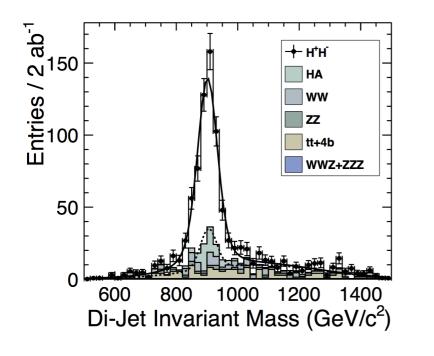

Physics case for ALIC

Philipp Roloff (CERN)

ALEGRO Workshop 2019

26/03/2019 CERN, Geneva


Introduction

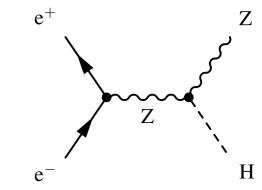
- The Standard Model has been extremely successful (including prediction of the Higgs boson discovered at the LHC)
- However, it does not explain observations of:
 - Dark Matter
 - The baryon-antibaryon asymmetry in the universe
 - Light neutrino masses and mixing
- Exploration of new territory motivates ambitious future colliders for particle physics
- This talk: potential of a very high-energy $e^+e^- / \gamma\gamma$ interactions of up to 30 TeV, many examples for 10 (and 3) TeV

How to search for new physics?

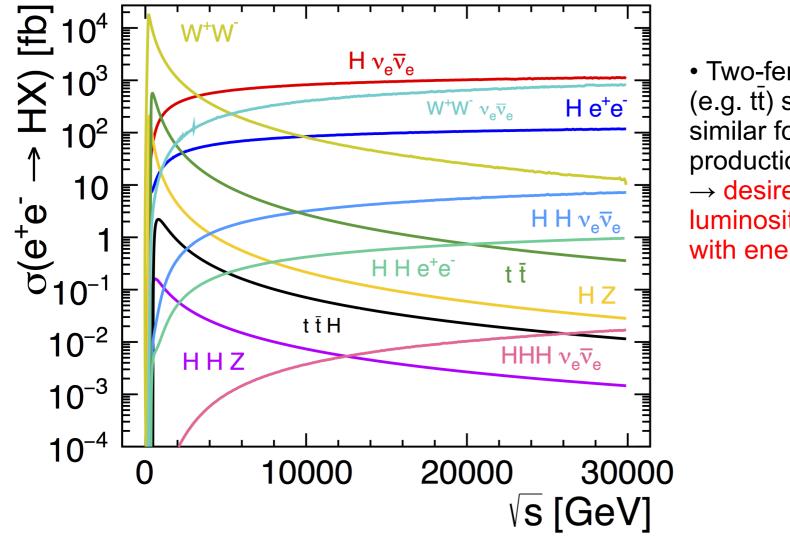
1.) Direct searches:

Looking for **new particles** and unknown effects

 \rightarrow Both approaches benefit from the highest possible energies!


2.) Learning from SM processes:

Precision study of production and decay properties of known SM particles


Modern approach: Effective Field Theory (EFT):

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \left(\frac{c_i}{\Lambda^2} \mathcal{O}_i \right)$$

 \rightarrow captures all heavy new physics

Standard Model processes

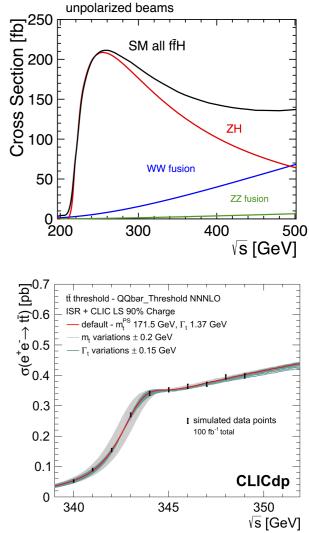
Two-fermion production

 (e.g. tt̄) scales as 1/s,
 similar for WW and ZH
 production
 → desired integrated
 luminosities increse
 with energy

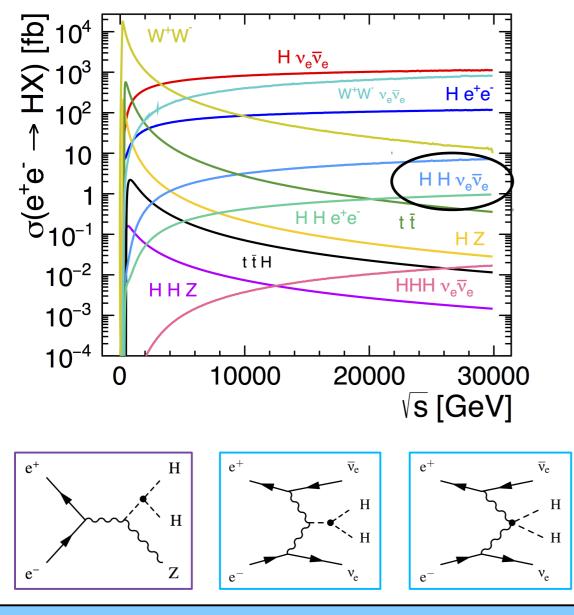
CERN-2018-005-M

First stage?

