
https://root.cern

https://root.cern

About myself

▶ Yuka Takahashi
▶ Affiliated with University of Cincinnati, funded by SFT

until August
▶ Started in March and staying for a year
▶ Working on C++ interpreter in ROOT

2

Overview

▶ Our goal
● Performance improvement in memory

▶ Today we will briefly talk about
● Recent performance improvement in ROOT

◼ Demonstrate the improvement and give a tip
● Status of C++ modules

3

Recent performance
improvement

Recent performance improvement

▶ Hsimple benchmark
● 9.2% of cpu time and 8.8% of

memory improvement
▶ TFormula hist benchmark

● 14% of memory improvement

▶ It is also visible in
experiments
● In CMS, they reported that

memory dropped by 20MB on
average

5

This graph is generated by rootbench

https://rootbnch-grafana-test.cern.ch/

Technical details

▶ Who was causing overhead in startup?
● Global variables

Functions, variables, STL classes and all the functions derives from
them. Some were changed to constexpr, so that it's processed at
compile time

● Eagerly Deserialized decls
These are decls which have to be deserialized from external AST source.
Which cost a lot

6

#include "cling/Interpreter/RuntimeUniverse.h"
#include "cling/Interpreter/DynamicLookupRuntimeUniverse.h"
namespace cling { class Interpreter; namespace runtime { Interpreter* gCling }}}

▶ Some code/headers needs to be interpreted at startup time

These headers include meta information of interpreter such as builtins, must be run before users’
code

Interesting example
▶ Moving the first virtual function definition to cpp file

improved performance significantly

7

// Foo.h

class foo {
 public:

 foo() { }

 virtual ~foo() { }

 virtual char* bar () { return “bar”; }

.... }

// Foo.cpp

#include “Foo.h”

// using class foo below

// Foo.h

class foo {
 public:

 foo() { }

 virtual ~foo();

 virtual char* bar () { return “bar”; }

.... }

// Foo.cpp

#include “Foo.h”

Foo::~foo() { }

// using class foo below

Interesting example - Why?
Vtable: A table of information used to dispatch virtual functions

Key function: The first non-pure virtual function that is not inline at the point of class definition

▶ Itanium C++ abi “ If there is no key function, it(vtable) is emitted everywhere used”
● In Clang, it was implemented as eagerly deserializing the decl and Vtable was emitted in

every object file where the class was used
▶ Don’t write a function which has only inline virtual function

● I recommend to pin the definition to cpp file

8

// Foo.h

class foo {
 public:

 foo() { }

 virtual ~foo() { }

 virtual char* bar () { return “bar”; }

.... }

// Foo.h

class foo {
 public:

 foo() { }

 virtual ~foo();

 virtual char* bar () { return “bar”; }

.... }

Status of C++
modules

C++ Modules - What is it?

▶ Generalized precompiled headers (pch)
● NO header parsing at runtime
● Header information is stored in pcm files
● C++ modules give us more flexibility, and enable us to modularize

experiments
◼ Currently experiments are still using textual headers, because pch

doesn’t work for experiments
▶ Developed by Google, Apple in Clang

● Open source
● They want to make compilation time faster

▶ C++ modules is a mechanism to boost compilation time
● In ROOT, compilation time turns into runtime as we’re using C++

interpreter behind
10

Roadmap

Roadmap
1. Compile ROOT with C++ modules
2. Compile CMSSW with C++ modules
3. Use runtime C++ modules in ROOT
4. Use runtime C++ modules in experiments

11

Roadmap

Roadmap
1. Compile ROOT with C++ modules Completed
2. Compile CMSSW with C++ modules 60%
3. Use runtime C++ modules in ROOT 95%
4. Use runtime C++ modules in experiments Not started

12

Compile CMSSW with C++ modules

▶ Working with CMSSW developers
● Their goal is to have better performance and diagnostics
● Debugging CMSSW with developers

▶ Having a meeting once in two weeks

Status: 60%

13

Runtime C++ modules in ROOT

Overview: Correctness status 95%, Performance status 60%
▶ Working, but it’s not performant yet

● We realize that it needs to be better than pch in order to get users

▶ Tests
● Fixed 20+ tests, I would say runtime modules are working but tests are

fragile to master changes and usually failing
▶ Performance

● Needs improvement

14

Runtime C++ modules in ROOT

▶ Slow!
● Recently we had severe memory & time increase due to our new

functionality

15

This graph is generated by rootbench

https://rootbnch-grafana-test.cern.ch/

Runtime C++ modules in ROOT

▶ New functionality: Preloading all modules and autoloading
libraries
● By preloading all modules, we don’t need to rely on

rootmap files
● ROOT can dynamically import declarations rather than

using rootmap files maintained manually by hand
● Which gives us more correctness and fix 20+ tests out

of 1650 tests
▶ Slow, but we already have PR which makes it 2x faster

16

Use runtime C++ modules in ROOT

▶ Summary & Future plan
● We need to focus on performance optimization
● Runtime C++ modules’ correctness is already better than pch’s.

Performance is the work left to do

17

????

