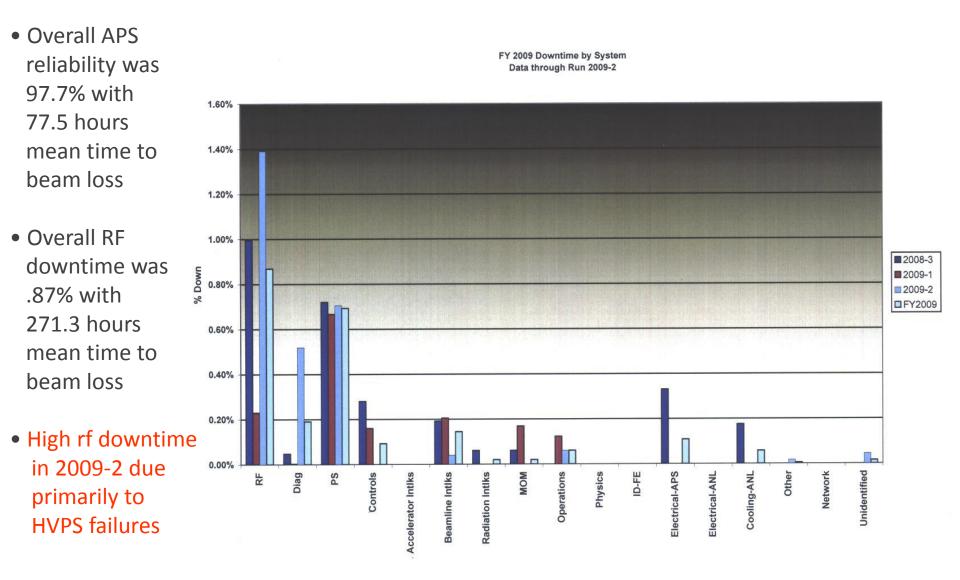


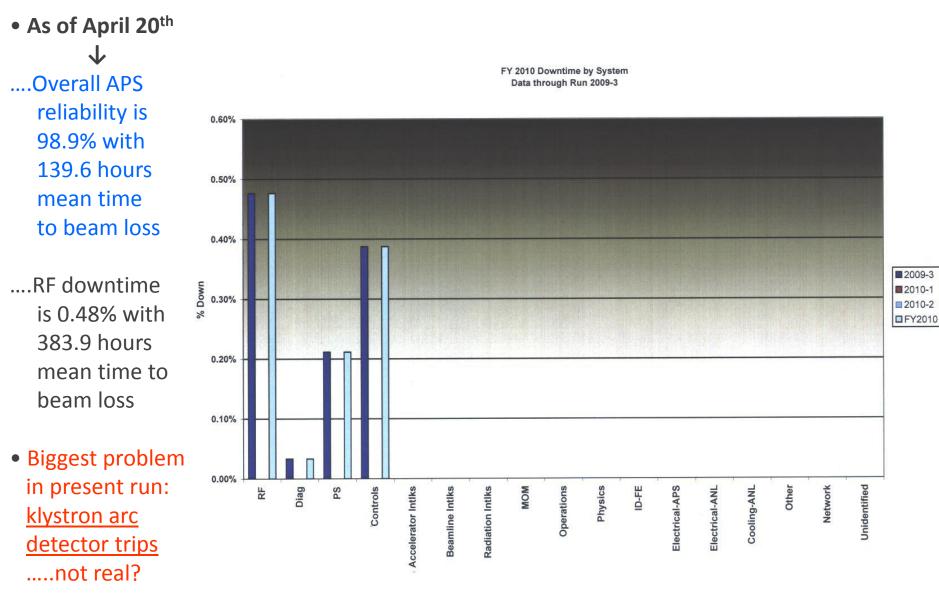
Analysis of Booster and Storage Ring RF System Reliability at the Advanced Photon Source

Doug Horan – Advanced Photon Source RF Group 2010 – Sixth CW and High Average Power RF Workshop ALBA, Barcelona, Spain