Unique and guaranteed physics case for an e⁺e⁻ collider in the energy range from 240 - 380 GeV:


Higgs boson (\sqrt{s} > 240 GeV):

 Model-independent measurement of Higgs width and couplings possible using e⁺e⁻ → ZH (not possible at multi-TeV energy alone)


Top-quark (\sqrt{s} > 350 GeV):

- Not studied in e⁺e⁻ interactions so far
- Threshold scan is the best approach to measure its mass

→ ALIC would be a natural upgrade of a linear collider in this energy range

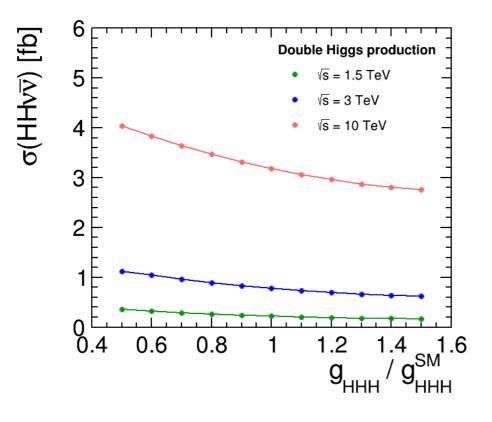
Double Higgs production

 $e^+e^- \rightarrow HHv_e^-\overline{v}_e^-$:

Most important process for the measurement of the Higgs self-coupling at high energy

• Cross section 4.1 times larger at 10 TeV compared to 3 TeV

$\Delta g_{hhh}/g_{hhh}^{SM}$
-18%
tens of $\%$
$-2\%^{a}$ $-15\%^{b}$
-25%


Phys. Rev. D 88, 055024 (2013)

26/03/2019

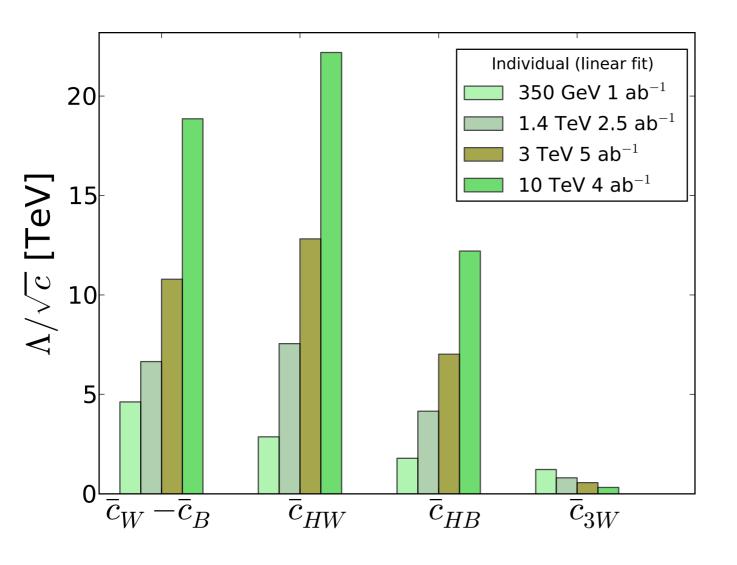
Philipp Roloff

Physics case for ALIC

Higgs self-coupling at 10 TeV

Some degradation in sensitivity for larger energies, e.g.:

 $\Delta g_{HHH}/g_{HHH} = 1.5 \cdot \Delta \sigma/\sigma \text{ at } 3 \text{ TeV}$ $\Delta g_{HHH}/g_{HHH} = 2.5 \cdot \Delta \sigma/\sigma \text{ at } 10 \text{ TeV}$

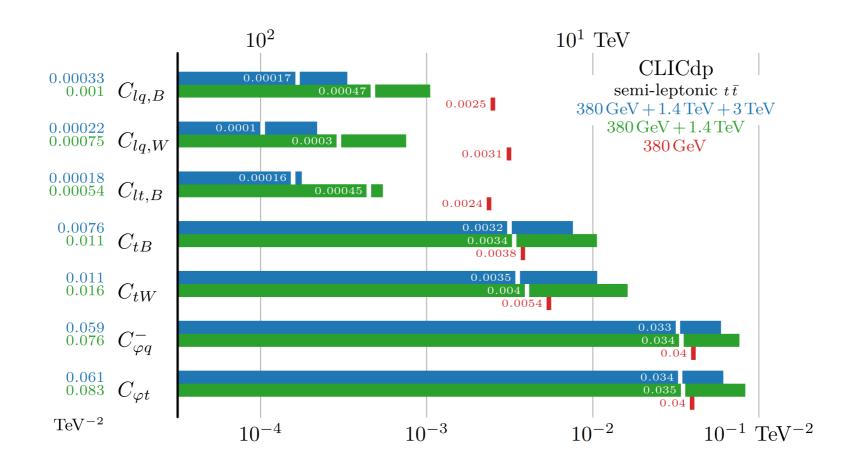

 \rightarrow Impact smaller than rise of cross section

Extrapolation using 3 TeV CLIC study:

 $\Delta g_{HHH}/g_{HHH} \approx 5\%$ for 8 ab⁻¹ at 10 TeV

(similar to 100 TeV FCC-hh)

EFT analysis of Higgs and WW production in 10 TeV e⁺e⁻ collisions

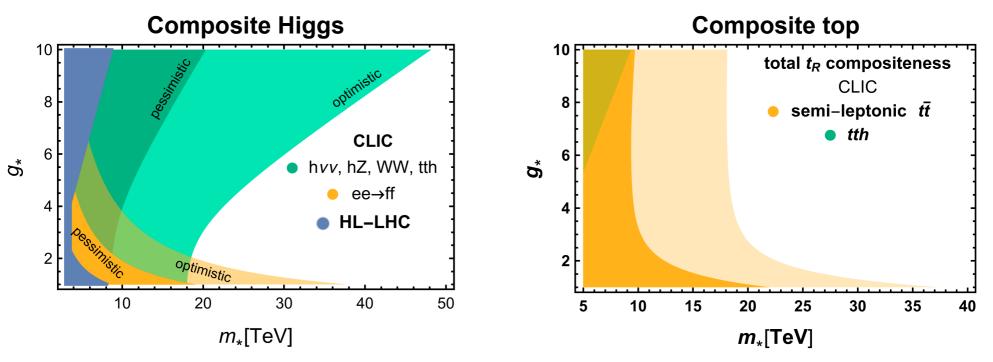


→ New physics scales well beyond the centre-of-mass energy can be reached

The 10 TeV projections were scaled from CLIC at 3 TeV (assuming the same luminosity spectrum)

CERN-2018-005-M

Top-quark pair production at CLIC



• A global fit requires at least one high-energy stage in addition to 380 GeV operation

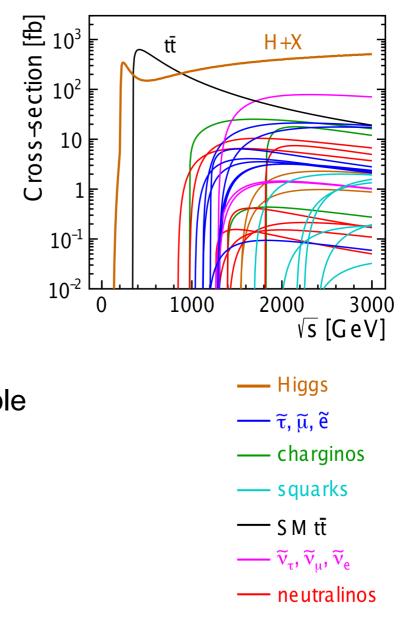
- High-energy operation dramatically improves the sensitivity for certain ("four-fermion") operators
- Even higher energy would improve the reach further

arXiv:1807.02441

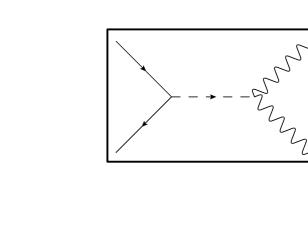
Compositeness at 3 TeV CLIC

m_{*}: compositeness scale

g.:coupling strength of the composite sector

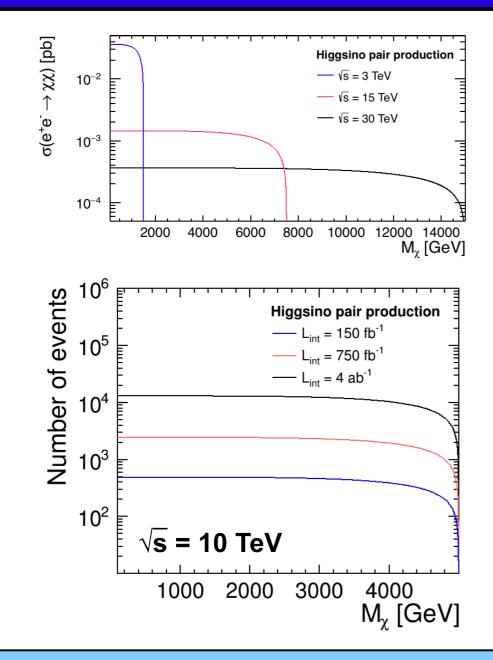

Discovery of Higgs compositeness scale up to 10 TeV (40 TeV for $g_* \approx 8$) Discovery of top compositeness scale up to 8 TeV (20 TeV for small g_*)

ALIC at higher energy would increase the reach even further

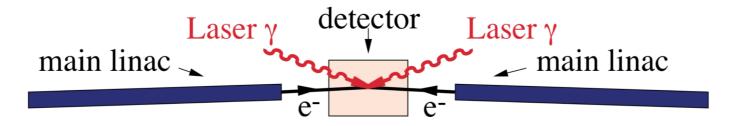

CERN-2018-009-M

Direct searches for new physics in e⁺e⁻ collisions

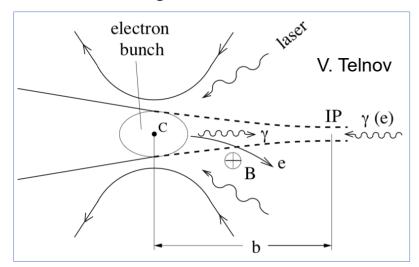
- Direct observation of new particles coupling to γ*/Z/W
 → precision measurement of new particle masses and couplings
- The sensitivity often extends up to the kinematic limit (e.g. $M \le \sqrt{s}$ / 2 for pair production)
- Very rare processes accessible due to low backgrounds (no QCD)
 → Electron-positron colliders especially suitable for electroweak states
- Polarised beam(s) and threshold scans might be useful to constrain the underlying theory


