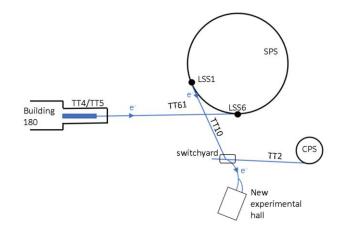
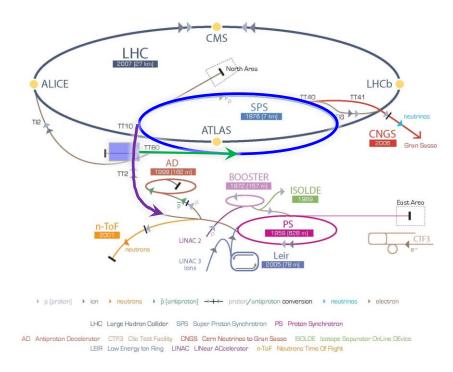
A primary electron beam facility at CERN – studies towards ALIC

ALEGRO workshop - March 27th, 2019


S. Stapnes (CERN)

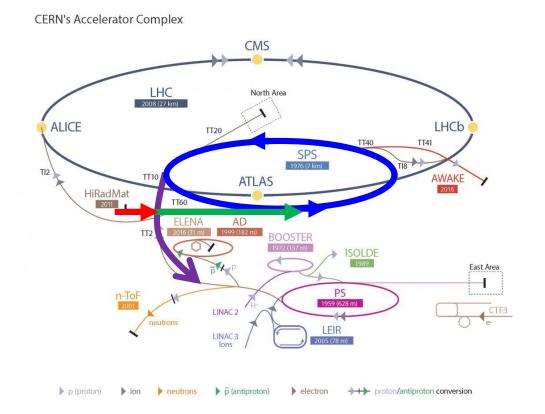
on behalf of the working group PBC-acc-e-beams** (email: PBC-acc-e-beams@cern.ch)

Motivations


- Physics: Large increasing interest in Light Dark Matter using e-beams, the key to the "eSPS proposal" – LDMX talk: slides
- Next step for X-band technology: Any next machine at CERN is beyond LHC, i.e. 15+ years away
 - We have looked carefully at what we could do with CLIC beam and/or drive-beam at a small scale – scaling the industry experience
 - Combing a compact linac with the SPS electron experience provides unique opportunities
- Strategic: Will bring electrons back at CERN fairly rapidly (linacs and rings) – important relevance for the developments and studies needed for future e+emachines at CERN – being linear or circular
- Future accelerator R&D more generally: Accelerator R&D and project opportunities with e-beams as source
- Main directions: Novel Acc. studies (ALIC) and CLEARER

Electrons at CERN, overview

Accelerator implementation at CERN of LDMX type of beam


- X-band based 70m LINAC to ~3.5 GeV in TT4-5
- Fill the SPS in 1-2s (bunches 5ns apart) via TT60
- Accelerate to ~16 GeV in the SPS
- Slow extraction to experiment in 10s as part of the SPS super-cycle
- Experiment(s) considered by bringing beam back on Meyrin site using TT10

Beyond LDMX type of beam, other physics experiments considered (for example heavy photon searches)

Acc. R&D interests (see later): Overlaps with CLIC next phase (klystron based), future ring studies, FEL linac modules, e-beams for plasma, medical/irradiation/detector-tests/training, impedance measurements, instrumentation, positrons and damping ring R&D

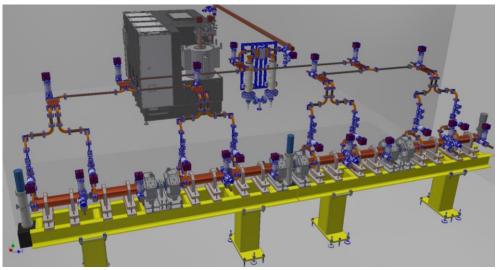
The flow

3.5GeV Linac

Transfer to

SPS

Acceleration in SPS


Extraction

Linac parameters

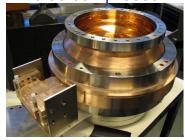
- 0.1GeV S-band injector
- 3.4GeV X-band linac
 - High gradient CLIC technology
 - 13 RF units to get 3.4 GeV in ~70 m

modulator 2 x 50MW	
	<u>e</u> -
~5.3m	

Possible parameters		
Energy spread (uncorrelated*)	<1MeV	
Bunch charge	52 pC	
Bunch length	~5ps	
Norm. trans emittance	~10um	
N bunches in one train	40	
Train length	200 ns	
Rep. rate	50/100 Hz	

