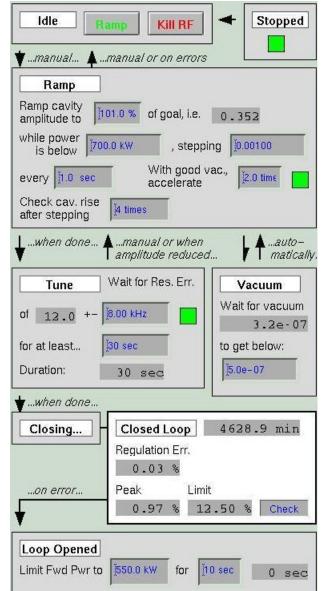

### Spallation Neutron Source LLRF Systems


# Tom Hardek Mark Crofford Mark Middendorf Maurice Piller Yoon Kang Sung-Woo Lee Alexandre Vassioutchenko





# **LLRF** Automation

- The startup of the RF systems is automated with the use of a sequencer
- Systems can be started or stopped using two buttons
- The ramp feature provides the following features:
  - Ramp cavity to a user selectable percentage of goal
  - Verifies vacuum stays below a set value halts the ramp if exceeds the value, resumes after recovery
  - Tunes cavity prior to closing loop
  - Finishes ramp to operational settings in closed loop





#### LLRF additions to address Superconducting Cavity issues

- Quench detection
  - Quench detection was included in the original LLRF package but didn't function properly
  - We now have two functional quench detection schemes
    - Hardware quench detection implemented in HPM module for detection during beam
    - Software based detects the onset of a quench and shuts off RF preventing the quench over full pulse
- Heater control
  - Heaters are provided to keep the thermal load on the cryogenic system constant
    - LLRF enables these heaters when RF power is disabled
- Monitor electron probe current
  - Cold Cathode vacuum gauges go to sleep and can leave us unprotected
  - We installed pico-ammeters to monitor electron current in the couplers
  - Provided electron current display and interlock
- Chatter Fault Protection
  - Inhibit RF after preselected number of successive faults
  - Require manual reset



### **LLRF** additions to address **RFQ** Issues

- As we increased the pulse length toward full beam power operation we began experiencing RFQ tuning issues
  - With the RFQ operation stable something would disturb the operation and require much effort and time to recover
    - Observed that excessive Ion Source gas flow reduces structure Q over time
      - Now monitor gas flow
    - Structure cooling seemed marginal
      - The RFQ is cooled by a pair of chillers
      - The chillers operate at a fixed temperature set point
        - » One chiller cools the vanes
        - » A second chiller cools the body and MEBT cavities
        - » Replaced the water manifolds
      - Replaced chillers
  - We observed that a minor adjustment of RF pulse length prior to losing control would correct the problem
    - We added a slow pulse-length adjusting feedback loop to the LLRF control software
    - We also added slow control loops for the chiller temperature

# **RFQ Software Control Loops**

- Issues discovered with high duty, long pulse operation of RFQ
- Software loops added to enable up to 1 mS pulse operation
- Adjust pulse width for fine adjustment
- Adjust chiller temperatures to center pulse width

| Tuning                                 |                                      |                |                                  |           | - 0       |  |
|----------------------------------------|--------------------------------------|----------------|----------------------------------|-----------|-----------|--|
| Res.Error /                            | Adjustments,                         | RFQ 1          |                                  |           |           |  |
| Resonance Er                           | ror                                  |                |                                  |           |           |  |
| Goal (center)                          | _                                    | Chill. Adj. H  | Chill. Adj. High                 |           | 18.00 kHz |  |
| 12.00 kHz                              |                                      | PW Adj. Hiç    | PW Adj. High<br>Current Res.Err. |           | 17.00 kHz |  |
| PW Deadband                            | Chill. Deadband                      | Current Res    |                                  |           | 11.55 kHz |  |
| )<br>5.00 kHz                          | <b>120 %</b>                         | PW Adj. Lo     | PW Adj. Low                      |           | 7.00 kHz  |  |
|                                        |                                      | Chill. Adj. Lo | Chill. Adj. Low                  |           | kHz       |  |
| Pulse Width A                          | diustment                            |                |                                  |           |           |  |
| 📕 Disable                              | State                                |                |                                  |           |           |  |
| Enable Resonance error within deadband |                                      |                |                                  |           |           |  |
| Current PW                             | Adjust. Step Min. PW Max. PW Wait Ti |                |                                  | Wait Time |           |  |
| 871.5 uS                               | [4 us                                | 860 us         | <u></u> [920                     | ) us      |           |  |
| Chiller 1 Adju                         | stment                               |                |                                  |           |           |  |
| 📕 Disable                              | State                                |                |                                  |           |           |  |
| 🕅 Enable                               | Resonance error                      | within deadb   |                                  |           |           |  |
| Current Temp.                          | Adjust. Step N                       | /lin. Temp     | Max.                             | Temp      | Wait Time |  |
| [19.8 C                                | Į0.10 C                              | 19.00 C        | Ĭ22.                             | 00 C      | Ĭ150 s    |  |
| Chiller 2 Adju                         | stment                               |                |                                  |           |           |  |
| 🔽 Disable                              | State                                |                |                                  |           |           |  |
| 📕 Enable                               | Disabled                             |                |                                  |           |           |  |
| Current Temp.                          | Adjust. Step N                       | /lin. Temp     | Max.                             | Temp      | Wait Time |  |
| Ž23.6 C                                | <u>[-0.10 C</u>                      | ]22.00 C       | Ĭ25.                             | 00 C      | Ĭ150 s    |  |
|                                        |                                      |                |                                  |           |           |  |



# **Beam Blanking**

- Downstream RF must be disabled during beam tuning
- Initially the LLRF was shifted in time to simplify tuning process
  - Time shift is limited by HV Pulse Width
  - More time consuming to perform
- Beam blanking allows for turning RF off during beam pulse
  - All RF stations remain on
    - Those not yet in use are not gated on during beam pulse
    - Allows physics team ability to turn on entire Linac and step through each cavity in sequence
    - No need to stop tuning process to turn on the next cavity