Heavy electroweak states at high energy

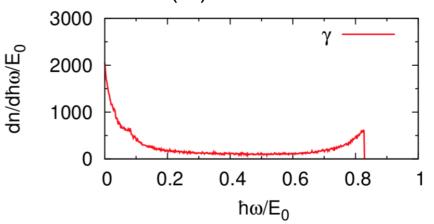
• Number of events almost independent of mass (in contrast to hadron colliders)

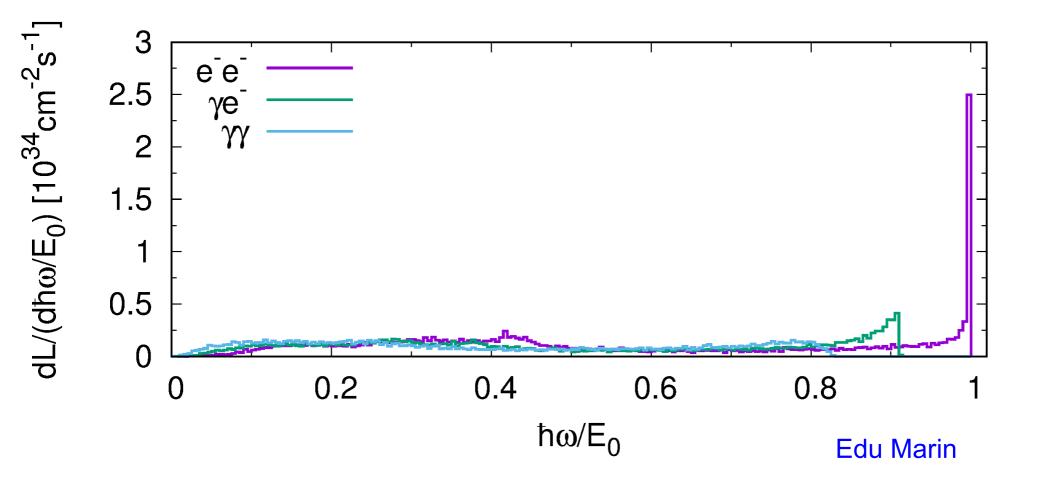

• Precision measurements possible at 10 TeV using a few ab⁻¹

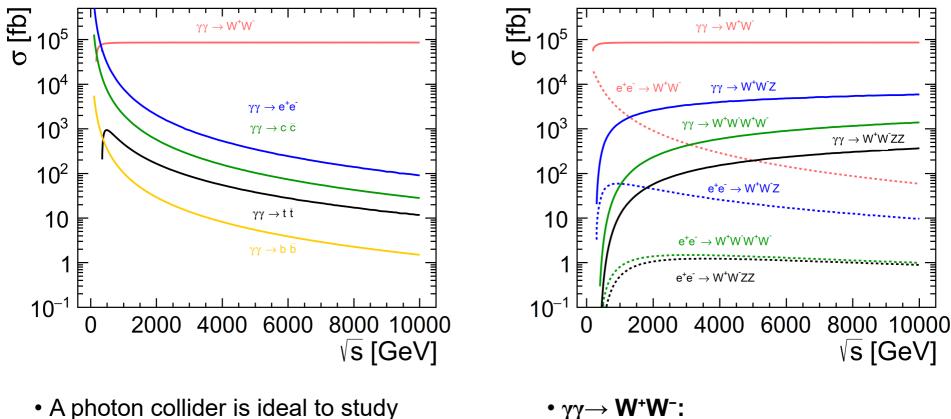
CERN-2018-005-M



γγ colliders


- An e⁺e⁻ collider requires high-gradient, high-efficient positron acceleration
- Possible alternative: γγ collider
- Discussed in the past as possible upgrade to a linear collider


High-energy photons are produced by Compton back-scattering off TeV e⁻ beams


The photon spectrum has a peak near $0.8E(e^{-})$

Luminosity spectra at 10 TeV

Standard Model processes in yy collisions

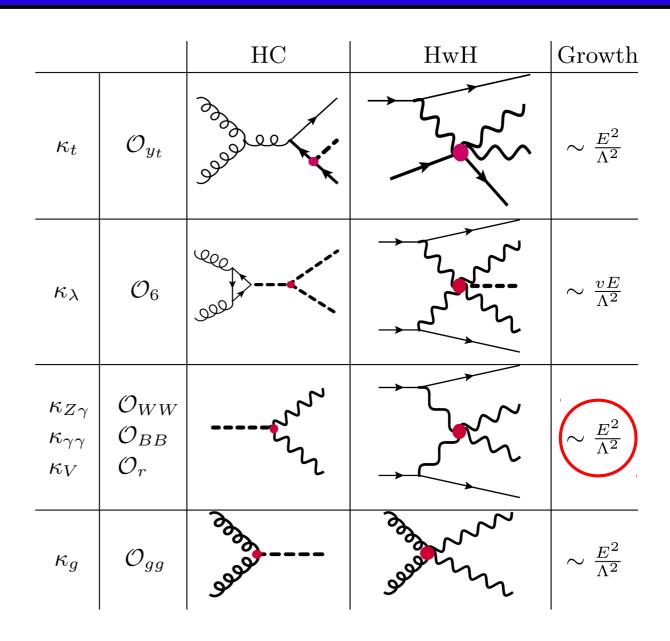
 A photon collider is ideal to stud electrically charged particles

