Chiral criticality from fluctuations of baryon density *and its Fourier expansion coefficient*

Krzysztof Redlich (Uni Wroclaw)

 Modelling regular part of pressure in hadronic phase: S-matrix approach: charge-baryon correlations in LQCD

- Fluctuations of net-baryon charge:
- Chining Primari Sasaki: Anton Contract Chining Sasaki: Anton Andronic, Peter Braun-Munzinger, Johanna Stachel Chining Sasaki: Anton Andronic, Peter Braun-Munzinger, Johanna Stachel probing chiral criticality systematics: FRG-PNJL model versus STAR data decoding phase structure of QCD with a Fourier expansion coefficients of net baryon density

in collaboration with: Gabor Almasi, Bengt Friman, Pok Man Lo, Kenji Morita,

Statistical operator of HRG provides good approximation of QCD thermodynamics in hadronic phase
 adron Resonace Gas (HRG): $P^{regular}(T, \vec{\mu}) = \sum_{H} P_{H}^{id} + \sum_{R} P_{R}^{id}$

Hadron Resonace Gas (HRG):

A. Andronic, P. Braun-Munzinger, J. Stachel & K.R.

$$
P^{regular}(T, \overrightarrow{\mu}) = \sum_{H} P_H^{id} + \sum_{R} P_R^{id}
$$

Good description of particle yields data and EqS from LQCD

HRG provides 1st approximation of QCD free energy in hadronic phase,

A. Bazavov et al. HotQCD Coll. Phys.Rev. D90 (2014) 094503

Consider fluctuations and correlations of conserved charges to be compared with LQCD

Excellent probe of:

- QCD criticality
- A. Asakawa at. al.
- S. Ejiri et al.,…
- M. Stephanov et al.,
- K. Rajagopal,
	- E. Schuryak
- B. Frimann et al.
- **F** freezeout conditions in HIC
- F. Karsch &
- S. Mukherjee et al.,
- C. Ratti et al.
- P. Braun-Munzinger et al.

They are quantified by susceptibilities: If $P(T, \mu_B, \mu_Q, \mu_S)$ denotes pressure, then

$$
\frac{\chi_N}{T^2} = \frac{\partial^2 (P)}{\partial (\mu_N)^2} \qquad \frac{\chi_{NM}}{T^2} = \frac{\partial^2 (P)}{\partial \mu_N \partial \mu_M}
$$

Susceptibility is connected with variance $N = N_q - N_{-q}$, $N, M = (B, S, Q)$, $\mu = \mu / T$, $P = P / T^4$
Susceptibility is connected with variance
 $\frac{\chi_N}{T^2} = \frac{1}{NT^3} (- ^2$)

$$
\frac{\chi_N}{T^2} = \frac{1}{VT^3} (- ^2)
$$

If $P(N)$ probability distribution of N then $P(N)$ probability distribution of N

$$
\langle N^n \rangle = \sum_N N^n P(N)
$$

Consider special case:

 Charge and anti-charge uncorrelated and Poisson distributed, then

\n- $$
P(N)
$$
 the Skellam distribution\n $P(N) = \left(\frac{N_q}{N_{-q}}\right)^{N/2} I_N(2\sqrt{N_q N_{-q}}) \exp[-(N_q + N_{-q})]$ \n
\n- Then, the susceptibility\n $\frac{\chi_N}{T^2} = \frac{1}{VT^3} \left(\langle N_q \rangle + \langle N_{-q} \rangle \right)$ \n expressed by yields of particles and antiparticle carrying the conserved charge $|q|$.\n
\n

