
### **Spallation Neutron Source RF Systems**

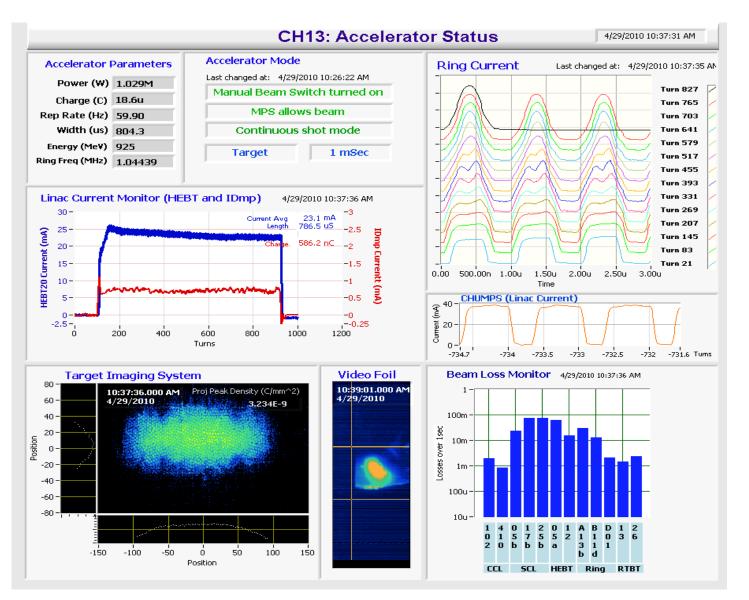
### Tom Hardek Mark Crofford Mark Middendorf Maurice Piller Yoon Kang Sung-Woo Lee Alexandre Vassioutchenko





### Outline

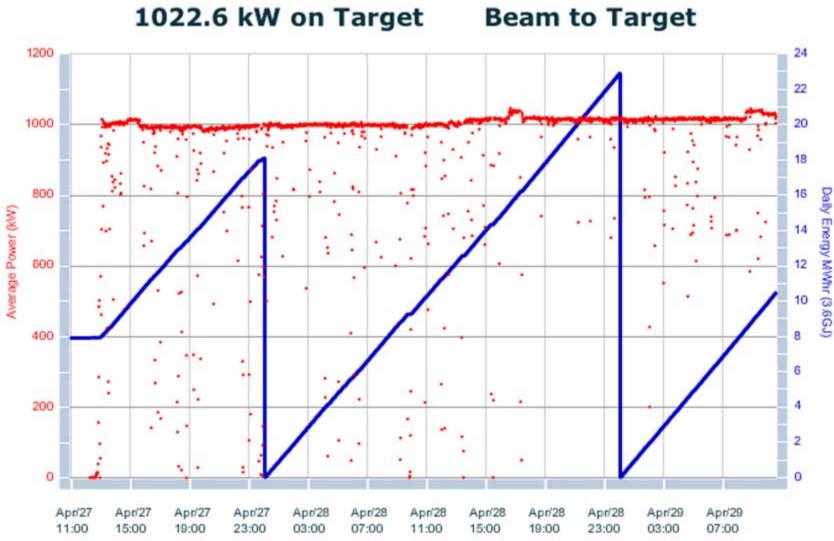
- SNS Operational Status
- Brief Accelerator Tour
- Current Performance
- Overview of RF Systems work
- A Look into the Future




### **1 Megawatt of Beam On Target**

| Beam On Targ     | Auto Save:                                            |  |  |
|------------------|-------------------------------------------------------|--|--|
| Q                | PPP Ok                                                |  |  |
| 1.853e-05 C      | 1.156e+14                                             |  |  |
| Energy Per Pulse | Power                                                 |  |  |
| 17193 J          | 1027377 1 Second Average<br>1025409 10 Second Average |  |  |
| Integrating      | 1024000 1 Minute Average                              |  |  |
| Qint             | Integrated power on target                            |  |  |
| 1.062e+04 C      | 3.10939e+06 KWH                                       |  |  |



