

Solid State RF High Power Amplifier Developments at SOLEIL

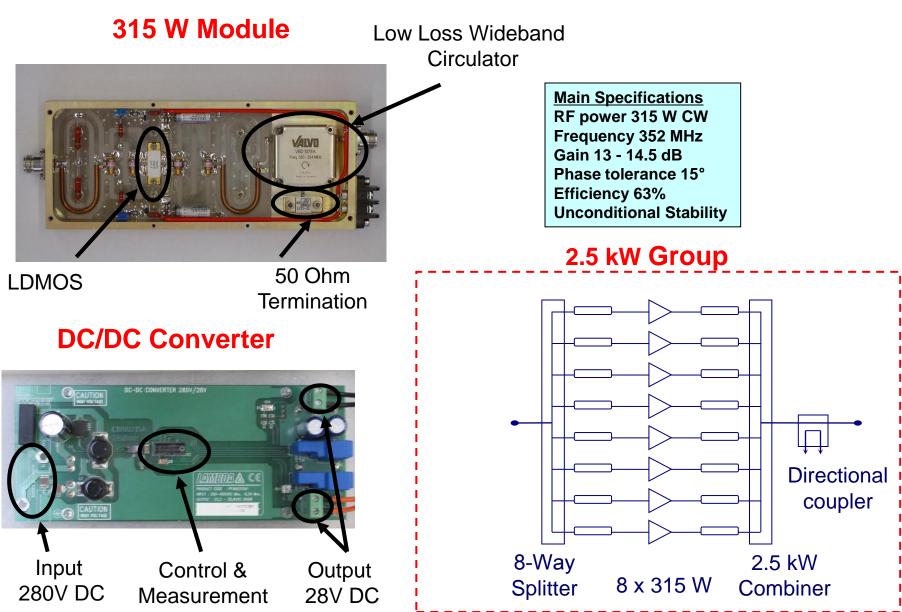
Ti RUAN, on behalf of SOLEIL RF Group

CWRF10 CELLS-ALBA Barcelona Spain May 04-07 2010

History Review

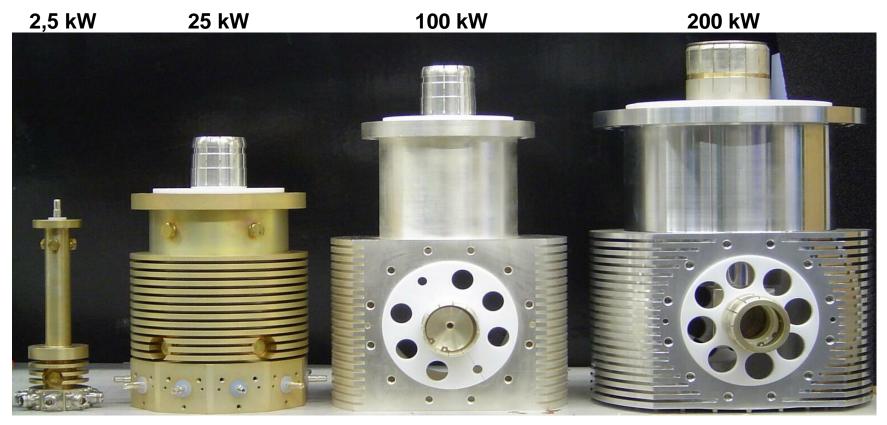
- 2004 Success of Booster 35 kW SSA (Solid State Amplifier) encouraged us to design 180 kW SSA. (Unconditional Stability, Drop-in Circulator etc.)
- SR: Four 180 kW amplifiers
- Vacuum tubes (Klystron, IOT, Diacrode) not commercially available at 352 MHz
- Selection of solid state technology
- Challenge: No Transistor available
- Collaboration with Polyfet to develop the highest power UHF LDMOS LR301

Advantages of SSA


- High Reliability
- Modularity
- No DC High Voltage \rightarrow No X Ray Radiation
- No High Power Circulator
- Easy Maintenance
- Very Simple Spare Parts
- Good Performance
- Low Phase Noise

352 MHz 2.5 kW Amplifier

CWRF


TI INH

N-Way Power Combiners

Combination Advantages :