2008 APS Reliability Statistics By System

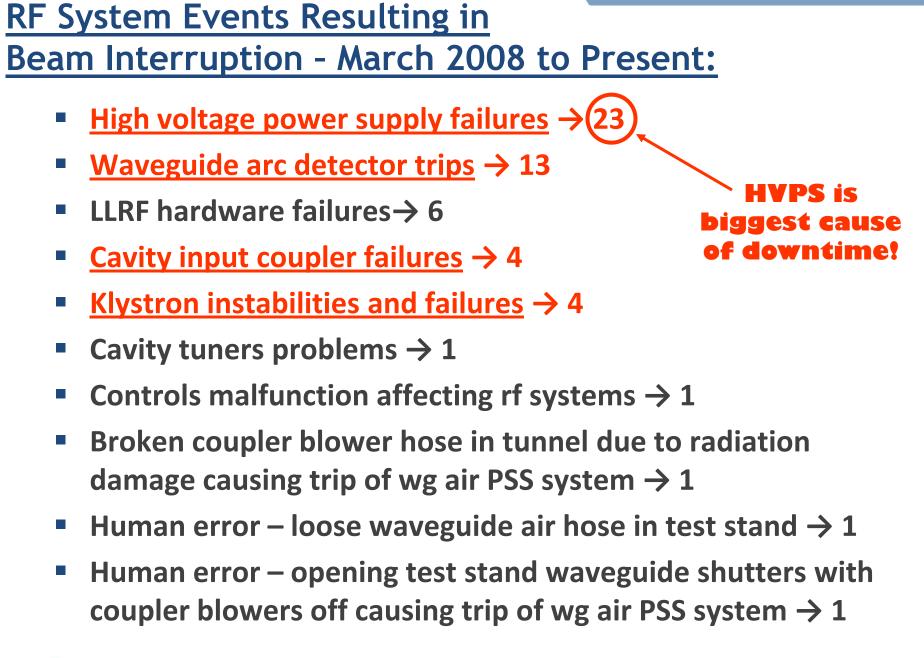

 Overall APS reliability 3.00% was 97.6% with 2007-3 91.4 hours mean 2008-1 2008-2 2.50% time to beam loss FY2008 Overall RF downtime 2.00% was 1.04% with 319.9 hours mean % Down 1.50% time to beam loss 1.00% 2.75% rf downtime in 2008 was due to booster coupler 0.50% Unidentified П 0.00% Other Diag Cooling-ANL Network Controls Beamline Intlks Radiation Intlks MOM ID-FE R PS Accelerator Intlks Operations Physics Electrical-APS Electrical-ANL

FY 2008 Downtime by System Data through Run 2008-2


failure

Updated 8/18/8

2009 APS Reliability Statistics By System



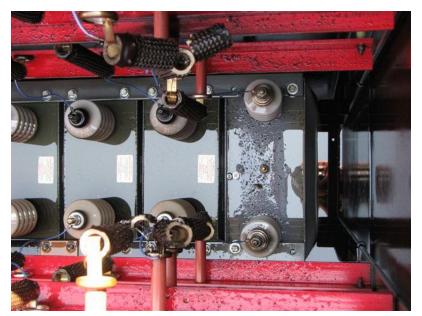
2010 APS Reliability Statistics By System

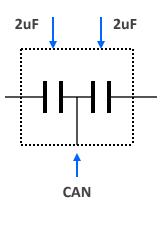
Doug Horan -- APS Booster and Storage Ring RF System Reliability -- 2010 CWRF Workshop May 4-7, 2010

4

RF System High-Voltage Power Supplies

- Installed new in 1992-94.....approximately 90,000 average operating hours per system since 1995
- Conventional design, 95kV@20A maximum output:
 - → Transformer-Rectifier
 - \rightarrow SCR voltage control
 - → Ignitron crowbar
 - → Tetrode mod-anode modulator