Then, the susceptibility

$$
\frac{\chi_N}{T^2} = \frac{1}{VT^3} \left(\langle N_q \rangle + \langle N_{-q} \rangle \right)
$$

expressed by yields of particles and antiparticles

 $\langle N_q \rangle \equiv N_q$ => particles $q = \pm 1$ Charge carrying by

Consider special case: particles carrying

The probability distribution

 $\overline{}$ P. Braun-Munzinger, B. Friman, F. Karsch, V Skokov &K.R. Phys .Rev. C84 (2011) 064911 $\lt S_{-q} \gt \equiv S_{-q}$ Nucl. Phys. A880 (2012) 48) **case: particles carrying** $q = \pm 1, \pm 2, \pm 3$
 The probability distribution
 $P(S) = \left(\frac{S_1}{S_1}\right)^{\frac{s}{2}} \exp\left[\sum_{n=1}^{3} (S_n + S_n)\right]$
 $q = \pm 1, \pm 2, \pm 3$
 $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (S_n)^{\frac{k}{2}}$, $\left(\sum_{n=1}^{\infty} (S_n)^{\frac{k}{2}}\right)$, Fluctuations Correlations $\frac{1}{|q|}$ $\frac{S}{2} = \frac{1}{VT^3} \sum n^2$ 1 $\frac{1}{T^3}\sum_{n=1}^{|q|} n^2(\langle S_n \rangle + \langle S_{-n} \rangle)$ $\frac{S}{2} = \frac{1}{\sqrt{T^3}} \sum_{n=1}^{|q|} n^2 \left(\left\langle S_n \right\rangle + \left\langle S_{-n} \right\rangle \right)$ *n* $\frac{\chi_{S}}{T^2} = \frac{1}{VT}$ - $=$ $\frac{1}{\sqrt{T^3}}\sum_{n=1}^{|q|}n^2(\langle S_n\rangle + \langle S_{-n}\rangle) \Bigg\vert \qquad \qquad \frac{\mathcal{X}_{NM}}{T^2} = \frac{1}{\sqrt{T^3}}\sum_{n=1}^{|q_N|} \sum_{n=1}^{|q_N|}nm\Big\langle S_{n,m} \Big\rangle.$ $\overline{n}=-q_N$ q_M *q* $\frac{NM}{r^2} = \frac{1}{VT^3} \sum \sum \frac{nm}{s \sum m}$ $\sum_{m=-q_M}^{\prime} \sum_{n=-q}^{\prime}$ *nm S* $\frac{\mathcal{X}_{NM}}{T^2} = \frac{1}{VT}$ $\sum_{n=-q_M} \sum_{n=-q_N}$ $\frac{Cotletations}{\sqrt{T^3}}$ = $\frac{1}{\sqrt{T^3}} \sum_{m=-a}^{q_M} \sum_{n=-a}^{q_N} nm \langle$ $S_{n,m}$ is the mean number of particles carrying charge $N = n$ and $M = m$ $\left(S_n + S_n\right)$ $(2\sqrt{S_3S_3})\frac{2}{\sigma}$ $I_i(2\sqrt{S_2S_2})$ $(2\sqrt{S_1S_1})$ 2 3 1 $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ 2 \sqrt{S} 2 $\frac{3}{2}$ $\left| \int_{-L}^{L} I_{k} \left(2 \sqrt{S_{3} S_{\frac{1}{3}}} \right) \right| \frac{S_{2}}{S_{-\frac{1}{2}}} \right|^{2} I_{i} \left(2 \sqrt{S_{2} S_{\frac{1}{2}}} \right)$ $\frac{1}{3}\int I_k\left\{\omega_1S_3S_3\right\}\left(\overline{S_2}\right)$ 3 2 $\left[\frac{1}{2} \right]$ $I_{2i+3k-5} \left(2\sqrt{S_1S_1} \right)$ 1 $(S) = \frac{S_1}{S}$ exp 2 $\sum_{i=1}^{k} I_{k} \left(2 \sqrt{S_{3} S_{\overline{3}}} \right) \left(\frac{S_{2}}{S_{-}} \right)^{\frac{i}{2}} I_{i} \left(2 \right)$ *S* $n \begin{bmatrix} 1 & D-n \\ n & n \end{bmatrix}$ *n* $\left| \int_k \left(2 \sqrt{S_3 S_3} \right) \right| \frac{S_2}{S_1} \bigg|^2 I_i$ $\sum_{i=-\infty}$ k $i - \frac{3k}{2}$ $\left[\frac{S_1}{S}\right]$ ² $I_{2i+3k-S}$ *S* $\left(\frac{S_1}{S_1}\right)^{\frac{S}{2}}$ exp $\left(\sum_{n=1}^{3} (S_n + S)\right)$ S_3 ², $\left(\frac{1}{2} \right)$ S_3 $I_{k} \left(2 \sqrt{S_{3} S_{\frac{1}{3}}} \right) \left(\frac{S_{2}}{S_{-}} \right)^{\frac{1}{2}} I_{i} \left(2 \sqrt{S_{2} S_{-}} \right)$ $\left(\frac{S_3}{S_{\bar{3}}}\right)^{\overline{2}} I_k \left(2\sqrt{S_3S_{\bar{3}}}\right) \left(\frac{S_3}{S_3}\right)$ $I_{2i+3k-5}$ $\left(2\sqrt{S_1}S\right)$ *P S S* $=$ $\frac{\infty}{\infty}$ $\frac{\infty}{\infty}$ $\sum_{n=-\infty}^{\infty}\sum_{k=-\infty}^{\infty}$ $-i-\frac{3k}{2}$ $_{+3k-S}(2)$ $\left(\frac{S_1}{\frac{S_1}{\frac{S_2}{\frac{S_2}{\frac{S_1}{\frac{S_2}{\frac{S_2}{\frac{S_1}{\frac{S_2}{\$ = $\left(\frac{S_1}{S_{\bar{1}}}\right)^{\frac{S}{2}}$ exp $\left[\sum_{n=1}^{3} (S_n + S_{\bar{n}})\right]$ $(S_{\overline{1}})$ $\lfloor \frac{1}{n-1} \rfloor$ \rfloor
 $\sum_{k=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \left(\frac{S_3}{S_{\overline{3}}} \right)^{\frac{k}{2}} I_k \left(2\sqrt{S_3 S_{\overline{3}}} \right) \left(\frac{S_2}{S_{\overline{2}}} \right)^{\frac{i}{2}} I_i \left(2\sqrt{S_3 S_{\overline{3}}} \right)$ $\left(\frac{S_1}{S_1}\right)^{-i-\frac{3k}{2}} I_{2i}$ \sum