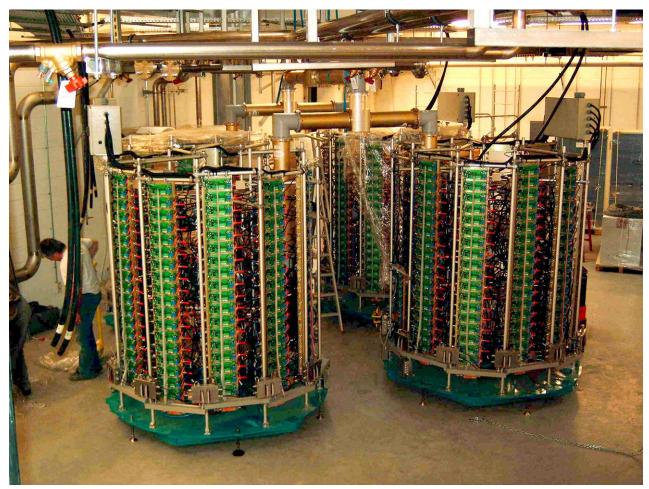
- TEM Quarter Wave-Length Mode
- Lowest Losses and Lowest Cost
- Best Balance and Minimum Dimension
- Without Rejection Power Load

N-Way Power Splitters

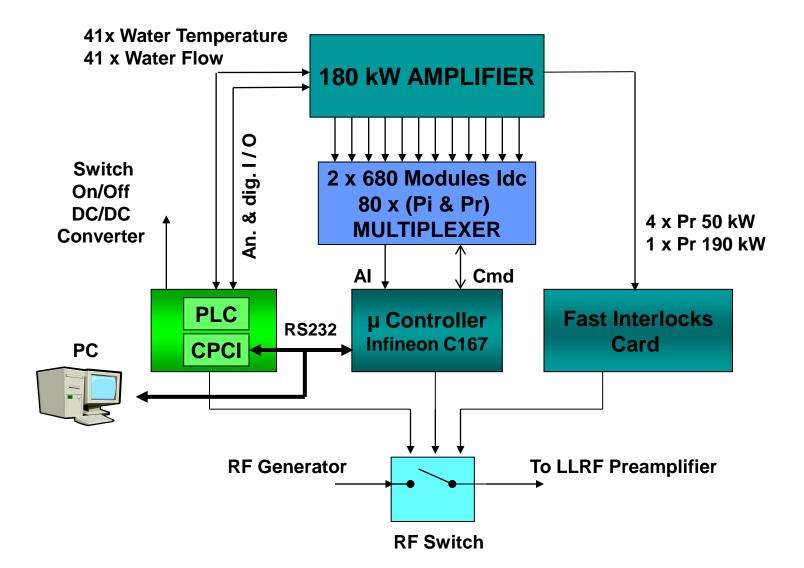
160-Way Power Combiners

10-Way and 8-Way Power Splitters

352 MHz 50 kW Amplifier



352 MHz 180 kW Amplifier under Installation



4 X 726 LDMOS modules including 43 standby modules

Supervision and Protection (5808 Idc + 320 Pi + 320 Pr)



