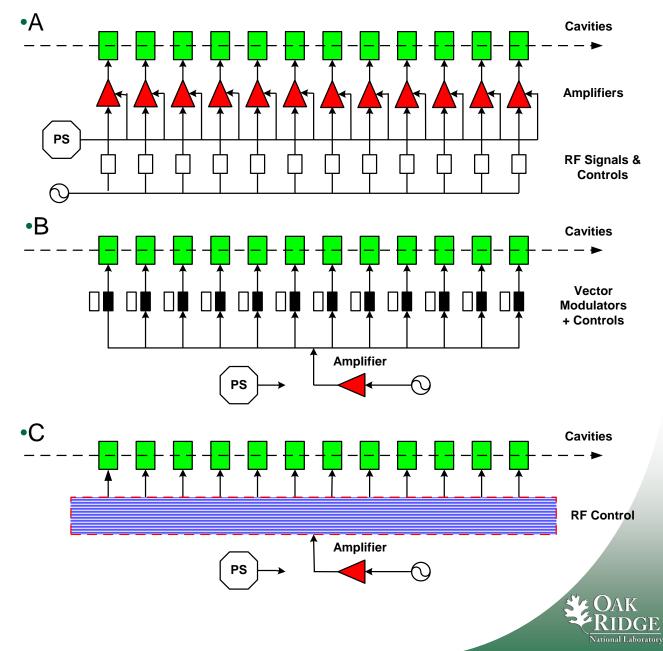
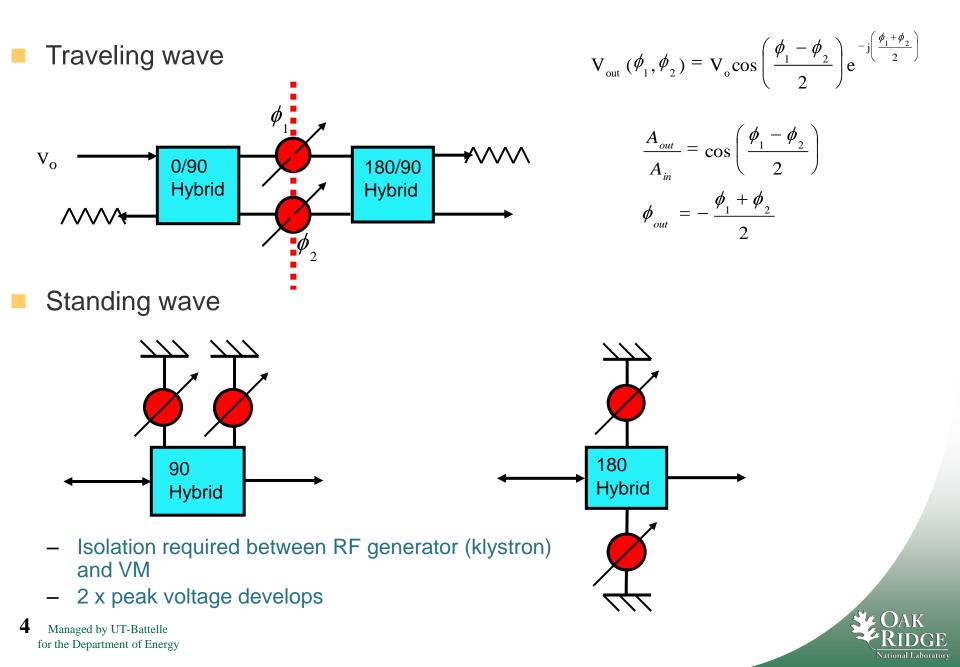