Variance at 200 GeV AA central coll. at RHIC

Variance at 200 GeV AA central coll. at RHIC

Variance at 200 GeV AA central coll. at RHIC

STAR Collaboration data in central coll. 200 GeV K. Morita, B. Friman and K.R. Phys.Lett. B741 (2015) 178 Consistent with Skellam distribution 1.04 $\frac{p>+\langle \overline{p} \rangle}{2}$ = 1.022 ± 0.016 $\frac{\chi_1}{\chi_2}$ FRG, $V=50$ fm³ $\frac{\chi_1}{\chi_1}$ = 1.076 ± 0.035 $p>+\leq p>$ 1.03 $\mu = 50$ MeV 2 $\chi_{_3}$ σ 1.02 $P^{FRG}(N)/P^S(N)$ ALICE data consistent with Skellam $\Delta \eta$ < 1 I $.01$ (Skellam) $K_2(p - \overline{p})$ ALICE Preliminary, Pb-Pb $\sqrt{s_{min}}$ = 2.76 TeV $T/T_{\rm pc}$ =0.61 0.99 1 . \cdot $0.6 < p < 1.5$ GeV/c, centrality 0-5% 0.98 ratio, stat. uncert. 0.89 1.05 (b) 0.98 baryon conserv. arXiv:1612.00702 0.97 svst. uncert. HIJING, AMPT -0.4 -0.6 -0.2 0.2 0.6 0.4 $δ$ N/N_ε 0.95 **Shrinking of Skellam distr. at larger N** A. Rustamov, QM2018 Δn needed to capture the O(4) critical chiral _{0.9} 0.5 1.5 properties of higher order cumulants