2 Sets of 180 kW Amplifier

Power and Current of 50 kW Amplifier

AMPLIANNEAU											
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	
	I On/Off	□ On/Off	I On/Off	C On/Off	I On/Off	C On/Off	I On/Off	□ On/Off	₽ 0n/0ff	C 0n/Off	Préamplis
	6.8 6.7	0.0 0.0	6.9 6.8	0.0 0.0	7.0 6.9	0.0 0.0	7.0 6.8	0.0 0.1	6.8 6.8	0.1 0.1	0
0.0 0.0	9.2 9.2	9.2 9.3	9.0 9.2	8.9 9.0	9.0 9.3	9.3 9.3	9.2 9.3	8.9 9.0	8.9 9.2	9.2 9.1	1
0.0 0.0	9.4 9.3	9.1 9.4	8.8 9.1	8.9 9.3	9.4 9.4	9.0 9.3	9.1 9.2	9.2 9.3	9.2 9.2	8.9 9.0	² H
0.0 0.0	9.0 9.0	9.2 9.4	9.0 9.1	8.9 8.9	9.1 9.2	9.1 9.1	9.0 9.3	9.1 9.1	9.3 9.5	9.0 9.0	³ A
0.0 0.0	9.1 9.1	9.0 9.3	8.9 9.1	8.9 8.9	9.2 9.2	9.2 9.4	9.1 9.3	9.1 9.3	9.3 9.3	9.1 9.2	4 U
0.0 0.0	9.0 9.2	9.1 9.2	9.2 9.1	9.0 9.1	9.1 9.2	9.0 9.2	8.9 9.3	9.1 9.3	9.1 9.4	9.1 9.2	5 T
4.2 4.0	9.1 9.3	9.0 9.2	8.8 9.3	8.9 9.2	9.1 9.2	9.1 9.3	9.1 9.3	9.0 9.1	9.3 9.3	9.3 9.1	6
TOUR ACTIVE	8.8 9.2	9.1 9.0	9.0 9.3	9.1 9.3	8.8 9.0	9.0 9.2	9.1 9.1	9.1 9.3	9.1 9.3	9.0 9.2	7
T1 T2	9.2 9.3	9.1 9.1	9.2 9.3	8.8 8.9	8.9 9.0	9.3 9.1	9.1 9.4	9.0 9.3	9.0 9.0	8.9 9.2	8
	2.3 0.0	2.6 0.0	2.2 0.0	2.6 0.0	2.4 0.0	2.4 0.0	2.6 0.0	2.2 0.0	2.4 0.0	2.3 0.0	Pi/Pr
	2.5 0.0	2.4 0.0	2.6 0.0	2.5 0.0	2.4 0.0	2.4 0.0	2.4 0.0	2.4 0.0	2.2 0.0	2.2 0.0	Pi/Pr
	8.9 9.1	9.2 9.2	9.4 9.5	9.0 9.2	9.4 9.4	9.1 9.4	8.9 9.1	9.3 9.5	9.4 9.6	9.2 9.5	8
13 14	9.1 9.1	9.2 9.3	9.0 9.3	9.0 9.1	9.2 9.2	9.2 9.3	9.3 9.5	9.2 9.4	9.0 9.2	9.2 9.3	7
Durée de cycle (s)	8.7 9.0	9.3 9.1	8.9 9.2	9.3 9.1	9.5 9.4	9.1 9.4	9.0 9.1	9.4 9.5	9.1 9.1	9.2 9.2	6 B
	9.1 9.1	9.2 9.3	9.2 9.2	9.2 9.1	8.9 8.9	9.2 9.2	9.2 9.1	9.2 9.3	9.1 9.2	9.5 9.6	5 A
10.00	9.0 9.3	8.9 9.0	9.0 9.2	9.1 9.3	8.9 9.2	9.0 9.1	9.1 9.3	9.3 9.4	9.1 9.4	8.9 9.2	4 S
PORT RS232	8.9 8.9	9.2 9.3	9.0 9.1	9.1 9.1	9.1 9.0	9.2 9.3	8.9 9.2	9.3 9.3	9.1 9.2	9.3 9.3	13
СОМ2 СОМ1	8.9 9.1	8.8 9.3	9.2 9.1	9.2 9.2	9.2 9.3	9.1 9.2	8.9 9.2	9.6 9.5	9.0 9.3	9.0 9.0	2
ACQUISITION	9.0 9.1	9.2 9.4	9.4 9.3	9.2 9.3	9.2 9.4	9.0 9.0	9.1 9.1	9.2 9.3	9.1 9.4	9.2 9.3	1
ON	7.2 7.1	0.0 0.1	6.9 7.1	0.1 0.0	7.3 7.3	0.0 0.0	7.2 7.3	0.0 0.0	7.6 7.7	0.0 0.0	0
	₩ On/Off	□ On/Off	I On/Off	□ 0n/0ff	₽ On/Off	F 0n/0ff	₩ On/Off	C On/Off	I On/Off	□ 0n/0ff	Préamplis
SEUILS ALARME											
\$9.60 I (A)	Pi T = 48.00 kW PiMax = 2.60 kW D2 PrMax = 0.00 kW D3										
10.00 res	Pr T = 0.00 kW $PiMin = 2.20 kW D3$ $PrMin = 0.00 kW D1$										
0.30 Pr(kW)	10.20 Prava										
Pdc = 84.28 kW IMax = 9.60 A D8 IMin = 6.80 A D1											
	COPY	GR	APH	SAVE BMP	SAVE FI	E	RINT			QUIT	