→ Most frequent cause of downtime in the last two years


HVPS Sub-System Problem Areas

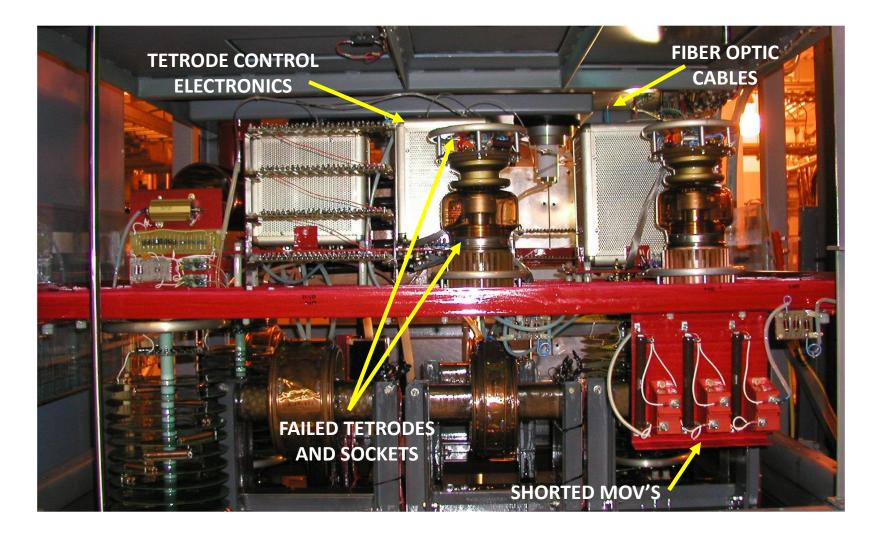
- Transformer-rectifier set capacitor bank
- Mod-anode regulator
- Pantak cable connectors and sockets
- Control system
- Cathode voltage regulator (SCR's)
- 13.2kV Fused Disconnect Switch

Transformer-Rectifier Set Capacitor Failures

- T-R set capacitor bank consists of eight 2x2uF capacitors arranged in series/parallel:
 - \rightarrow Ct = 8uF at 95kV max
- Routine inspection of the RF5 T-R set in May 2008 revealed several failed capacitors – *predicted lifetime was* <u>20 years</u>
- Original capacitors were obsolete and out of production by manufacturer
- Replacement capacitors were secondsourced to another manufacturer, <u>hipot tested twice</u>, and installed in the RF4 T-R set in May of 2009

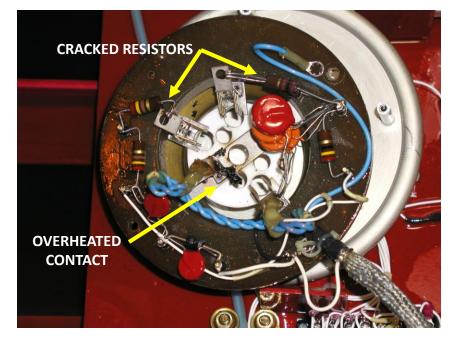
Transformer-Rectifier Set Capacitor Failures

- Most of the new caps failed after approximately one week service!
- The cause of the failures was determined to be incomplete oil impregnation to all sections of the capacitor:



Transformer-Rectifier Set Capacitor Failures

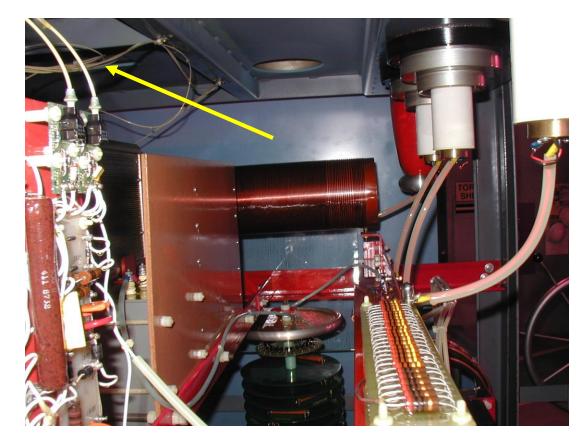
- The original caps were re-installed in the RF4 T-R set so operation could resume
- A search for a second vendor was started
- New caps were ordered from Vendor #2 and were installed in RF4 during the August 20090 maintenance shutdown
- No further problems with caps from vendor #2
- Lessons learned:
 - → "old-school" high-voltage components may not be so easy to get nowadays
 - → try to secure two vendors for such parts, and maintain adequate spares


Mod-Anode Regulator Failures


Many component failures resulting in significant downtime:

Mod-Anode Tetrode Socket Failures

- Over-heating of center pin tetrode contact due to trapped oil, causing intermittent loss of heater power
- 2-watt carbon composition resistors cracking
 - → temperature?.....old age?