 \overline{a}

Constraining the upper value of the chemical freeze-out temperature at the LHC

Considering the ratio

$$
\frac{\langle (\delta B)(\delta Q) \rangle}{\langle (\delta B)^2 \rangle} = \frac{\chi_{BQ}}{\chi_B}
$$

From the comparison of 2nd order fluctuations and correlations in the charge baryon sector in HRG stronger then in LQCD

Implementing interactions via resonance contribution can be too crude assumption

HRG in the S-MATRIX APPROACH

Pressure of an interacting, $\pi + N \Leftrightarrow \pi + N$ hadron gas in an equilibrium

$$
P(T) \approx P_{\pi}^{id} + P_N^{id} + P_{\pi N}^{\text{int}}
$$

The leading order interactions, determined by the two-body scattering phase shift, which is equivalent to the second virial coefficient **ne S-MATRIX APPROACH**
 $\pi + N \Leftrightarrow \pi + N$ hadron gas in an equilibrium
 $\frac{\partial^2 P_{\pi}^{id} + P_{N}^{id} + P_{\pi N}^{int}}{\partial \mathbf{B}}$
 N ns, determined by the two-body
 N is equivalent to the second virial coefficient
 R. Dashen, S. K.

HRG in the S-MATRIX APP	
ssure of an interacting, $\pi + N \Leftrightarrow \pi + N$ hadron g	
$P(T) \approx P_{\pi}^{id} + P_{N}^{id} + P_{\pi N}^{int}$	
leading order interactions, determined by the t	
tering phase shift, which is equivalent to the se	
$P^{int} = \sum_{I, j} \int_{m_{th}}^{\infty} dM B_{j}^{I}(M) P^{id}(T, M)$	Ph
$B_{j}^{I}(M) = \frac{1}{\pi} \frac{d}{dM} \delta_{j}^{I}(M)$	W. Wh
\downarrow	Pok N

n the S-MATRIX APPROACH

1g, $\pi + N \Leftrightarrow \pi + N$ hadron gas in an equilibrium
 $P(T) \approx P_{\pi}^{id} + P_{N}^{id} + P_{\pi N}^{int}$

ctions, determined by the two-body

thich is equivalent to the second virial coefficient
 π . Dashen, S. K. R. Dashen, S. K. Ma and H. J. Bernstein, Phys. Rev. 187, 345 (1969) W. Weinhold,, and B. Friman, Phys. Lett. B 433, 236 (1998). Pok Man Lo, Eur. Phys.J. C77 (2017) no.8, 533 R.Venugopalan, and M. Prakash, Nucl. Phys. A 546 (1992) 718.

Effective weight function Scattering phase shift

Interactions driven by narrow resonance of mass M_R

$$
B(M) = \delta (M^2 - M_R^2) \implies P^{\text{int}} = P^{id}(T, M_R) \implies HRG
$$

 For non-resonance interactions or for broad resonances the HRG is too crude approximation and $P^{\text{int}}(T)$ should be linked to the phase shifts

Probing non-strange baryon sector in πN **- system**

Phenomenological consequences: proton production yields

Net-baryon fluctuations as a probe of chiral criticality

G. Almasi, B. Friman & K.R, Phys. Rev. $D96 (2017) 014027$

of the CEP?

