌧R
is displayed in Fig. 3. Since successive corrections al-
ternate in sign, the grey band provides an estimate of
the error. At large times, corresponding to a system in
local thermal equilibrium, Z⌘/s is close to unity. For sys-
tems far-from-equilibrium, Z⌘/s tends to vanish. Thus,
in systems out-of-equilibrium, higher order viscous cor-
rections e↵ectively reduce the value of ⌘/s entering the
second order viscous hydrodynamic equations, an e↵ect
first pointed out by Lublinsky and Shuryak [18]. As can
be seen on Fig. 1 (grey dashed line), this simple renor-
malization brings the solution of the lowest non trivial
truncation quite close to the exact solution. That is,
with this correction, second order viscous hydrodynam-
ics reproduces accurately the exact solution of the kinetic
theory.
In summary, we have seen that it is possible for vis-

cous hydrodynamics to describe accurately the evolution
of boost invariant plasmas, even in regimes where the
usual conditions of applicability of hydrodynamics are
not satisfied. This is because the viscous hydrodynamic
equations can be mapped into equations for moments of
the momentum distribution that account exactly for the
underlying kinetic theory. Although the present discus-
sion relies on specific properties of Bjorken flow and the
use of a simplified kinetic equation, we expect some gen-
eral features to be robust, such as the existence of the free
streaming and the hydrodynamic fixed points5, joined by
an attractor solution, or the renormalization of the e↵ec-
tive viscosity. Clearly these results may have impact on
the interpretation of heavy ion data and deserve further
study.
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VI. THE HYDRODYNAMIC FIXED POINT

⌘ =
4

15
⌧R✏ (117)

1. Equilibrium fixed point.

In the simple situation where we neglect the expansion, the equations of motion become

@L0

@⌧
= 0,

@L1

@⌧
=

L1

⌧R
. (118)

The solution is trivial

L0(⌧) = L0(0),

L1(⌧) = L1(0) e
�⌧/⌧R . (119)

The energy density remains constant, while the anisotropy of the momentum distribution is washed out.

The hydrodynamic attractor. When we combine the two e↵ects, expansion and collisions, one may expect
that at large time, ⌧ � ⌧R, the anisotropy of the distribution will be damped and that the system will be described
by viscous hydrodynamics. In fact the free streaming structure “knows” about ideal hydro. Indeed in the case where
L1 is completely damped, i.e., L1 = 0, the equation of motion reduces to

⌧
@L0

@⌧
= �4

3
L0, ✏(⌧) = ✏(0)

⇣
⌧0

⌧

⌘4/3
. (120)

This is the ideal hydrodynamics evolution of the energy density. In fact we can go a bit further. Recall that
L1 = PL � PT , and that ✏ = PL + 2PT . Then, the first equation (118) can be written

d✏

d⌧
= �✏+ PL

⌧
, (121)

which is an exact equation (it follows from the kinetic equation without approximation).
Now, L1 = PL � PT is the only non trivial component of the energy-momentum tensor. It needs to be fixed via a

constitutive equation, usually written as a gradient expansion. In the present case, this is an expansion in powers of
1/⌧ . Thus we may set

L1(⌧) =
↵
0
1

⌧
+

↵
1
1

⌧2
+ · · · (122)

We already know that in leading order viscous hydro, ↵0
1 is proportional to the viscosity, viz

L1(⌧) = �2
⌘

⌧
+ · · · (123)

This expansion (122) together with a simple dimensional analysis is su�cient to determined the hydrodynamic attrac-
tor. Indeed, we know that all the moments have the same dimension as the energy density, that is T 4. This implies
that ↵0

1 has dimension T
3, while ↵

1
1 has dimension T

2. Since in the hydrodynamic regime T ⇠ ⌧
�1/3, it follows that

in this regime L1(⌧) ⇠ ⌧
�2 in leading order. This fixes the hydro attractor for ⌧@⌧ lnL1 = �2, while for L0 we have

⌧@⌧ lnL1 = �4/3.
It is instructive to see how this behavior emerges from the solution of the equations. Let us then return to the

equations of motion for L1

@L1

@⌧
= �1

⌧
[a1L1 + b1L0]�

L1

⌧R
. (124)