Solution: Drill oil escape hole in center of socket cover, and replace all carbon composition resistors with 3-watt metal film

Mod-Anode Fiber Optic Cables

 X-rays from tetrodes degrade fast glass fiber optic cables, impeding analog communication with tetrode control electronics cages and resulting in loss of anode regulation

Solution: Convert to radiation-resistant plastic fiber cables with larger active area

Tetrode Failures

- Two Thales TH5188 tetrodes are used as an active voltage divider in modanode regulator
- Production of TH5188 ceased approximately five years ago – we made bulk purchase for spares
- Approximately 5 verified failures in the last ten years

<u>Solution</u>: A tetrode test set was constructed to evaluate and test new and used tetrodes and other mod-anode electronics modules under high-voltage operation conditions

Problems with Pantak Cable Connections Between HVPS and Klystron

- Numerous HVPS system failures have occurred due to:
 - → cable failures due to high voltage breakdown
 - → Intermittent socket connections

Improved Pantak Socket Tip Connector

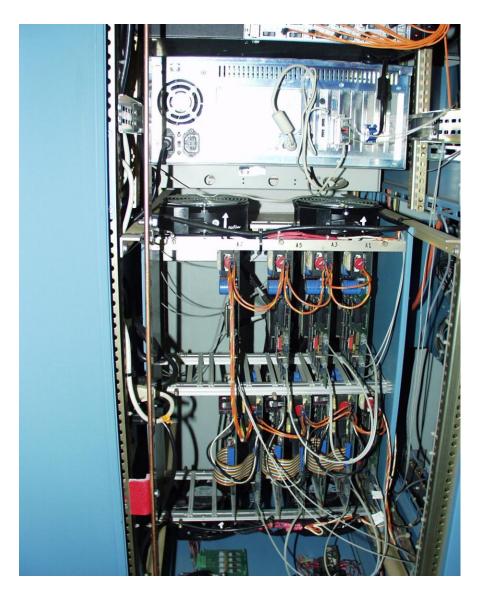
- Original tri-axial tip connector was sensitive to insertion force and would result in intermittent filament contact
- Solution: Re-designed one-piece tip contact with fingerstock provided positive contact to tip and ring bushings on

plug


TESTED AT 50A!

Pantak Cable High Voltage Failures

 Suspect causes include defects in connector or plug molding, potting, or material, incorrect plug insertion force, insufficient grease, undetected HV damage to the mating socket



Solution: Increased awareness of proper insertion force, improved technician training on Pantak connector inspection and maintenance

Failures in HVPS Control System

- Original control system, circa 1990:
 - → many obsolete parts
 - → PC computer interface program written in Windows 3.1, running on Windows 95 OS!
 - → many intermittents on board connectors

Solution: Replace entire control system with a modern PLC......project currently underway

Cathode Voltage Regulator -SCR Cabinet Failures

2007 EVENT

1996 EVENT

- Three catastrophic events have occurred: 1996, 2003, 2007
- Root cause in 1996 and 2007 events was traced to failure of SCR snubber capacitors

Solution: Replace original capacitors, and re-configure wiring between SCR stacks to reduce possibility of phase-to-phase shorts when components fail

Doug Horan -- APS Booster and Storage Ring RF System Reliability -- 2010 CWRF Workshop May 4-7, 2010

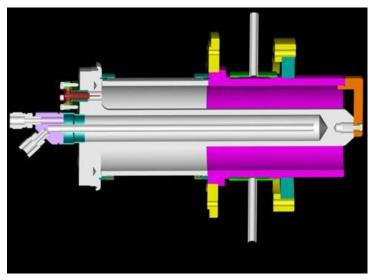
FAILED SNUBBER CA

13.2kV Fused-Disconnect Switches

- Original switches *notoriously* unreliable
 - \rightarrow Failure rate as high as once every 10 operations!
 - \rightarrow Would stick in both open and closed positions!
 - \rightarrow Switch was obsolete at time of installation....1992!
- Replaced by new switch that is more robust and easier to maintain, with improved personnel safety features

Waveguide Arc Detector Trips

- Typically occur once every 2 months per rf system, roughly 5-6 total per year......are they real or false?
- Typical causes when arcs are considered real:
 - → Humid air from storage ring tunnel blown into waveguides by coupler blowers -- common when weather is wet, rainy...... tunnel air is not controlled for humidity or temperature
 - → Arcing between ferrites in circulators coming out of a shutdown......dust settling on ferrites?
- Typical causes when arcs are considered false:
 - → Radiated electrical noise coupling into arc detector electronics
- Number of arc detector trips since January 2010 is very high....7 total!
 - → Radiated noise suspected.....arc detector trips occurred on klystrons that were in standby diode mode!


