Chiral criticality from fluctuations of baryon density and its Fourier expansion coefficient

Krzysztof Redlich (Uni Wroclaw)

- Modelling regular part of pressure in hadronic phase: S-matrix approach:
 Charge-baryon correlations in LQCD
- Fluctuations of net-baryon charge:
 - probing chiral criticality systematics:
 FRG-PNJL model versus STAR data
 decoding phase structure of QCD with a Fourier expansion coefficients of net baryon density

in collaboration with: Gabor Almasi, Bengt Friman, Pok Man Lo, Kenji Morita, Chihiro Sasaki: Anton Andronic, Peter Braun-Munzinger, Johanna Stachel

Statistical operator of HRG provides good approximation of QCD thermodynamics in hadronic phase

Hadron Resonace Gas (HRG):

A. Andronic, P. Braun-Munzinger, J. Stachel & K.R.

$$\mathcal{P}^{regular}(T,\vec{\mu}) = \sum_{H} P_{H}^{id} + \sum_{R} P_{R}^{id}$$

Good description of particle yields data and EqS from LQCD

Nature, (2018) dN/dy/(2J+1) Pb-Pb √s_{NN}=2.76 TeV 10³ 16 non-int. limit 0-10% centrality (N_{nor}=356) 10 10 12 HRG 10^{-1} $(m/T)^2 K_2(m/T)$ 10⁻² 8 10⁻³ 10^{-4} 3s/4T³ Data (ALICE) 10⁻⁵ [hermal model, T=156 MeV (V=5330 fm³) 10⁻⁶ total (after decays) T [MeV] 10^{-1} 3.5 1.5 2.5 3 2 0.5 130 170 210 250 290 330 Mass (GeV) See also: P. Alba et al. arXiv:1711.05207

HRG provides 1st approximation of QCD free energy in hadronic phase,

A. Bazavov et al. HotQCD Coll. Phys.Rev. D90 (2014) 094503

370

Consider fluctuations and correlations of conserved charges to be compared with LQCD

Excellent probe of:

- QCD criticality
- A. Asakawa at. al.
- S. Ejiri et al.,...
- M. Stephanov et al.,
- K. Rajagopal,
 - E. Schuryak
- B. Frimann et al.
- freezeout conditions in HIC
- F. Karsch &
- S. Mukherjee et al.,
- C. Ratti et al.
- P. Braun-Munzinger et al.

• They are quantified by susceptibilities: If $P(T, \mu_B, \mu_O, \mu_S)$ denotes pressure, then

$$\frac{\chi_N}{T^2} = \frac{\partial^2(P)}{\partial(\mu_N)^2} \qquad \frac{\chi_{NM}}{T^2} = \frac{\partial^2(P)}{\partial\mu_N\partial\mu_M}$$

 $N = N_q - N_{-q}$, N, M = (B, S, Q), $\mu = \mu / T$, $P = P / T^4$ Susceptibility is connected with variance

$$\frac{\chi_N}{T^2} = \frac{1}{VT^3} (\langle N^2 \rangle - \langle N \rangle^2)$$

• If P(N) probability distribution of N then

$$\langle N^n \rangle = \sum_N N^n \mathbf{P}(N)$$

Consider special case:

 Charge and anti-charge uncorrelated and Poisson distributed, then
 D(N) the Skeller distribution

$$P(N) = \left(\frac{N_q}{N_{-q}}\right)^{N/2} I_N(2\sqrt{N_q N_{-q}}) \exp[-(N_q + N_{-q})]$$

$$\frac{\chi_N}{T^2} = \frac{1}{VT^3} (\langle N_q \rangle + \langle N_{-q} \rangle)$$

expressed by yields of particles and antiparticles carrying the conserved charge |q|.