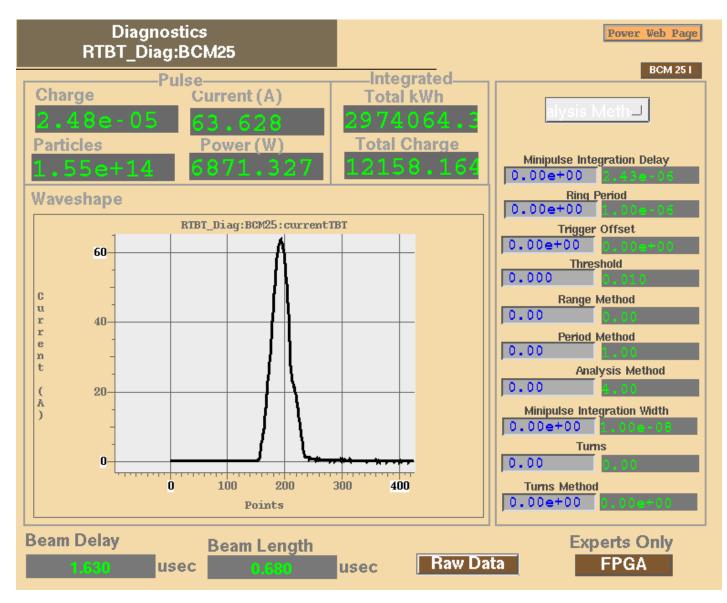

### **Overall Operating Parameters**





### **Extended Operation at 1 MW**

**Energy and Power on Target** 



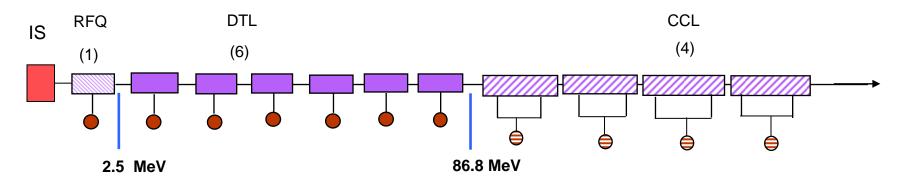


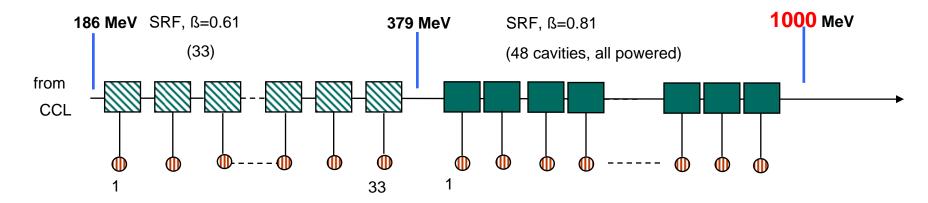

5 Managed by UT-Battelle for the U.S. Department of Energy

CWRF2010 May 4 - 7, 2010 - Tom Hardek, SNS

### Full Design Intensity Beam Pulse 1.4e14 PPP





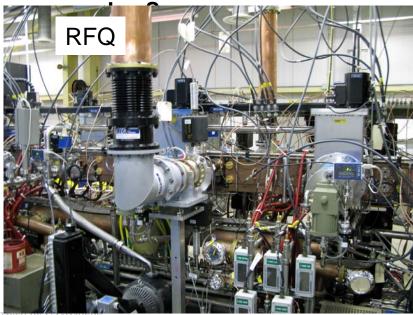


### A Brief Photo Tour of the Various RF Systems



# Layout of Linac RF Modules

| • 402.5 MHz, 2.5 MW klystron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 Transmitter  | 3 Modulators |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| <b>⊜ 805 MHz, 5 MW klystron</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 Transmitter  | 4 Modulators |
| 805 MHz, 0.55 MW klystron | 14 Transmitter | 7 Modulators |