anomalous photon couplings to W boson

• $\gamma\gamma \rightarrow W^+W^-ZZ/W^+W^-W^+W^-$: WW \rightarrow WW and ZZ \rightarrow ZZ scattering

no beam polarisation

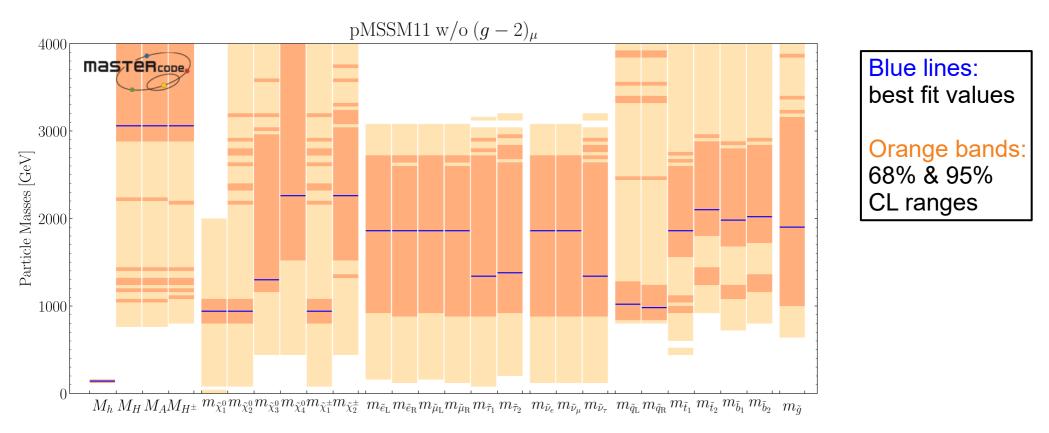
"Higgs physics" at high energy


HC: Higgs coupling HwH: High-energy process

 Higgs decays and high-energy processes probe the same operators

• Sensitivity of high-energy probes rises with energy

Very interesting!


To be studied for ALIC...

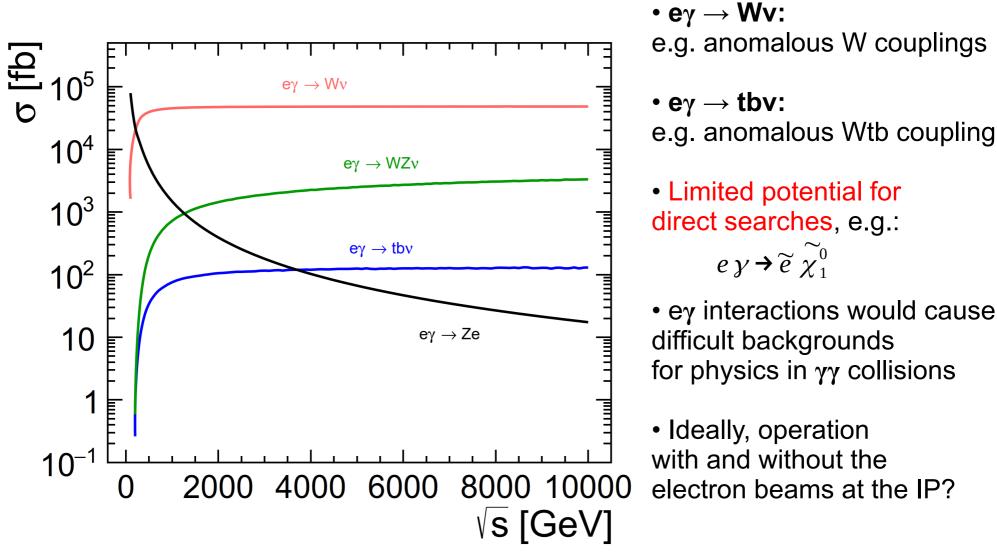
arXiv:1812.09299

An example SUSY scenario

Example: Phenomenological MSSM with 11 parameters

• Global fit to current experimental data (LHC results, low-energy and flavour experiments, CDM measurements)