Power and Current at 500 mA

	D1 Preampli	D2 Preampli	D3 IZ Preampli	D4 □ Preampli	D5 IZ Preampli	D6 Preampli	D7 I▼ Preampli □	D8 Preampli 🔽	D9 Preampli	D10 Preampli	
	5.90 5.80		5.70 5.60		6.00 6.00		5.80 5.80	5	.90 5.90		мо
🔽 Courants 1 et 2	7.30 7.50	7.60 7.70	7.50 7.40	7.30 7.40	7.40 7.50	7.40 7.40	7.60 7.70 7.4	40 7.40 7	.30 7.40	7.30 7.40	м1
🗖 Delta courants	7.60 7.70	7.70 7.60	7.70 7.30	7.30 7.20	7.50 7.30	7.60 7.30	7.50 7.60 7.3	30 7.30 7	.30 7.20	7.40 7.40	M2
Somme courants	7.50 7.60	7.60 7.70	7.60 7.50	7.20 7.30	7.50 7.50	7.40 7.40	7.50 7.40 7.3	30 7.40 7	.30 7.30	7.50 7.30	м3
	7.50 7.60	7.60 7.60	7.30 7.40	7.40 7.40	7.50 7.50	7.60 7.60	7.40 7.40 7.3		.50 7.30	7.30 7.30	м4
AMPLI 1 (T1)	6.80 7.00	7.70 7.80	7.30 7.50	7.30 7.50	7.40 7.40	7.80 7.70	7.50 7.60 7.6		.50 7.40	7.40 7.50	м5
=	7.80 8.00	7.60 7.60	7.40 7.30	7.40 7.50	7.40 7.50	7.30 7.60	7.40 7.50 7.2		.30 7.00	7.40 7.50	м6
AMPLI 2 T2	7.50 7.70	7.30 7.30	7.50 7.40	7.40 7.40	7.50 7.40	7.60 7.50	7.30 7.30 7.3		.30 7.40	7.20 7.30	м7
AMPLI 3 (T3)	7.60 7.50	7.60 7.80	7.40 7.50	7.30 7.70	7.50 7.50	7.50 7.40	7.30 7.40 7.4		.40 7.20	7.40 7.40	M8
AMPLI 4 (T4)	1.56 0.06	1.70 0.12	1.56 0.12	1.56 0.12	1.68 0.10	1.64 0.12	1.62 0.06 1.4		.44 0.06	1.48 0.10	PiPr
	1.66 0.14	1.46 0.08	1.66 0.10	1.44 0.16	1.70 0.12	1.66 0.14	1.46 0.14 1.3		.52 0.10	1.70 0.10	PiPr
	7.30 7.30	7.80 7.80	7.40 7.60	7.40 7.30	7.40 7.50	7.40 7.50	7.60 7.50 7.3		.50 7.40	7.40 7.40	M8
	7.30 7.20	7.40 7.30	7.40 7.40	7.50 7.60	7.40 7.60	7.40 7.50	7.40 7.40 7.3		.60 7.50	7.30 7.30	м7
D0 №1 1.80 1.70 🔽	7.40 7.50	7.30 7.30	7.40 7.60	7.40 7.40	7.60 7.50	7.60 7.60	7.60 7.60 7.2		40 7.50	7.50 7.40	M6
M1 1.80 1.70 ₩ M2 6.90 7.20 ₩	7.40 7.30	7.20 7.30	7.50 7.50	7.70 7.50	7.60 7.60	7.50 7.60	7.50 7.60 7.4		.50 7.50	7.60 7.50	M5
M3 7.00 7.00	7.20 7.50	7.80 7.80	7.50 7.50	7.50 7.40	7.50 7.70	7.50 7.50	7.40 7.40 7.3			8.00 8.20	M4
M4	7.50 7.60	7.40 7.30	7.40 7.40	7.50 7.40	7.50 7.50	7.30 7.30	7.40 7.40 7.5		.40 7.50 .30 7.50	7.30 7.30	M3 M2
M5	7.30 7.50	7.30 7.40	7.40 7.40	7.40 7.50	7.50 7.50	7.60 7.50	7.60 7.80 7.4		.60 7.60		M1
M6	7.30 7.30	5.90 5.80	7.40 7.00	5.90 5.90	7.00 7.00	6.20 6.20	6.1		.00 7.00	6.20 6.30	MO
140	Preampli	Preampli	Preampli	Preampli	Preampli	Preampli			Preampli	Preampli	140
AQUISITION	Pi T1	= 32.48	kW Pi	T2 = 31	L.68 kW	Рі ТЗ	= 31.64 ki	м ріт	4 = 33	3.18 kW	
OFF											
.	Pr Tl	= 2.20	kW Pr	T2 = 1.	.08 kW	Pr T3	= 2.18 kW	Pr T	4 = 1.	.62 kW	
•	Pi	Amp2 =	129.0 kW	P.	r Amp2 =	7.1 kW	Р	Alim2 =	= 286	0 kW	
							-				
C <u>o</u> nfig <u>M</u>	ESSAGES	S <u>T</u> ATS	GRAPHE		/AGE <u>C</u> O	PIER S	AUVE IMG SAI	UVE <u>D</u> ATA	IMPRIME	R QUIT	TER