[For an early suggestion of such an effect: 
Lublinsky-Shuryak (2007)]
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VII. VARIANTS OF VISCOUS HYDRODYNAMICS

The basic equation of hydrodynamics is that for the energy density

@⌧ ✏ = �
4

3

✏

⌧
+

⇧

⌧
, ⇧ =

4⌘

3⌧
, (375)

where ⇧ is not known and needs to be fixed by a constitutive equation. The various strategies that have been followed
in the literature have a simple interpretation in terms of our moments. In fact

⇧ = �c0L1 = �
2

3
(PL � PT ) . (376)

The philosophy of viscous hydrodynamics is to write a gradient expansion for ⇧, with coe�cients identified with
transport coe�cients.

A. Leading order viscous hydro. Navier Stokes

The equation for viscous hydro in leading order reads (see e.g. [18])

@⌧ ✏ = �
4

3

✏

⌧
+

⇧

⌧
, ⇧ =

4⌘

3⌧
, (377)

that is

@⌧ ✏ = �
4

3

✏

⌧
+

4⌘

3⌧2
. (378)

This equation has problems (causality, instability). The improvement due to Israel Steward consists in writing an
equation of motion for ⇧ that forces ⇧ to relax. The rate is fixed by a new parameter called ⌧⇡. We have in leading
order

⇧̇ = �
⇧

⌧⇡
+

4⌘

3⌧⌧⇡
. (379)

Note that is ⌧⇡ is chosen very small, then ⇧ relaxes rapidly to the leading order value ⇧ = 4⌘/3⌧ .

B. Second order approximation: DNMR.

Following [1709.06644] we write

@⌧⇧ =
4

3

⌘

⌧⌧⇡
� �⇡⇡

⇧

⌧
�

⇧

⌧⇡
. (380)

In the second order DNMR approximation, we have

�⇡⇡ =
38

21
= a1, ⌧⇡ = ⌧R, (381)

while in MIS

�⇡⇡ =
4

3
, ⌧⇡ =

6

5
⌧R. (382)

These results are to be compared with our equation for L1

@L1

@⌧
= �b1

✏

⌧
� a1

L1

⌧
�

L1

⌧R
, (383)

which, after multiplication by �c0 reads

@⌧⇧ = c0b1
✏

⌧
� a1

⇧

⌧
�

⇧

⌧R
. (384)
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Navier Stokes

Mueller-Israel-Steward 
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Second order hydro (DNMR)
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These results are to be compared with our equation for L1
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where ⇧ is not known and needs to be fixed by a constitutive equation. The various strategies that have been followed
in the literature have a simple interpretation in terms of our moments. In fact
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The philosophy of viscous hydrodynamics is to write a gradient expansion for ⇧, with coe�cients identified with
transport coe�cients.

A. Leading order viscous hydro. Navier Stokes

The equation for viscous hydro in leading order reads (see e.g. [18])
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This equation has problems (causality, instability). The improvement due to Israel Steward consists in writing an
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order

@⌧⇧ = �
⇧

⌧⇡
+

4⌘

3⌧⌧⇡
= �

1

⌧⇡

✓
⇧�

4⌘

3⌧

◆
. (379)
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provided 4
3
⌘

⌧⌧⇡
= c0b1

"

⌧
which holds in leading order if ⌧⇡ = ⌧R

Similar analysis can be made for BRSSS hydro (full second order, conformal), or third 
order (Jaiswal). 

[DNMR= Denicol, Niemi, Molnar, Rischke (2012)] 
[BRSSS= Baier, Romatschke, Son, Starinets, Stephanov (2008)]



Conclusions

In high energy collisions, the longitudinal expansion prevents the system 
to reach full isotropy in a short time (expansion plays a role somewhat 
similar to a conservation law…)

However strong anisotropy does not hinder the emergence of (viscous) 
hydrodynamic behavior

A simple picture based on special set of moments of the distribution 
functions provides much insight into the mathematical structure of 
viscous hydrodynamics of expanding (boost invariant) systems 

Strong reduction of the viscosity at early times due to out of 
equilibrium effects (coupling to higher moments)

Coupled equations for the first few (two) moments could be a 
convenient alternative to viscous hydrodynamics