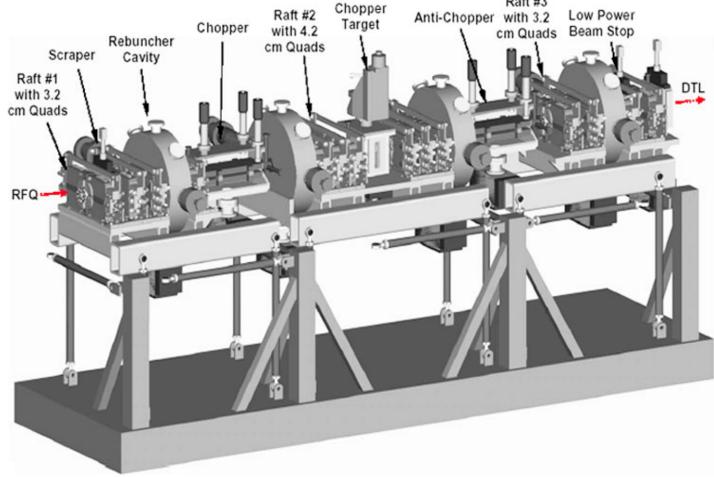



### Ion Source & RFQ

Ion Source

- Currently using an Internal Antenna for production runs
- Have used an External Antenna ion source, a new development
- Pulsed 2 MHz at 50+ kW
- 13 MHz CW applied to the same antenna to maintain a low level plasma between pulses






#### RFQ

- Recently modified to use only 2 Drive Couplers
- Accelerates H- Ions to 2.5 MeV
- Overcame difficulties in tuning at high duty cycle operations with LLRF improvement



### Medium Energy Beam Transport -MEBT



#### MEBT

- Rebuncher system between RFQ and DTL with 4 cavities and other beam components
- Four 402.5 MHz amplifiers pulsed at 5 20+ kW





### Klystron Gallery Normal Conducting RF

### • RFQ

- 1<sup>st</sup> klystron powers the RFQ structure.
- 800 kW, 402.5 MHz
- E2V klystrons
- The klystron can provide 2.5 MW so this klystron has excess power.
  - Actually installed first article klystron only producing 1.8 MW

#### • DTL

- 6 Klystrons power the DTL
- 2.5 MW, 402.5 MHz
- E2V klystrons
- Circulator Loads use a Water Glycol mix.

11 Managed by UT-Battelle for the U.S. Department of Energy







CWRF2010 May 4 - 7, 2010 - Tom Hardek, SNS

## **Klystron Gallery Normal Conducting RF**

- CCL
  - 4 Klystrons power the CCL cavities
  - 5 MW, 805 MHz Thales Klystrons
  - Output window is gas insulated with SF6.
  - Circulator is gas insulated with SF6
  - Circulator load is conventional water load
  - Power is split to provide 2 structure inputs of 2.5 MW each



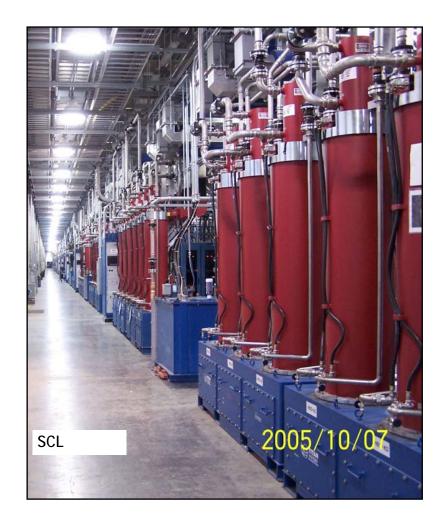


#### Drift Tube Linac and Coupled Cavity Linac Los Alamos National Lab



The 402.5 MHz DTL is composed of six sections.




The 805 MHz CCL is composed of four sections.



### **Klystron Gallery Superconducting Cavity RF**

### • SCL RF

- 81 Klystrons each powering a separate cavity
- 550 kW @ 75 kV
- 805 MHz
- CPI and Thales





#### Superconducting Linac Jefferson Lab

- First and highest energy superconducting H- linac in the world
- 23 cryomodules
  - 11 medium-beta
  - 12 high-beta
- 33 medium-beta cavities
- 48 high-beta cavities
- One klystron per cavity