Eur. Phys. J. C 78, 256 (2018)


e⁺e⁻ vs γγ at 10 TeV

Particle pair			$\sigma(\gamma\gamma \rightarrow XX)$ [fb]
~ ~		Circe2 + ISR, unpol.	Circe2, unpol.
$\widetilde{d}_{L}\widetilde{d}_{L}$	1009	0.61	0.07
$\widetilde{u}_{L}\widetilde{u}_{L}$	1006	0.89	1.2
$\widetilde{s}_L\widetilde{s}_L$	1009	0.61	0.07
$\tilde{c}_L \tilde{c}_L$	1006	0.89	1.2
b_1b_1	1997	0.19	0.01
$\tilde{t}_1 \tilde{t}_1$	1866	0.28	0.22
$\widetilde{e}_L\widetilde{e}_L$	1869	0.95	0.37
$\widetilde{\nu}_{eL}\widetilde{\nu}_{eL}$	1867	4.6	/
$\widetilde{\mu}_{L}\widetilde{\mu}_{L}$	1869	0.25	0.37
$\widetilde{\nu}_{\mu L}\widetilde{\nu}_{\mu L}$	1867	0.11	/
$\widetilde{\tau}_1 \widetilde{\tau}_1$	1328	0.30	0.93
$\widetilde{\nu}_\tau\widetilde{\nu}_\tau$	1364	0.15	/
$\tilde{d}_R \tilde{d}_R$	988	0.13	0.08
$\tilde{u}_R \tilde{u}_R$	989	0.53	1.2
$\widetilde{s}_R \widetilde{s}_R$	988	0.13	0.08
$\tilde{c}_R \tilde{c}_R$	989	0.53	1.2
$\widetilde{b}_2 \widetilde{b}_2$	2032	0.07	0.01
$\widetilde{t}_2\widetilde{t}_2$	2108	0.26	0.16
$\widetilde{e}_R \widetilde{e}_R$	1856	1.4	0.38
$\widetilde{\nu}_{\mu R}\widetilde{\nu}_{\mu R}$	1856	0.21	0.38
$\widetilde{\tau}_2\widetilde{\tau}_2$	1365	0.31	0.86
$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	954	≈ 0	/
$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$	954	≈ 0	/
$\widetilde{\chi}_1^+ \widetilde{\chi}_1^-$	955	2.7	1.4
$\widetilde{\chi}_{3}^{0}\widetilde{\chi}_{3}^{0}$	1294	1.1	/
$\widetilde{\chi}_{4}^{0}\widetilde{\chi}_{4}^{0}$	2262	0.53	/
$\widetilde{\chi}_2^+\widetilde{\chi}_2^-$	2262	1.3	1.3
H^0A^0	3046	0.04	/
H^+H^-	3046	0.10	0.08

- Luminosity spectra and ISR (for e^+e^-) included
- A 10 TeV e⁺e⁻ collider would cover the entire SUSY particle spectrum in this scenario
- Neutral particles not accessible at (tree level) in $\gamma\gamma$ collisions
- A multi-TeV photon collider has discovery potential for squarks, sleptons and chargions (with a few ab⁻¹)

26/03/2019

What about the e^{γ} collisions?

no beam polarisation

Conclusions

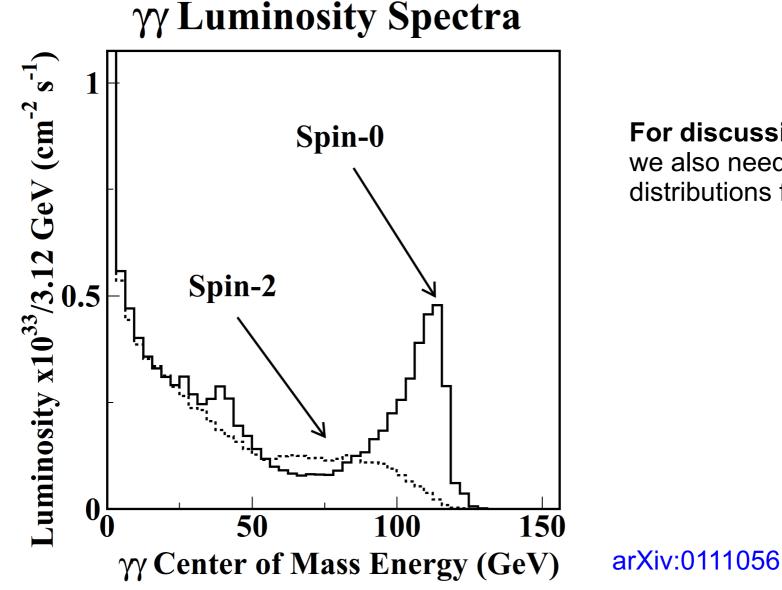
• Very high-energy e^+e^- and $\gamma\gamma$ interactions provide unique physics opportunities

• The reach of an e⁺e⁻ collider for new phenomena increases strongly with its centre-of-mass energy

• Photon collider promising for precision measurements in multi-boson production and direct discovery in pair production of charged particles

• The desired integrated luminosity rises with energy, for example at least several ab⁻¹ are desired at 10 TeV