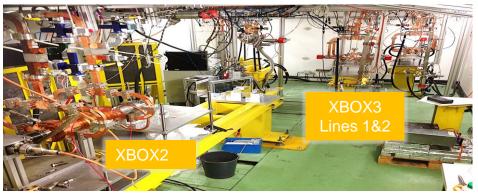
RF design of the X-BAND linac for the EUPRAXIA@SPARC_LAB project
M. Diomede Et al., IPAC18

Linac components available

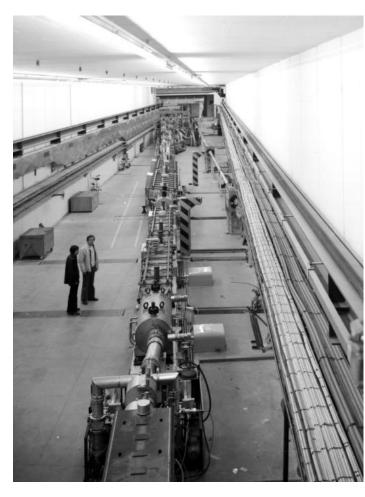

Examples

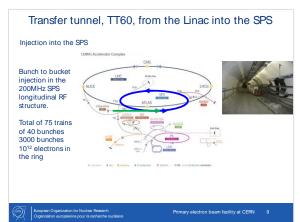
One RF unit accelerates 200ns bunch train up to 264 MeV

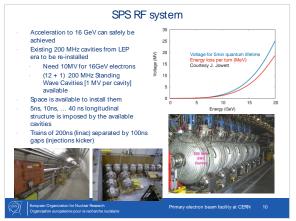
modulator ~5.3m

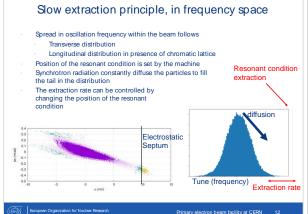


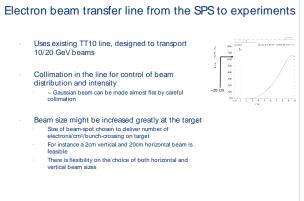
Accelerating structure




Linac in TT5/TT4


- Flexible bunch pattern provided by photo-injector
 5ns, 10ns, ... 40ns bunch spacing
- High repetition rate
 - 200 ns trains at 100 Hz
- To be installed in the available transfer tunnels TT4, in line with the SPS
- Room for accelerator R&D activities at end of linac (duty cycle in many cases low for SPS filling so important potential)




Beam to/in/from the SPS – see backup slides

Primary electron beam facility at CERN 16

Extracted beam and experimental area

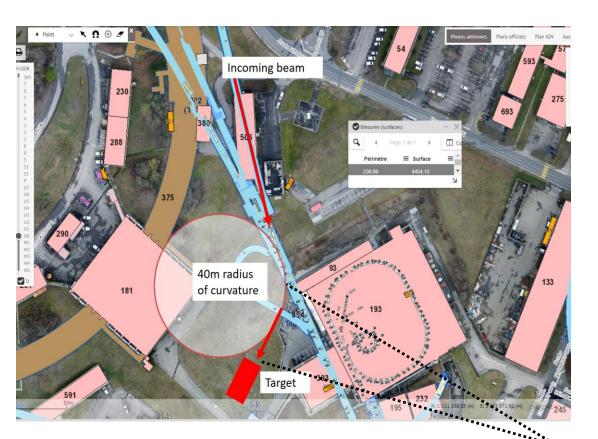
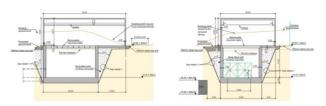
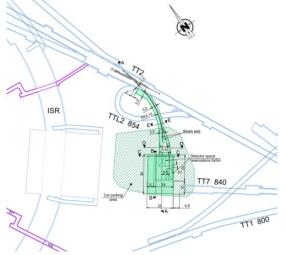
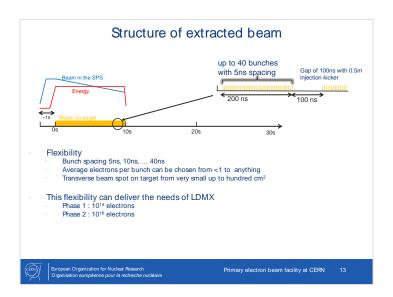
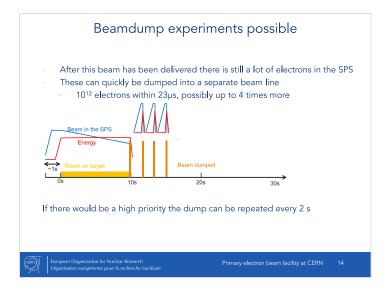
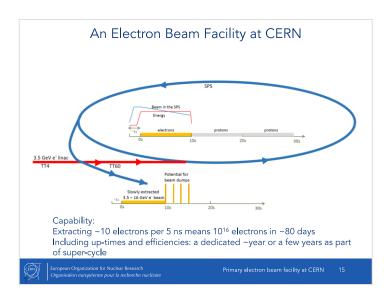