- Nominal Power: 180 kW
- Efficiency: ~ 50% including losses of circulators and DC /DC converters (54% without DC/DC converters)
- Gain: 53 dB
- Linearity: $\Delta G = 2 dB$; $\Delta \Phi = 10^{\circ}$
- Phase Noise (rms) < 0.04°(< 8 kHz);

< 0.06° (< 1 GHz)

- Harmonics: 50 dBc
- Parasitic Modulation: 60 dBc (> 200 kHz random phase)

Average Failure Rate

RF Power Modules

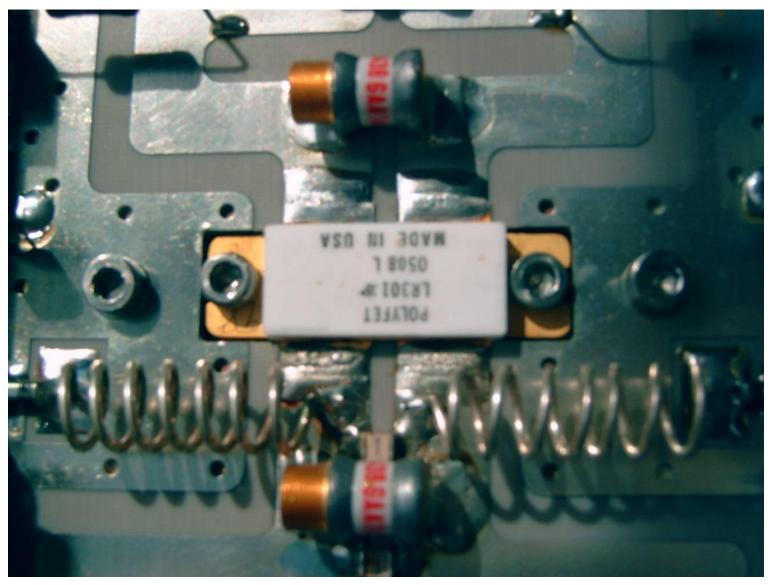
	A 3 & 4 (CM2)			
	2008 - 2009			
Operation hrs	~ 6 000	~ 6 000	~ 6 000	~ 8 000
Transistor *	4%	3%	0.9%	1.3%
Soldering *	<1%	2.2	3.5%	<1%

* A few modules failed due to filter, capacitors problem etc.