# **Accumulator Ring RF**

#### Ring RF

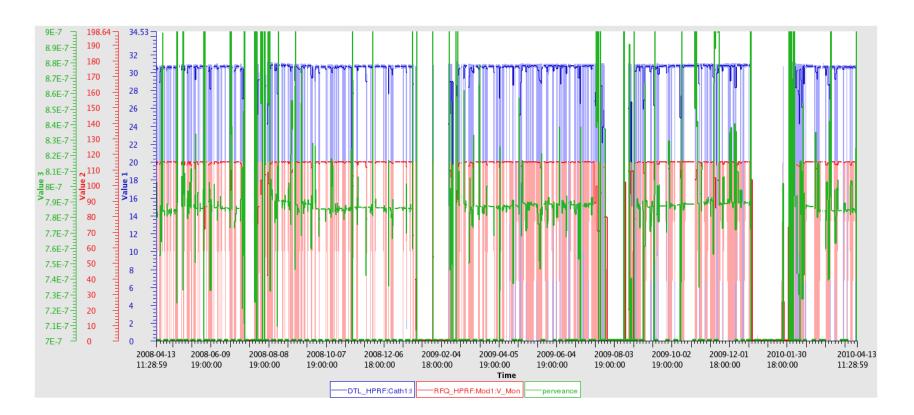
- 4 Bunching Cavity/Amplifier stations
  - Ferrite loaded (Phillips 4M2)
  - Cavity Bias provides dynamic tuning
  - Beam pipe and outer housing used for bias.
- 2 bunching gaps per cavity
- 3 Buncher Cavities operate at the revolution frequency 1.05 MHz
  - Maintain a gap to allow the extraction kickers adequate time to reach full field.
- 1 Cavity operates at the 2<sup>nd</sup> harmonic 2.1 MHz
  - Reduce the peak beam current to minimize the possibility of exciting instabilities.
- All cavities and amplifiers are the same.
  - Resonating capacity reduced for the 2<sup>nd</sup> harmonic cavity allowing use of the same structure.








### **Accelerator Performance**

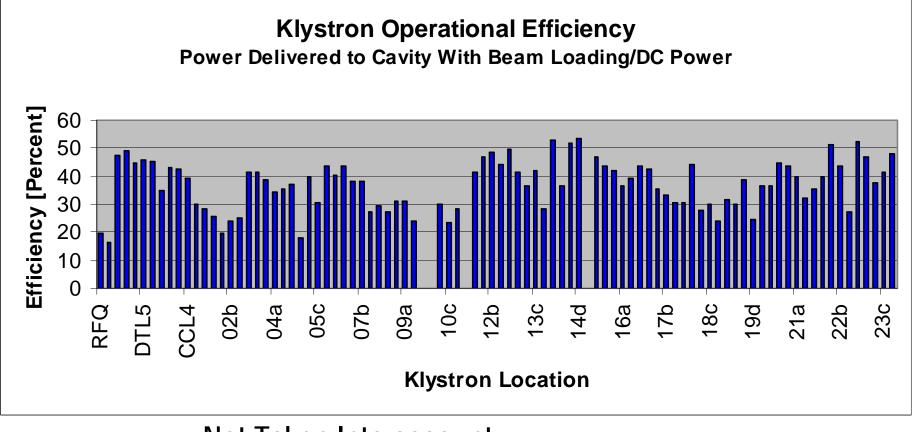



### **Klystron Operating Hours - High Voltage**





### Perveance - Last 2 years - RFQ Klystron




- Red Trace = Cathode Current [Amperes]
- Blue Trace = Modulator Voltage [kV]
- Green Trace = Perveance [µperv]

19 Managed by UT-Battelle for the U.S. Department of Energy



## **Klystron Operational Efficiency**



- Not Taken Into account
  - Modulator Droop
  - RF on longer than beam pulse



### Failed Klystrons – 4 Years of Full Operation

- DTL Klystrons (5 failures)
  - 1 klystron failed when we nearly burned through the body due to loss of focusing field
    - We were able to repair this klystron and it is fully functional
  - 1 klystron experienced magnet cooling loop piping damage due to Loss of cooling water
    - Repaired magnet
  - 3 klystrons experienced body cooling loop water leaks
    - Repaired cooling loop piping
- CCL Klystrons (2 failures)
  - 1 klystron suffered loss of emission
    - Thales is investigating
    - We may have had the cathode and filament leads reversed
  - 1 klystron lost vacuum while in storage
- SCL Klystrons (5 failures)
  - 1 klystron suffered water damage when it's magnet leaked and filled the space between the klystron and magnet with water
  - 1 klystron suffered gun damage when we miswired the gun magnet
  - 3 klystrons suffered from stability issues after we began operating them at 75 kV
    - Believe we can alter output matching to regain stable operation
  - 1 klystron replaced due to cathode arcing
    - Might be able to condition this klystron