$$< N_q > \equiv N_q =>$$

Charge carrying by
particles $q = \pm 1$

< M > - M

Consider special case: particles carrying $q = \pm 1, \pm 2, \pm 3$

The probability distribution

P. Braun-Munzinger, $P(S) = \left(\frac{S_1}{S_2}\right)^{\frac{3}{2}} \exp\left[\sum_{n=1}^{3} \left(S_n + S_{\overline{n}}\right)\right]$ B. Friman, F. Karsch, V Skokov &K.R. Phys .Rev. C84 (2011) 064911 $< S_{-a} > \equiv S_{-a}$ Nucl. Phys. A880 (2012) 48) $\sum_{i=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \left(\frac{S_{3}}{S_{\bar{2}}}\right)^{\frac{\kappa}{2}} I_{k} \left(2\sqrt{S_{3}S_{\bar{3}}}\right) \left(\frac{S_{2}}{S_{\bar{2}}}\right)^{\frac{\ell}{2}} I_{i} \left(2\sqrt{S_{2}S_{\bar{2}}}\right)$ $q = \pm 1, \pm 2, \pm 3$ $\left(\frac{S_1}{S_1}\right)^{-i-\frac{S_1}{2}} I_{2i+3k-S}\left(2\sqrt{S_1S_{\bar{1}}}\right)$ Fluctuations Correlations $\frac{\chi_{NM}}{T^2} = \frac{1}{VT^3} \sum_{n=-\infty}^{q_M} \sum_{n=-\infty}^{q_N} nm \left\langle S_{n,m} \right\rangle$ $\frac{\chi_S}{T^2} = \frac{1}{VT^3} \sum_{n=1}^{|q|} n^2 \left(\left\langle S_n \right\rangle + \left\langle S_{-n} \right\rangle \right)$ $\langle S_{n,m} \rangle$ is the mean number of particles carrying charge N = n and M = m

Variance at 200 GeV AA central coll. at RHIC

Variance at 200 GeV AA central coll. at RHIC

Variance at 200 GeV AA central coll. at RHIC

STAR Collaboration data in central coll. 200 GeV K. Morita, B. Friman and K.R. Phys.Lett. B741 (2015) 178 **Consistent with Skellam distribution** 1.04 FRG, V=50fm³ + $\frac{\chi_1}{2} = 1.076 \pm 0.035$ 1.03 $=1.022\pm0.016$ μ=50 MeV χ_3 1.02 $P^{FRG}(N)/P^{S}(N)$ ALICE data consistent with Skellam $\Delta \eta < 1$.01 (Skellam) к₂(р - <u>р</u>) ALICE Preliminary, Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ T/T_{pc}=0.61 0.99 1.1 0.6 , centrality 0-5%0.98 ratio, stat. uncert. 1.05 paryon conserv. arXiv:1612.00702 (b) 0.980.97 syst. uncert. HIJING, AMPT -0.6 -0.4 -0.2 0.2 0.6 0.4 δN/N₆ 0.95 Shrinking of Skellam distr. at larger N A. Rustamov, QM2018 Λn needed to capture the O(4) critical chiral properties of higher order cumulants 0.5 1.5

Constraining the upper value of the chemical freeze-out temperature at the LHC

Considering the ratio

 $\frac{\langle (\delta B)(\delta Q) \rangle}{\langle (\delta B)^2 \rangle} = \frac{\chi_{BQ}}{\chi_B}$

 From the comparison of 2nd order fluctuations and correlations in the charge baryon sector in HRG stronger then in LQCD

Implementing interactions via resonance contribution can be too crude assumption

HRG in the S-MATRIX APPROACH

Pressure of an interacting, $\pi + N \Leftrightarrow \pi + N$ hadron gas in an equilibrium

$$P(T) \approx P_{\pi}^{id} + P_{N}^{id} + \frac{P_{\pi N}^{\text{int}}}{R}$$

The leading order interactions, determined by the two-body scattering phase shift, which is equivalent to the second virial coefficient

$$P^{\text{int}} = \sum_{I,j} \int_{m_{th}}^{\infty} dM \quad \frac{B_j^I(M)}{B_j^I(M)} = \frac{1}{\pi} \frac{d}{dM} \frac{\delta_j^I(M)}{\sqrt{M}}$$

R. Dashen, S. K. Ma and H. J. Bernstein, Phys. Rev. 187, 345 (1969)
R.Venugopalan, and M. Prakash, Nucl. Phys. A 546 (1992) 718.
W. Weinhold,, and B. Friman, Phys. Lett. B 433, 236 (1998).
Pok Man Lo, Eur. Phys.J. C77 (2017) no.8, 533

Effective weight function

Scattering phase shift

• Interactions driven by narrow resonance of mass M_R

$$\underline{B}(\underline{M}) = \delta (\underline{M}^2 - \underline{M}_R^2) \implies P^{\text{int}} = P^{id}(T, \underline{M}_R) \implies HRG$$

For non-resonance interactions or for broad resonances the HRG is too crude approximation and $P^{int}(T)$ should be linked to the phase shifts

Probing non-strange baryon sector in πN - system

Phenomenological consequences: proton production yields

Net-baryon fluctuations as a probe of chiral criticality

G. Almasi, B. Friman & K.R, Phys. Rev. D96 (2017) 014027

of the CEP?