Developments in Accelerator High Power RF Distribution

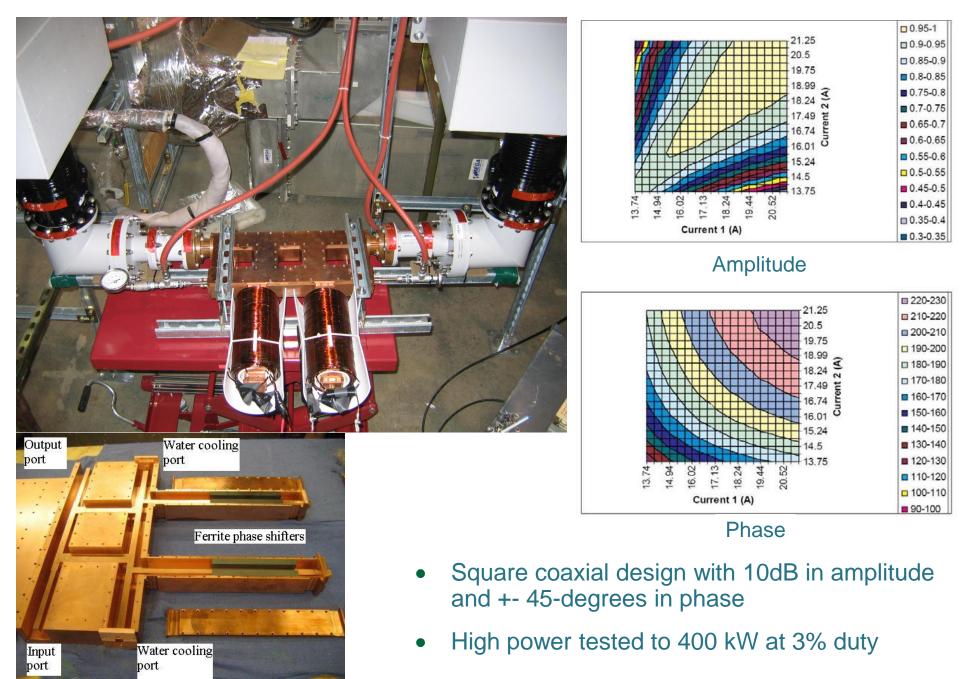
Sixth CW and High Average Power RF Workshop ALBA, Barcelona, Spain May 4-7, 2010


Outline

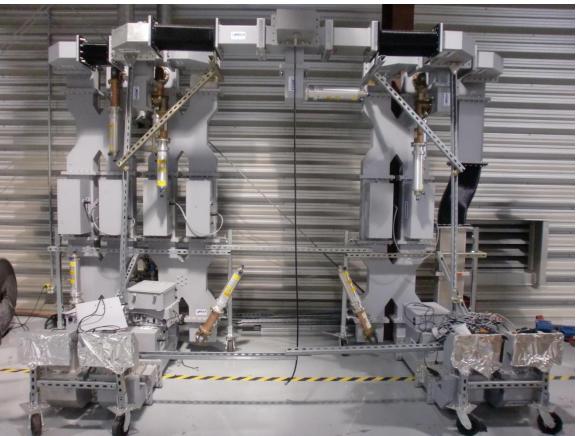
- Consideration on RF power distribution
 - Often, for high power accelerators, splitting power from a high powered generator for many cavities can save cost in construction and installation
 - Except some relativistic lepton accelerators, the amplitudes and the phases of RF in the cavities (through RF power distribution) need to be controlled independently
 - This is more important in SRF Hadron accelerators
- Singly fed system with a fixed power splitter
 - A power splitter divides power of a generator for many cavities and a high power vector modulator is placed in each cavity input
 - This approach introduces RF power loss in the system that lowers the RF transmission efficiency
- Singly fed system with reactive distribution
 - A single generator can power many cavities with high RF transmission efficiency
 - For independent control of the amplitudes and phases at the cavities, a distributed control system is needed