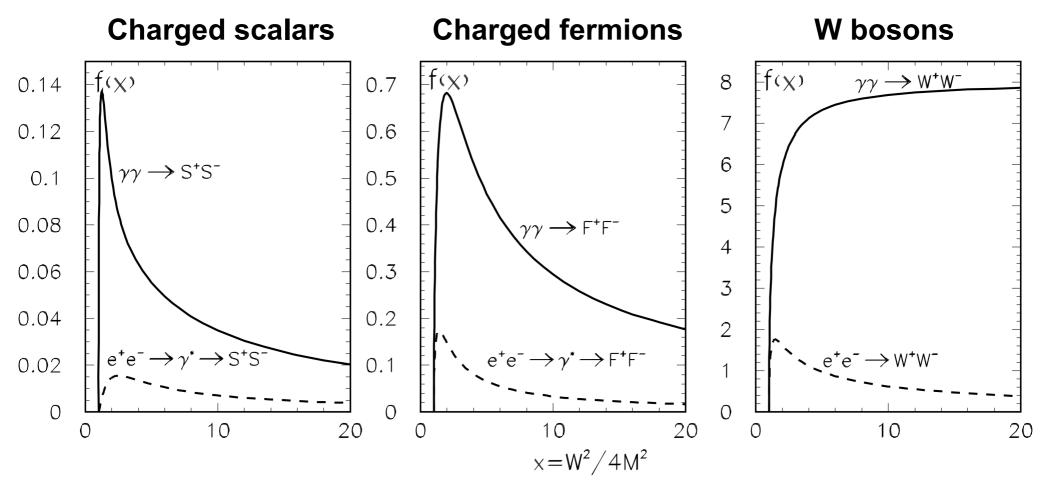
 Interesting possibility: ILC or CLIC collider for Higgs & top, then ALIC in the same tunnel


Backup slides

vy collider as Higgs factory

- A $\gamma\gamma$ collider with $\sqrt{s}_{\gamma\gamma}$ around 125 GeV allows to study the process $\gamma\gamma \rightarrow H$
- The previous proposals CLICHE (arXiv:0111056) and SAPPHiRE (arXiv:1208.2827) would provide 20000 Higgs bosons / year \rightarrow comparable to first stage of CLIC at 350 / 380 GeV
- However, some decays seem difficult in photon collisions: $H \rightarrow c\bar{c}$, $\tau^+ \tau^-$, $q\bar{q}$
- A fully model-independent interpretation of the results would require some input from an e⁺e⁻ collider
- The optimal $\gamma\gamma$ collision energy for $\gamma\gamma \rightarrow H^* \rightarrow HH$ is a bit below 300 GeV (an ILC-based photon collider running for 5 years seems not competitive on with a high-energy e^+e^- collider for double Higgs production) arXiv:1205.5292

 $\rightarrow e^+e^-$ seems to be the best option for Higgs physics


Helicity dependence

For discussion:

we also need these distributions for 10 TeV

Comparison to e⁺e⁻ collisions

 $\sigma = (\pi \alpha^2 / M^2) f(x)$

no beam polarisation

Physics case for ALIC

yy at 10 TeV

Particle pair	Mass [GeV]	$\sigma(e^+e^- \rightarrow XX)$ [fb]	(•••	$\sigma(\gamma\gamma \rightarrow XX)$ [fb]	$\sigma(\gamma\gamma \rightarrow XX)$ [fb]
		unpol.	unpol.	$J_Z = 0$	$J_Z = 2$
$ \begin{array}{c} \widetilde{d}_L \widetilde{d}_L \\ \widetilde{u}_L \widetilde{u}_L \\ \widetilde{s}_L \widetilde{s}_L \\ \widetilde{s}_L \end{array} $	1009	0.35	0.04	0.002	0.08
$\widetilde{u}_{L}\widetilde{u}_{L}$	1006	0.51	0.70	0.04	1.4
$\widetilde{s}_{L}\widetilde{s}_{L}$	1009	0.35	0.04	0.002	0.08
$c_L c_L$	1006	0.51	0.70	0.04	1.4
$\widetilde{\mathbf{b}}_1 \widetilde{\mathbf{b}}_1$	1997	0.18	0.03	0.001	0.05
$ \widetilde{\widetilde{t}}_1 \widetilde{\widetilde{t}}_1 $	1866	0.26	0.52	0.14	0.91
$ \begin{split} & \widetilde{e}_L \widetilde{e}_L \\ & \widetilde{\nu}_{eL} \widetilde{\nu}_{eL} \\ & \widetilde{\mu}_L \widetilde{\mu}_L \\ & \widetilde{\nu}_{\mu L} \widetilde{\nu}_{\mu L} \\ & \widetilde{\tau}_1 \widetilde{\tau}_1 \\ & \widetilde{\nu}_\tau \widetilde{\nu}_\tau \end{split} $	1869	1.2	0.88	0.23	1.5
$\widetilde{\nu}_{eL}\widetilde{\nu}_{eL}$	1867	5.0	-	-	-
$\widetilde{\mu}_{L}\widetilde{\mu}_{L}$	1869	0.23	0.88	0.23	1.5
$\widetilde{\nu}_{\mu L} \widetilde{\nu}_{\mu L}$	1867	0.10	-	-	-
$\widetilde{\tau}_1 \widetilde{\tau}_1$	1328	0.21	1.06	0.11	2.0
$\widetilde{\nu}_{\tau}\widetilde{\nu}_{\tau}$	1364	0.11	-	-	-
$\widetilde{d}_R \widetilde{d}_R$	988	0.08	0.04	0.002	0.09
$\widetilde{u}_R \widetilde{u}_R$	989	0.30	0.70	0.03	1.4
$\widetilde{s}_R \widetilde{s}_R$	988	0.08	0.04	0.002	0.09
$\widetilde{c}_R \widetilde{c}_R$	989	0.30	0.70	0.03	1.4
b_2b_2	2032	0.06	0.03	0.01	0.05
	2108	0.27	0.48	0.17	0.80
$\tilde{e}_R \tilde{e}_R$	1856	1.6	0.89	0.22	1.6
$\widetilde{\nu}_{\mu R}\widetilde{\nu}_{\mu R}$	1856	1.9	0.89	0.22	1.6
$\widetilde{\tau}_2 \widetilde{\tau}_2$	1365	2.2	1.05	0.12	2.0
$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	954	≈ 0	_	-	-
$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$	954	pprox 0	-	-	-
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	955	1.26	11	5.9	15
$\widetilde{\chi}_{3}^{0}\widetilde{\chi}_{3}^{0}$	1294	0.91	-	-	-
$\widetilde{\chi}_{4}^{0}\widetilde{\chi}_{4}^{0}$	2262	0.58	-	-	-
$\widetilde{\chi}_2^+ \widetilde{\chi}_2^-$	2262	1.4	6.5	5.9	7.0
H^0A^0	3046	0.06	_	_	_
H^+H^-	3046	0.15	0.61	0.62	0.60