### **Overview of RF Systems Issues**



### **Ion Source RF**

#### Tomco Solid State 2 MHz Amplifier



- Original Tetrode amplifiers have served well but replacement parts are hard to acquire
- We wanted to purchase another power amplifier for a second test stand and decided on a solid state version
- We will ultimately replace all amplifiers with the solid state units operated at ground potential
  - Original amplifiers operate at -65kV
- 120 kW in 2 racks
- Two units are in our lab
  - Setting up for Site Acceptance Test
- Each amplifier rack can operate independently
- Each rack produces 60 kW



### **RFQ Status**

- Retuned RFQ after a major shift in frequency and field flatness last year (January 2009)
  - Seems to be the result of a vane shifting due to a water pressure surge during maintenance
  - Similar to shift that occurred several years ago
  - Concerned another shift could take place
  - May have field errors we do not observe
- Working on obtaining a spare
  - Prepared specification
  - Received bids from several possible vendors
  - Working on clarifying some items with vendors
- Had issues with loss of resonance control at high duty after several hours of operation
  - Limiting Ion Source gas flow
  - Upgraded water manifold to improve cooling
  - Added feedback loops to LLRF control page to regulate pulse width and chiller temperature
  - Added pressure relief valves
  - Changed pumps in chiller



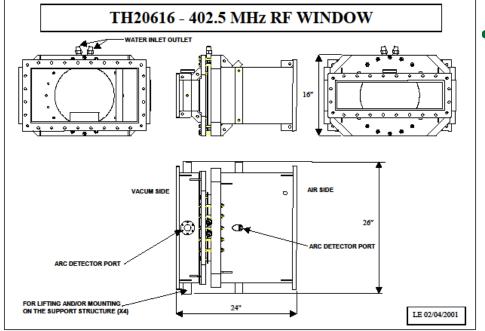
### **MEBT Rebuncher Amplifier System**

Original system utilized 3CX5000's – Had reliability issues First MEBT Solid State RF Amplifier – Now Operating Cavity 4



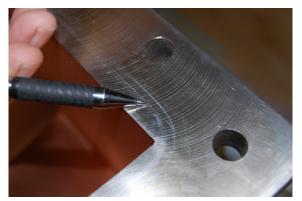
Tomco Solid State Amplifier




#### Switching Assembly, Circulators, Directional Couplers






Racks waiting for Amplifiers CWRF2010 May 4 - 7, 2010 – Tom Hardek, SNS

### Warm Linac Issues



- Vacuum Leak on DTL-6 RF window
  - Originally thought to be braze joint but may have been O-Ring seal
  - May have a similar problem on several windows
  - RF conditioned 2 spare windows
  - Replaced DTL-6 window during maintenance period
  - Have 3 spare windows on order
  - Planning to build 3 more spare windows in-house







### SCL RF

- Now operating klystrons at design cathode voltage of 75 kV
- Replaced 9 Thales klystrons
  - 3 klystrons showed instability issues
  - All Thales klystrons have high gain
- Suffered arcing condition in SCL-5A coupler
  - We were able to recover this cavity
- Beam loss injured cavities SCL-5A and SCL 6C
  - Made some progress recovering SCL-5A
  - Hope to recover both cavities by careful conditioning



### **A Look Into the Future**

- Power Upgrade (PUP)
  - Add 36 more SCL Cavities, Klystrons and LLRF Systems
- Intensity upgrade
  - Requires more RF Power
  - Will replace some klystrons and upgrade HVCMs
  - Will need to Process some of our SCL Cryo-modules for higher accelerating field in cavities
- Second Target Station (Currently on-hold)
- Existing LLRF modules have obsolete components
  - Need to be working on next generation system
- Ring LLRF
  - Want to replace existing hardware and software with a version more compatible with our Linac systems



### Summary

- SNS reached 1 MW in mid September as promised to DOE
- Presently operate with 85% reliability
  - Ultimate goal is 95%
  - We have identified major sources of downtime and are addressing them
- There remains significant Ion Source RF System work
- MEBT RF Upgrade has a clear path to completion
- SCL RF Power limitation was resolved by adding an extra converter-modulator (running with 10 klystrons per modulator)
- We are beginning to acquire Klystron Perveance Data
  - Analyzing archive data