Self - consistent freeze-out and STAR data

- Freeze-out line in (T, μ) -plain is fixed by χ^3_B / χ^1_B to data
- Ratio $\chi^1_B / \chi^2_B \approx \tanh(\mu/T)$ => further evidence of equilibrium and thermalisation at $7 \text{ GeV} \leq \sqrt{s} < 5 \text{ TeV}$
- Ratio $\chi^1_B / \chi^2_B \neq \chi^3_B / \chi^2_B$ expected due to critical chiral dynamics

Enhancement of χ^4_B / χ^2_B **at** \sqrt{s} **< 20 GeV not reproduced**

Similar conclusions as in the previous comparison of LQCD results with STAR data: Frithjof Karsch J. Phys. Conf. Ser. 779, 012015 (2017)

Higher order cumulants - energy dependence

Fourier coefficients of $\chi^1_B(T,\mu)$ and chiral criticality

G. Almasi, B. Friman, P.M. Lo, K. Morita & K.R. arXiv: **1805.04441**

Example 2 Considering the Fourier series expansion ** of baryon density

$$
\chi_B^1(T,\mu) = \sum_{k=1}^{\infty} b_k(T) \sinh(k\,\mu) \qquad \text{with} \qquad \boxed{b_k(T) = \frac{2}{\pi} \int_0^{\pi} d\,\theta \text{Im}\,\chi_B^1}
$$

and $\mu = (\mu/T)$, $\theta = \text{Im }\mu$

$$
b_k(T) = \frac{2}{\pi} \int_0^{\pi} d\theta [\text{Im } \chi_B^1(T, i\theta)] \sin(k\theta)
$$

 $\chi_B^n(T)$ At μ = 0, the susceptibility $\chi_B^n(T)$ expressed by Fourier coefficients

$$
\chi_B^1(T, \mu) = \sum_{k=1} b_k(T) \sinh(k\mu)
$$
 with
and $\mu = (\mu/T)$, $\theta = \text{Im }\mu$
At $\mu = 0$, the susceptibility $\chi_B^n(T)$ expr

$$
\chi_B^n(T, \mu) = \sum_{k=1}^{\infty} b_k(T) \frac{\partial^{n-1}}{\partial \mu} \sinh(k\mu)
$$
, thus
Since $b_k(T)$ are carrying information of

$$
\chi_B^n(T,\mu=0) = \sum_{k=1}^{\infty} k^{2n-1} b_k(T)
$$

- Since $b_k(T)$ are carrying information on chiral criticality, thus their $T-$ and $k-$ dependence must inform about phase transition
- * The first four $b_k(T)$ obtained recently in LQCD: V. Vovchenko, A. Pasztor,
 Z. Fodor, S. D. Katz, and H. Stoecker, Phys. Lett. B 775, 71 (2017).

* see also K. Kashiwa and A. Ohnishi (2017) hep-1712.06220, for $b_k(T)$ p Z. Fodor, S. D. Katz, and H. Stoecker, Phys. Lett. B **775**, 71 (2017). * see also K. Kashiwa and A. Ohnishi (2017) hep-1712.06220, for $b_k(T)$ properties

Scaling of Fourier coefficients: PNJL MF-results

In the chiral limit, i.e. $m_\pi = 0$, the phase transition is signaled by oscillations of $b_k(T)$ just above T_c

Fourier coefficient at finite pion mass

For $h \neq 0$ the singularity moves to the complex chemical potential plain resulting in an additional dumping of oscillations

Scaling of Fourier coefficients: PNJL MF-results

K. Morita et al.

hallo

Conclusions:

- The S-matrix approach to hadron gas thermodynamics with empirical scattering phase shifts provides consistent description of LQCD results on (electric charge)-baryon correlations in the chiral crossover, and the proton production yields in AA and pp collisions at the LHC and LHC data
- Systematics of net-proton number fluctuations at $\sqrt{s} > 20$ GeV measured by STAR in HIC at RHIC is consistent with the expectation, that they are influenced by the critical chiral dynamics and deconfinement, Systematics of net-proton number fluctuations at $\sqrt{s} > 20 \text{ GeV}$ measured by STAR in HIC at RHIC is consistent with the expectation, that they are influenced by the critical chiral dynamics and deconfinement, however, po

 however, possible contributions to fluctuation observables from effects not related to critical phenomena have to be understood

The Fourier expansion coefficients of baryon density exhibit rich structure to probe the QCD phase diagram and chiral criticality in