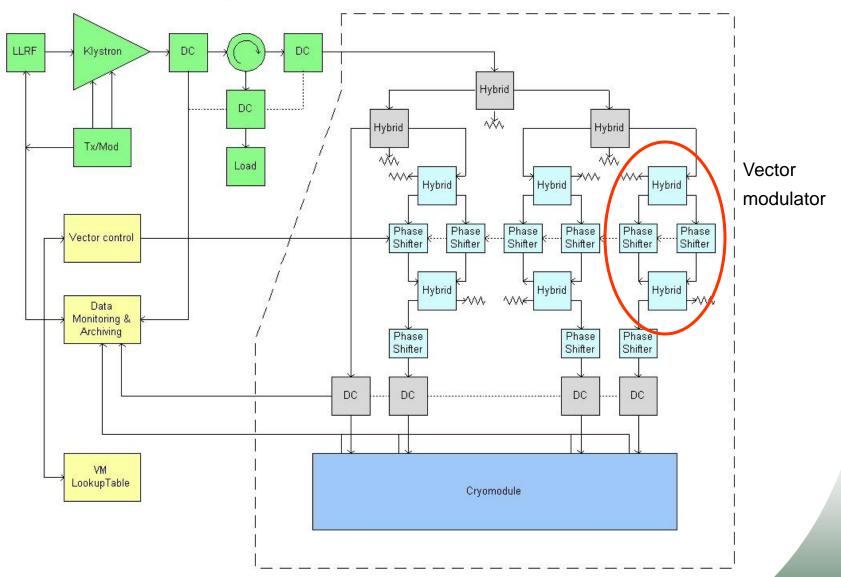
RF Power Distribution with Individual Control


- A. Ideally, one on one configuration is needed for control of amplitude and phase of RF in individual cavities
- B. Using high power vector modulator in each cavity input, RF vector control in individual cavities can be possible
 - An N-way power splitter is needed for N-cavities
 - The RF power not used in the cavities is wasted
- C. Can a multi-cavity distribution system be built without wasting the RF power?