relation to STAR data

Self - consistent freeze-out and STAR data

- Freeze-out line in (T, μ) plain is fixed by χ_B^3 / χ_B^1 to data
- Ratio $\chi_B^1 / \chi_B^2 \approx \tanh(\mu/T) =>$ further evidence of equilibrium and thermalisation at 7 GeV $\leq \sqrt{s} < 5$ TeV
- Ratio $\chi_B^1 / \chi_B^2 \neq \chi_B^3 / \chi_B^2$ expected due to critical chiral dynamics

• Enhancement of χ_B^4 / χ_B^2 at $\sqrt{s} < 20 \text{ GeV}$ not reproduced

Similar conclusions as in the previous comparison of LQCD results with STAR data: Frithjof Karsch J. Phys. Conf. Ser. 779, 012015 (2017)

Higher order cumulants - energy dependence

Fourier coefficients of $\chi^1_B(T,\mu)$ and chiral criticality

G. Almasi, B. Friman, P.M. Lo, K. Morita & K.R. arXiv: 1805.04441

Considering the Fourier series expansion^{*} of baryon density

$$\chi_B^1(T,\mu) = \sum_{k=1}^{\infty} b_k(T) \sinh(k\mu)$$
 with

and $\mu = (\mu / T)$, $\theta = \operatorname{Im} \mu$

- **h** $b_k(T) = \frac{2}{\pi} \int_0^{\pi} d\theta [\operatorname{Im} \chi_B^1(T, i\theta)] \sin(k\theta)$
- At $\mu = 0$, the susceptibility $\chi_B^n(T)$ expressed by Fourier coefficients

$$\chi_B^n(T,\mu) = \sum_{k=1}^{\infty} \frac{b_k(T)}{\partial \mu} \frac{\partial^{n-1}}{\partial \mu} \sinh(k\mu), \quad \text{thus}$$

$$\chi_B^n(T, \mu = 0) = \sum_{k=1}^{\infty} k^{2n-1} b_k(T)$$

- Since $b_k(T)$ are carrying information on chiral criticality, thus their T and k dependence must inform about phase transition
- * The first four b_k(T) obtained recently in LQCD: V. Vovchenko, A. Pasztor, Z. Fodor, S. D. Katz, and H. Stoecker, Phys. Lett. B 775, 71 (2017).
 * see also K. Kashiwa and A. Ohnishi (2017) hep-1712.06220, for b_k(T) properties related with deconfinement transition

Scaling of Fourier coefficients: PNJL MF-results

In the chiral limit, i.e. $m_{\pi} = 0$, the phase transition is signaled by oscillations of $b_k(T)$ just above T_c

 $b_k(T > T_c) = A(T) \ k^{\alpha - 2} \sin(k\theta_c - \alpha \pi / 2)$

Fourier coefficient at finite pion mass

For $h \neq 0$ the singularity moves to the complex chemical potential plain resulting in an additional dumping of oscillations

Scaling of Fourier coefficients: PNJL MF-results K. Morita et al.

Scaling at the Roberge-Weiss transition Beyond the Roberge-Weiss transition 0.4 10⁰ Physical m_{π} Physical m_{π} , T=T_{RW}=311.3MeV .35 $T/T_{c} = 1.5$ Heavy m_{π} -CEM, Physical m_{π} - - -T=310MeV 10-1 0.3 CEM, Heavy m_{π} - - -T=313MeV $(2/\pi) \text{Im}\chi_1^B(\theta_B = \pi) - \cdots$.25 0.238k^{-4/3} ⁴¹⁰⁻² ¹⁰⁻³ ²⁰⁻³ $(2/\pi) Im \chi_1^{\mathsf{B}}(\theta_{\mathsf{B}} = \pi) - \cdots$ 0.2 0.3 (-1)^{k-1}k^{4/3}b_k .15 0.25 0.1 10^{-4} .05 0.2 10 100 0 10⁻⁵ 10 100 1 10 100 1 k $T = T^{RW}$ $T > T^{RW}$ $b_k \approx \frac{2}{\pi} \operatorname{Im} \chi_B^1(\theta = \pi) \times \frac{(-1)^{k+1}}{1}$

hallo

Conclusions:

- The S-matrix approach to hadron gas thermodynamics with empirical scattering phase shifts provides consistent description of LQCD results on (electric charge)-baryon correlations in the chiral crossover, and the proton production yields in AA and pp collisions at the LHC and LHC data
- Systematics of net-proton number fluctuations at $\sqrt{s} > 20 \text{ GeV}$ measured by STAR in HIC at RHIC is consistent with the expectation, that they are influenced by the critical chiral dynamics and deconfinement,

however, possible contributions to fluctuation observables from effects not related to critical phenomena have to be understood

• The Fourier expansion coefficients of baryon density exhibit rich structure to probe the QCD phase diagram and chiral criticality in the complex chemical potential