<u>Solution</u>: Find noise source.....*investigation ongoing!*

Cavity Input Coupler Failures

- Four coupler failures in the last two years:
 → 3/22/08 Booster C1 -- sudden pinhole leak in ceramic
 - → 4/25/08 S40/C2 intermittent vacuum trips
 - → 6/04/08 S40/C2 new coupler destroyed by overpower accident during beam studies
 - → 6/17/09 S40/C2 sudden pinhole leak in ceramic
- Operating data before failure and postmortem analysis did not find a definite cause for ceramic pinhole leaks

FAILED BOOSTER C1 COUPLER

STORAGE RING COUPLER DESIGN

Klystron Trips and Instabilities

• Only two *verified* klystron-related beam losses in the last two years:

→ klystron vacuum trip (1)

→ sideband instability (1)

.....a relatively low number considering the accumulated operating hours:

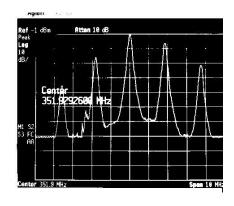
RF1 → EEV s/n 01 = 73,409 hr

RF2 → Thales s/n 089041 = 56,231 hr

RF3 → EEV s/n 089041 = 57,548 hr

RF4 → Thales s/n 089030 = 29,757 hr

RF5 → Thales s/n 089026 = 48,073 hr



EEV K3513A → most reliable, free of instabilities

<u>Thales TH2089A</u> \rightarrow reliable, but can become unstable at certain operating points

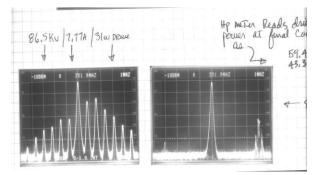
Klystron Instabilities

 The common sideband instability seen in the TH2089A results in very strong sidebands spaced ~ 2MHz from the carrier:

- Typical remedies:
 - → change cathode voltage by 1-3kV
 - → adjust circulator bias to increase reflected power in the direction of <u>slightly lower efficiency</u>
- In most cases sidebands can be suppressed

Klystron sidebands can occur without warning and typically result in beam loss during a fill

Recent Failure of a Klystron


- TH2089A, s/n 089043, failed after approximately 1,850 hours of operation
- Purchased new in 2001, sat in storage for eight years
- Was installed at RF2 in January of 2010 and ran normally in storage ring service for approximately three months
- On April 6th it suddenly developed severe sideband instability that could not be corrected by normal means
- Preliminary investigation indicates severe dc leakage across modanode/cathode ceramic (~ 2.5mA at 60kV)
- No crowbar or HV breakdown events were logged

Investigation is ongoing.....

Klystron Instabilities

 Suspected multipactor losses in klystron C1 and/or C2 can result in sudden loss of efficiency and erratic rf power output, and have produced 800kHz sidebands:

- Typical remedy:
 - → Adjust rf drive power to avoid multipactor region -- <u>penalty</u>: loss of efficiency
- In most cases the instability can be avoided without excessive loss of efficiency

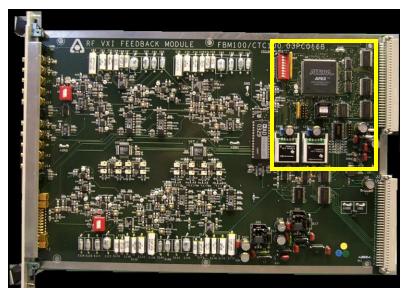
C1/C2 multipactor can severely limit useful operating parameter range

Upgrade of Legacy RF System Hardware to Improve Reliability

Replacement of original process meter-relay logic interlock systems with modern PLC hardware:

ORIGINAL SYSTEM WITH INDIVIDUAL PROCESS METERS

NEW PLC INTERLOCK SYSTEM INSTALLATION


Upgrade of Legacy RF System Hardware to Improve Reliability

 Upgrade of original low-level rf boards (circa 1990) with new data acquisition hardware:

LLRF BOARD WITH ORIGINAL DATA ACQUISTION HARDWARE

NEW LLRF BOARD WITH UPDATED ACQUISTION HARDWARE

Ongoing Effort to Maintain and Improve RF System Reliability

- Maintain adequate spares and avoid reliance on obsolete hardware wherever possible
- Implement design improvements on input couplers
 Work underway; see D. Bromberek talk
- Increased attention paid to HVPS systems
- Investigate <u>every</u> fault to determine the root cause......
 <u>then implement change to prevent a future occurrence</u>

THE PLACE IS GETTING OLD!.....THE FIGHT NEVER ENDS!