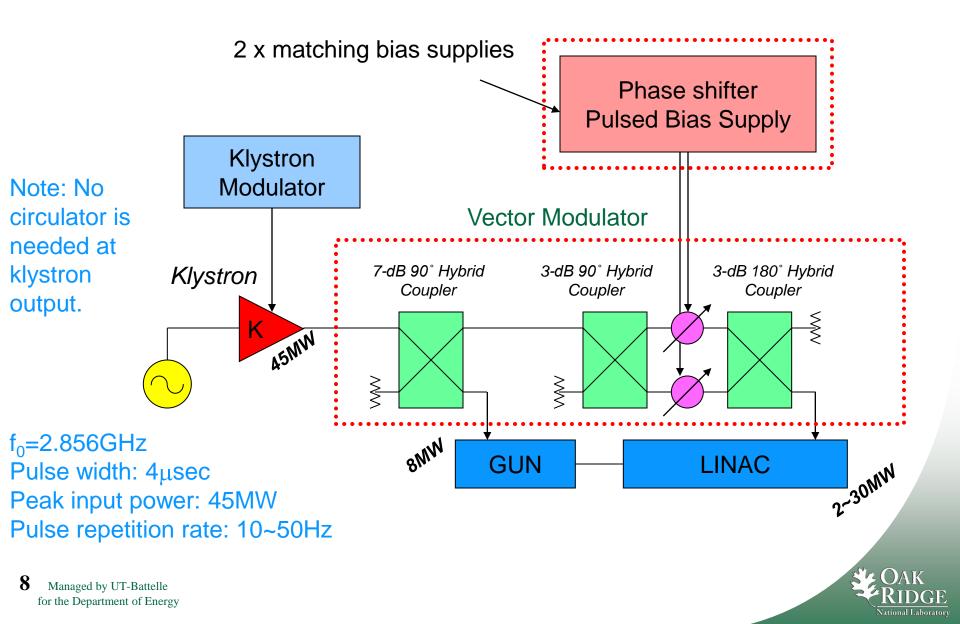
Vector Modulator Configurations



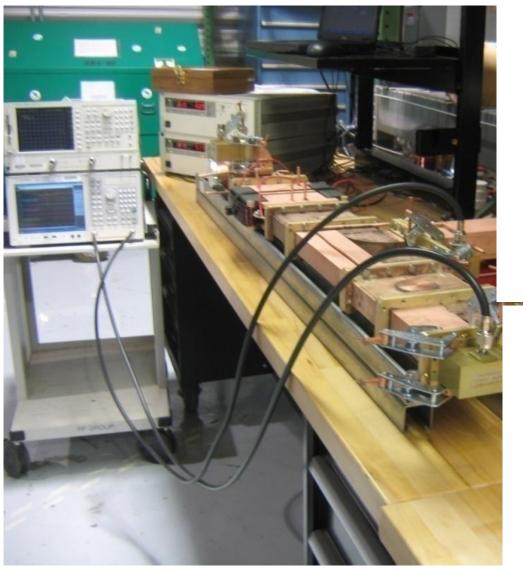
402 MHz Coaxial Vector Modulator

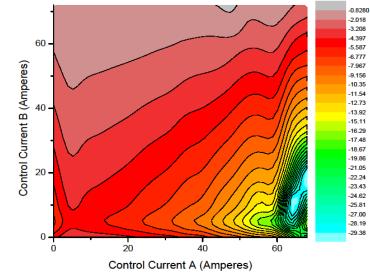

Waveguide Feed Network for Four Cavity Conditioning

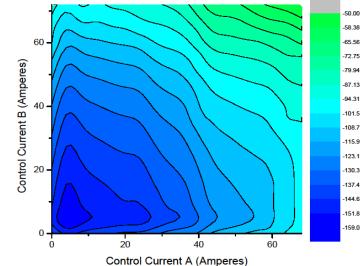
- Feed four SCL cavities with one klystron (available 5 MW tubes)
- Use waveguide vector modulator employing the mechanical phase shifters
- Adjust the power of four outputs connected to cavities to $\pm 40\%$ in amplitude and $\pm 30^{\circ}$ in phase

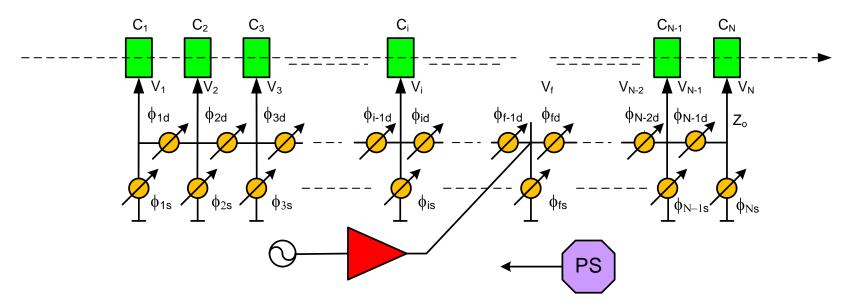


RF Distribution Setup for Cryomodule Test (up to 4 cavities)

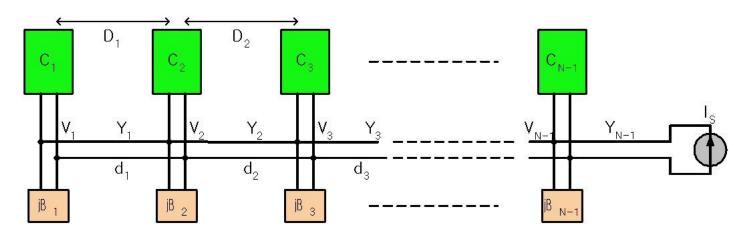



RF Control in S-band Accelerator System


Low Power Measurements @ 2.856 GHz


Output Amplitude (dB)

Output Phase (degrees)


Singly Fed Reactive Distribution

- The reactive fan-out power distribution system can eliminate power overhead to achieve maximum RF efficiency
- The fan-out system can be controlled as a whole to deliver the exactly required amplitudes and phases of RF voltages at the cavities only with phase shifters
 - With a source, a set of specified voltages [V_i] can be supplied to the load cavities by adjusting the transmission-line lengths, and reactive loads
 - Varying the transmission-line lengths, and reactive loads can be done only with phase shifters
 - Any cavities missing or need to be disabled in the system can be set to have 0 voltage vector

System Equation (I)

Consider an array of *N*-cavity loads connected to a transmission-line network. Let $[V^P]$ be the port voltage vector of a set of specific cavity excitations for an optimum operation.

$$\mathbf{r}^{P} \stackrel{\overline{t}}{\underline{}} = \mathbf{V}_{1}^{P} \quad V_{2}^{P} \quad V_{3}^{P} \quad \cdots \quad V_{N^{-1}}^{P}$$