- Pair production using the best fit values for the masses
- Neutral particles not accessible at (tree level) in γγ collisions
- No ISR or beam spectra included
- $J_z = 2$ preferred for sfermions ($J_z = 0$ would be preferred at 5 TeV for the same model)

Reminder: Light-by-light scattering ($\gamma\gamma \rightarrow \gamma\gamma$)

ARTICLES PUBLISHED ONLINE: 14 AUGUST 2017 | DOI: 10.1038/NPHYS4208 nature physics

OPEN

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration[†]

Light-by-light scattering $(\gamma \gamma \rightarrow \gamma \gamma)$ is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using $480 \,\mu b^{-1}$ of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 ± 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb $(\gamma \gamma) \rightarrow$ Pb^(*) + Pb^(*) $\gamma \gamma$, for photon transverse energy $E_T > 3$ GeV, photon absolute pseudorapidity $|\eta| < 2.4$, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 ± 24 (stat.) ±17 (syst.) nb, which is in agreement with the standard model predictions.

$\gamma\gamma \rightarrow \gamma\gamma$ at a 10 TeV photon collider

е́е

γe

2.5

2

0.5 0

0

dL/(dħ@/E₀) [10³⁴cm⁻²s^{-1.} • A high energy photon collider would be 1.5 ideal to study light-by-light scattering 1

 $\frac{d\sigma}{d\Omega} = \frac{1}{16\pi^2\hat{s}} \left(\hat{s}^2 + \hat{t}^2 + \hat{s}\hat{t}\right)^2 \left(48c_1^2 + 11c_2^2 + 40c_1c_2\right)$ • **Example:** Born-Infeld theory (nonlinear extension of QED)

 $c_1 = -1/(32M^4), c_2 = 1/(8M^4)$

95% CL limit: M > 12.2 / 13.6 / 15.1 TeV for 150 / 750 / 4000 fb⁻¹ Ellis. Mavromatos. \rightarrow only small dependence on integrated luminosity Ph.R., You

For comparison: M > 100 GeV at ATLAS

arXiv:1703.08450

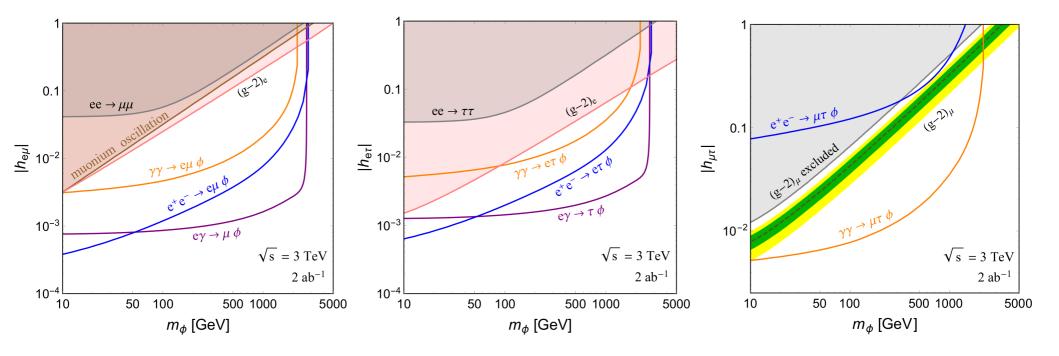
Other models under study

26/03/2019

0.4

0.6

ħω/E₀


0.2

10 TeV

0.8

One more example: LFV couplings

Scenarios with Lepton Flavour Violation (LFV) and a heavy scalar ϕ (connection to neutrino mass generation)

 m_{ϕ} : mass of heavy scalar $h_{\alpha\beta}$: LFV couplings

 \rightarrow Complementarity of eq- and qq-collisions in this scenario

CERN-2018-009-M