** The failure rate of Amplifier 1 is much higher than others

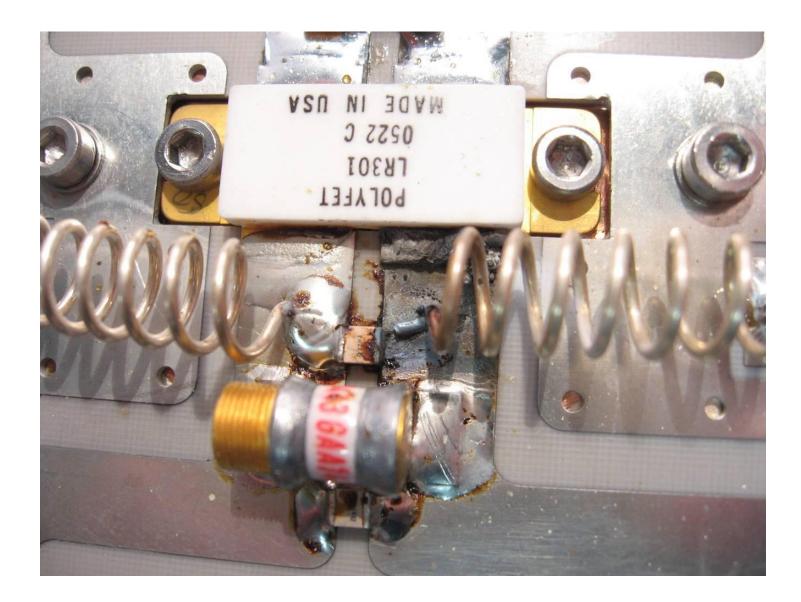
Other components

DC/DC	2 / ~ 3000
2.5 kW Power Combiner	4 / 320
Multiplexer	1 / 180


- Transistor failure rate ~ 1.5 % per year
- →Replacement of ~ 50 transistors per year (maintenance cost: ~ 5000 Euros)

- Soldering failure rate ~ 1.5 % per year due to thermal fatigue and soldering fault.
- → Re-solder and Take Super High Q Capacitors nearby Drains to repair them.

Thermal Fatigue (After working for 20000 hrs)



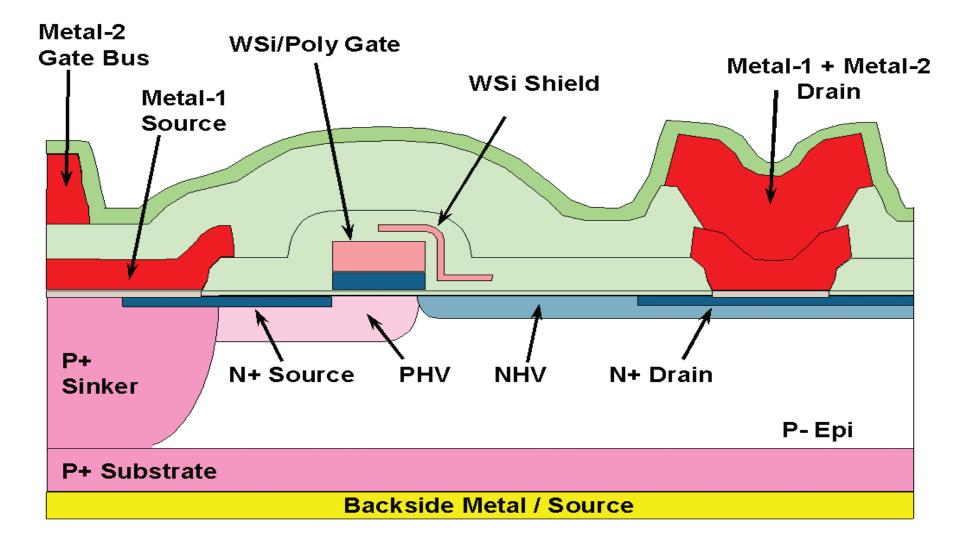
Thermal Fatigue Failure

SYNCHROTRON

After 4 years of running, the operational experience proved to be fully satisfactory. Almost no down-time during operation.