The relation between the terminal currents $[I^S]$ and the terminal voltages $[V^P]$ is

$$S = \mathbf{Y}^S \mathbf{Y}^P$$

where the short-circuit terminal admittance matrix of the whole system

 $\mathbf{P}^{S} = \mathbf{P}^{P} + \mathbf{P}^{T} + \mathbf{P}^{L}$

 $[Y^P]$ = port admittance matrix for the cavities,

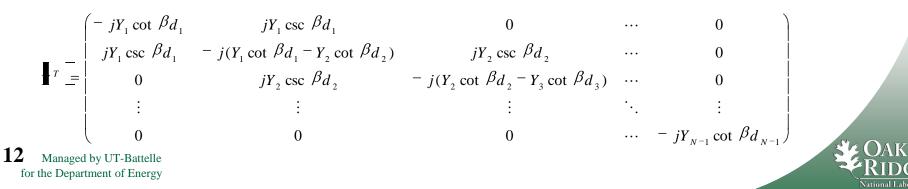
[Y^T] = short circuit admittance matrix of the transmission line network,

and [Y^L] = load admittance matrix.

System Equation (II)

The port admittance matrix only with the loads with no couplings between the cavities

$$\mathbf{I}^{p} = \begin{pmatrix} Y_{in,1} & 0 & 0 & \cdots & 0 \\ 0 & Y_{in,2} & 0 & \cdots & 0 \\ 0 & 0 & Y_{in,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & Y_{in,N} \end{pmatrix}$$


If a cavity is mismatched, the port admittance matrix at the input of a cavity is found as:

$$Y_{in} = Y_o \frac{Y_L \cos \beta d^c + j Y_o \sin \beta d^c}{Y_o \cos \beta d^c + j Y_L \sin \beta d^c}$$

where Y_o and d^c are the characteristic impedance and the length of the transmission line connects the cavity to the network, respectively, Y_L is the cavity load impedance, and β is the phase constant. The load is related to the reflection coefficient

$$Z_{L} = Z_{o} \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$$

The transmission line admittance matrix

System Equation (III)

The reactive load admittance matrix

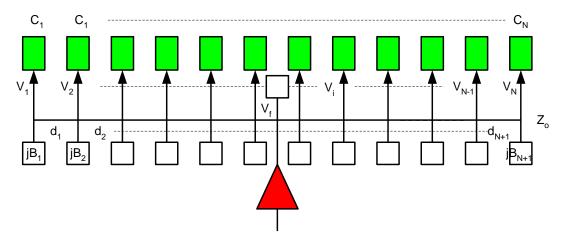
 $\mathbf{I}^{L} \stackrel{-}{=} \left(\begin{array}{cccc} jB_{1} & 0 & \cdots & 0 \\ 0 & jB_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & jB_{N} \end{array} \right)$

If the *n*-th terminal is used for feeding, only $I_n = 1$ in the current matrix

$$s \stackrel{t}{=} = 0 \quad 0 \quad \cdots \quad 1 \quad \cdots \quad 0$$

The input impedance is found by selecting the element Z_{ii} in impedance matrix [Z^s] $s = s^{-1}$

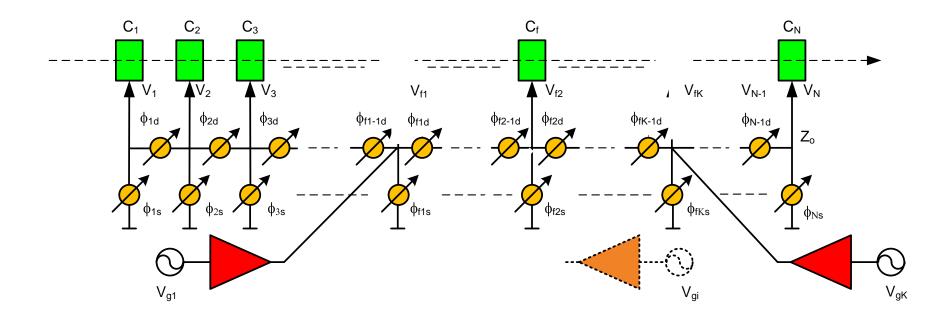
From $\mathbf{F}^{s} = \mathbf{F}^{p} + \mathbf{F}^{T} + \mathbf{F}^{L}$ the *m*-th element of the current vector is found as


