
CernVM-FS Tarball Ingestion
Simone Mosciatti

11 / 06 / 2018
EP-SFT weekly meeting

TOC

● Goals
● Preview
● Background

○ Docker images layers
○ Tarball

● General workflow
● Changes introduced in the codebase
● Status and future work

Goals

● Speed
○ Avoid materializing the tar content on the union file system followed by reading it back

● Publish files that otherwise are hard to publish
○ Magic file of the union file system
○ Files that are not owned by repository owner
○ Specials files (pipe, sockets, etc…)

● Use cases
○ Container layer tarballs
○ HEP application software as tarballs
○ (Technical basis for portals)

Background on CVMFS ingestion

● After cvmfs_server transaction we start recording and changes to
the repo

● On cvmfs_server publish we traverse the repository and we write
the changes into the backend storage & catalog

● Directories & links
○ recorded in the catalog

● Files
○ Recorded in the catalog
○ Upload on storage

Add a container layer tarball to CVMFS
$ cvms_server transaction repo.cern.ch

$ tar xf foo.tar --owner=$(id -u) --group=$(id -u) --no-xattrs
--exclude="*dev/*" #more complex than just untar

$ cvmfs_server publish repo.cern.ch

1. Write the content of the tarball to disk
a. Copy the content on /var/spool/cvmfs/...

2. Publish it on CVMFS
a. Read it back in from /var/spool/cvmfs/…
b. process it
c. Write it to /srv/cvmfs/… (or to S3)

New provided interface
1. Single command, no need of transaction + publish
2. No double write
3. Possible to read stream from STDIN

Extract foo.tar inside repo.cern.ch/foo/

cvmfs_server ingest --tar_file foo.tar --base_dir foo/ repo.cern.ch

New provided interface
1. Single command, no need of transaction + publish
2. No double write
3. Possible to read stream from STDIN

Extract foo.tar inside repo.cern.ch/foo/

cvmfs_server ingest --tar_file foo.tar --base_dir foo/ repo.cern.ch

Like above but reading from STDIN

gunzip -c foo.tar.gz | cvmfs_server ingest --tar_file - --base_dir foo/
repo.cern.ch

New provided interface
1. Single command, no need of transaction + publish
2. No double write
3. Possible to read stream from STDIN

Extract foo.tar inside repo.cern.ch/foo/

cvmfs_server ingest --tar_file foo.tar --base_dir foo/ repo.cern.ch

Like above but reading from STDIN

gunzip -c foo.tar.gz | cvmfs_server ingest --tar_file - --base_dir foo/
repo.cern.ch

Delete foo (a file or a directory) from repo.cern.ch

cvmfs_server ingest --delete foo repo.cern.ch

Under the hood

Background on Docker Images

● Docker layers are simple tarfiles
● docker “composes” the containers root filesystems from layers using an

union filesystem
● Layers are read-only, images can share layers
● How we removes files from docker images?

○ On the top layer we overwrite the file with a whiteout one.

Background on Tarball Structure

● Sequences of blocks (512 bytes)

Background on Tarball Structure

● Sequences of blocks (512 bytes)
● Each entity is 1 block of header + `n` blocks of data

Background on Tarball Structure

● Sequences of blocks (512 bytes)
● Each entity is 1 block of header + `n` blocks of data

Encoding of linux
stat structure:

● type
● name
● size
● linkcount
● etc...

Background on Tarball Structure

● Sequences of blocks (512 bytes)
● Each entity is 1 block of header + `n` blocks of data
● Folders, links, etc, are only header

○ Files contains several blocks

Encoding of linux
stat structure:

● type
● name
● size
● linkcount
● etc...

Background on Tarball Structure

● Sequences of blocks (512 bytes)
● Each entity is 1 block of header + `n` blocks of data
● Folders, links, etc, are only header

○ Files contains several blocks

● 2 empty blocks works as EOF

Encoding of linux
stat structure:

● type
● name
● size
● linkcount
● etc...

Background on Tarball Structure

● Sequences of blocks (512 bytes)
● Each entity is 1 block of header + `n` blocks of data
● Folders, links, etc, are only header

○ Files contains several blocks

● 2 empty blocks works as EOF

Encoding of linux
stat structure:

● type
● name
● size
● linkcount
● etc...

Notable changes in CVMFS

● Abstraction for files to be published
○ Before we were just passing `std::string path`
○ Opening the path
○ Spooling the file by reading it

■ Send the file to the storage
■ Add the file to the catalog

Server Filesystem

CVMFS Catalog

CVMFS

Notable changes in CVMFS

● Abstraction for files to be published
○ Before we were just passing `std::string path`
○ Opening the path
○ Spooling the file by reading it

■ Send the file to the storage
■ Add the file to the catalog

Server Filesystem

CVMFS Catalog

CVMFS

Cut Here

Notable changes in CVMFS

● Introducing IngestionSource
○ std::string GetPath() // still needed for the catalog updates
○ bool Open()
○ ssize_t Read()
○ bool Close()
○ bool GetSize(uint64_t* size)

CVMFS Catalog

CVMFS

Put new
abstraction

IngestionSource

Notable changes in CVMFS

● Implement IngestionSource
○ Filesystem
○ Tarfiles
○ Other possibilities

■ RPMs
■ Object packs (publishing through the new gateway)
■ Add file via network (?)

CVMFS Catalog

CVMFS

IngestionSource

FS Tarfiles etc

Difficulties in managing tarfiles

● “Stream” the tarball from the beginning to the end
○ No “rewind” of the tarball

● Provide support for reading the files from STDIN
○ Can’t read it twice

● Tarball too big to fit in memory
● Out of order expansion of the filesystem tree

○ Not always from the root to the leaves
○ Possible to find first the file `/foo/bar.txt` than the directory `/foo`

● Complex to integrate into the multithreading CVMFS spooling framework

Multithreading

● CVMFS use multithreading for spooling the files
● Files to be published are pushed into a queue
● A processing pipeline: pool of threads pop the files from the queue and

processes them (chunk, compress, hash and upload)
● On the FS we can read multiple files at the same time

○ The OS will multiplex for us

● On tarballs this is impossible, we can read only one file at the time
○ Hold a lock waiting until all bytes are pushed into the pipeline
○ Release the lock and move to the next entry in the tarfile

Status and timeline

● Already merged PR for tarballs containing only
○ Regular file
○ Directory

● Completing the PR for
○ Softlinks
○ Hardlinks
○ Character devices
○ Etc…

● At the same time I am completing the work on the docker2cvmfs plugin
and conversion utility that is uncovering interesting corner cases

Results

● We are able to ingest files that otherwise are hard to ingest
● Technical center piece for several follow up developments

○ Publishing of containers images
○ Foundations of portals (S3 endpoint into a repository)
○ Speed up of the gateway publishing
○ Possible to extend with new package formats (RPM, DEB)

● We record an improvement in performance
○ ~9% on fast, SSD equipped machines

■ ~4% Total time (userspace + kernel) on slow machines
■ ~25% Wall time on slow machines

● Result skewed by CPU time allocated to untar in Openstack ~50%

A small preview of the whole workflow!

Small preview video

https://asciinema.org/a/eC2CUHbWLVoZxt41dYRwxEepL