But we have continued developping a new generation solid state RF amplifier

Fortunately the 6th Generation LDMOS has come out



- High Gain with High Stability due to Shield between Gate and Drain
- 50 V DC Voltage: High Power with High Efficiency
- Excellent Linearity
- Excellent Ruggedness
- Integrated ESD Protection
- Broadband Operation up to 500 MHz

6th Generation RF LDMOS (Laterally Diffused MOS)

6th Generation RF LDMOS (Laterally Diffused MOS)

The Gain and Stability of a MOSFET depends on capacitance Crss between Gate and Drain

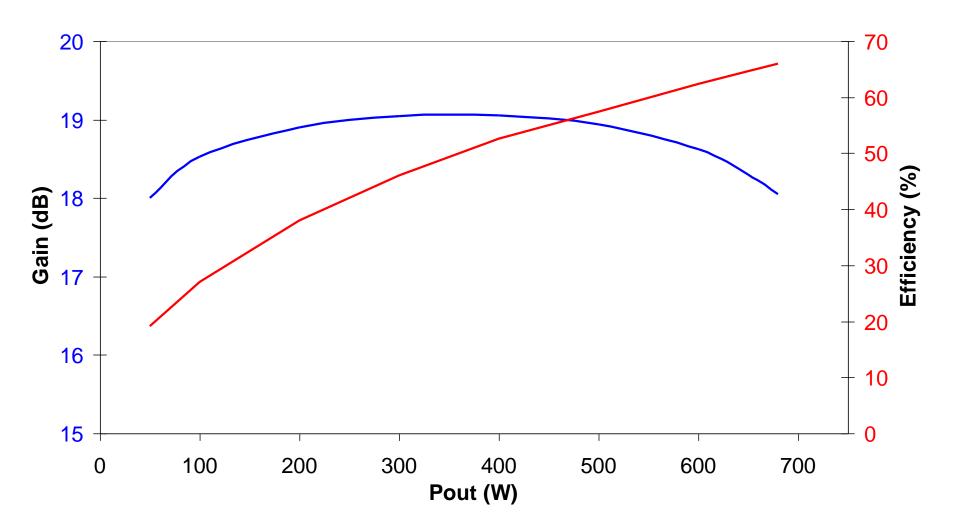
LDMOS has lower Crss than VDMOS

The 6th Generation LDMOS has only about 20 - 30% of Crss than normal LDMOS

New Generation Modules developed in SOLEIL

Frequency	Output Power	Gain (1 dB)	Efficiency	
MHz	W	dB	%	
476*	350	19.8	69	
500	700	17.9	67	
352**	700	20.5	73	
88	1000	26.1***	87***	

* For LNLS 50 kW Amplifiers


** For ESRF 150 kW Amplifiers

*** Without Circulator and at 2 dB Gain compression

- Higher frequency: Lower Power, Efficiency and Gain
- 1.3 GHz module is being developed

Gain & Efficiency vs Power for 500 MHz Module

LEIL Advantages of New Module with 6th Generation LDMOS

- Tolerance: Gain +/- 0.1 dB, Phase +/- 2°
- Anti-Thermal Fatigue (Special PCB Laminate, Super High Q Capacitors etc. Temperature ~ 80°C)
- High Reliability, LDMOS MTBF > 2000 yrs
- Excellent Ruggedness
- High Efficiency
- Good Linearity with Low Phase Noise
- Compact (Double density of RF Power)

- June 2008, collaboration agreement LNLS SOLEIL to realize two sets of SSA in replacement of the two 476 MHz - 40 kW klystron amplifiers in the SR
- Beg. 2010, 2 sets of SSA fully assembled
- April 2010, successful tests of the first SSA on dummy load:
 - 50 kW CW @ 0.4 dB compression
 - Overall efficiency ~ 60%
 - Gain 40 dB (2 stages)

April 23rd, 2010 at LNLS : SOLEIL - LNLS team

Collaborations:

- LNLS: 2 amplifiers of 45 kW at 476 MHz based on 350 W modules
- SESAME: 4 amplifiers of 150 kW at 500 MHz based on 700 W modules
- Transfert of technology to ELTA-AREVA:
- ESRF contract for 7 amplifiers of 150 kW at 352MHz
- High Power Amplifiers at 500 MHz under industrialization

Thanks for your Attention