 $I^{S}\delta_{nm} = y_{m}^{in}V_{m}^{P} - j\{Y_{m-1}^{T}V_{m-1}^{P}\csc(\beta d_{m-1}) + Y_{m-1}^{T}V_{m}^{P}\cot(\beta d_{m-1}) + Y_{m}^{T}V_{m}^{P}\cot(\beta d_{m}) + Y_{m}^{T}V_{m+1}^{P}\csc(\beta d_{m})\} + jV_{m}^{T}B_{m}$

(for m=1, 2, ..N) where *n* is the feed port index.

The above equations can be solved for a specified load voltages $[V^{P]}$ if any one out of the three parameters is given: *transmission-line characteristic admittances, transmission-line lengths, and reactive loads. If a standard transmission line impedance* Y^{S} *is used, the lengths* $d_{m}(d_{m-1})$ *, and reactive loads* B_{m} *can be found.* $Y^{S}_{m-1}(Y^{S}_{m})$ *and*, $d_{m-1}(d_{m})$ *are given so that the* $d_{m}(d_{m-1})$ *, and reactive loads* B_{m} *are found.*

OAK RIDGE National Laboratory


Example 12 cavities @ f = 805 MHz, cavities are critically coupled

Cavity	Distance (m)	Voltage (V)	Ζο (Ω)	d _i (m)	jΒ _i (Ω)
1	1.50	1.0000 <u>/0 °</u>	50.0000	1.8742	- 0.0056i
2	1.50	1.0500 <u>/10 °</u>	50.0000	1.8690	- 0.0026i
3	1.50	1.1000 <u>/20 °</u>	50.0000	1.8673	+ 0.0020i
4	1.50	1.1500 <u>/30 °</u>	50.0000	1.8664	+ 0.0056i
5	1.50	1.2000 <u>/40 °</u>	50.0000	1.8659	+ 0.0088i
6	1.50	1.2500 <u>/50 °</u>	50.0000	1.8330	+ 0.0715i
7		(3.9083 <u>/0 °)</u>	50.0000		- 0.0544i
8	1.50	1.2500 <u>/50 °</u>	50.0000	1.8330	+ 0.0715i
9	1.50	1.2000 <u>/40 °</u>	50.0000	1.8659	+ 0.0088i
10	1.50	1.1500 <u>/30 °</u>	50.0000	1.8664	+ 0.0056i
11	1.50	1.1000 <u>/20 °</u>	50.0000	1.8673	+ 0.0020i
12	1.50	1.0500 <u>/10 °</u>	50.0000	1.8690	- 0.0026i
13	1.50	1.0000 <u>/0 °</u>	50.0000	1.8742	- 0.0056i

Singly Fed Reactive Distribution with more Redundancy

- - Generator power outputs of the generators can be arbitrary
 - Any cavity load or power generator can be disabled

Summary

- Often splitting power of a high powered generator for many cavities may save cost in construction and installation of high power accelerators
- For most accelerators, the amplitudes and the phases of RF in the cavities (through RF power distribution) need to be controlled independently
- A fixed power splitter fan-out distribution using vector modulators can be useful for certain application
 - The generator power can be constant
 - Power not used by the cavities can be wasted
- The reactive fan-out distribution system can eliminate power overhead to achieve efficient operation
 - The system is controlled as a whole to deliver the exactly required RF voltage vectors (and power) at the cavities only with high power phase shifters
 - Superposition of several generators in arbitrary points in the network can add flexibility and redundancy
 - Any RF power generators can be shut off
 - Any load cavity can be disconnected or disabled with the load voltage set to zero voltage
- For the above fan-out distribution systems, complete and fast low-level RF control systems are yet to be developed