FIG. 43: Visualisation of the proposed underground (shown in blue) and overground (shown in red) facilities


FIG. 41: Typical Sections through the experimental hall parallel to the beam-line (left) and transverse to the beam-line (right)




In total ~50 m new tu

Beams in exp. area – instrumentation (see backup slides)

Instrumentation Linac: SPS: · Re-use of CTF3 inductive pick-ups · Standard orbit system (consolidated in LS2) Simple button BPMs would also do the Should be able to measure to 1e9 (limit ~5e8) · Beam Size Beam Size Wirescanners · OTR screens (can also be combined with · Possible use of synchrotron radiation streak camera for bunch length) Intensity DC Transformer OK for total current · Re-use of CTF3 inductive pick-up or · Fast BCT does not distinguish 5ns spaced bunches standard beam current transformers Could do batch by batch but at limit of resolution Extracted beam: · Position & Intensity Use of fibre monitors. The challenge of measuring very low · Developed for new EHN1 (neutrino intensity beam can be circumvented using platform) secondary lines Scintillating (or Cherenkov) fibres a higher intensity for beam setup Low material budget · > 90% efficiency for single particles demonstrated · R&D required to make them UHV compatible

Potential use of such a facility

(linac more than 90% free)

Physics:

LDMX - Other hidden sector exp., incl. dump-type experiments using the available electrons - Nuclear physics

Accelerator physics opportunities:

CLIC: Linac goes a long way towards a natural next step for use of technology (collaborate with INFN and others also using technology for X-band linacs in coming years)

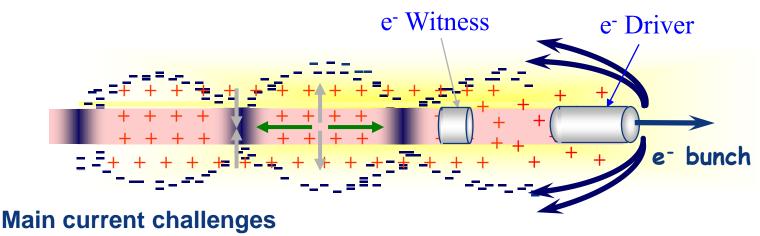
Relevant also for other potential future facilities using electrons (rings) considered at CERN

Plasma studies with electrons

Use electron (3.5 GeV) beam as driver and/or probe - studied by AWAKE WG

General acc. R&D as in CLEAR – existing ~200 MeV linac - today (https://clear.web.cern.ch)

Plasma-lenses, impedance, high grad studies, medical (electron irradiation), training, instrumentation, THz, ESA irradiation. Recent results: https://acceleratingnews.web.cern.ch/article/first-experimental-results-clear-facility-cern


Positron production (interesting for linear or circular colliders and plasma) and studies with positrons for plasma, and <u>LEMMA</u> concept for muon collider

General Linear or Ring related Collider related studies using SPS beam

Example: damped beam for final focus studies (beyond ATF2), FCC-ee related studies

PLASMA WAKEFIELD ACCELERATOR (e⁻)

- ♦ True D-bunch/W-bunch experiments
- ♦ Demonstrate emittance preservation (at the mm-mrad level)
- ♦ Reach low energy spread (%-level)
- ♦ Reach high energy transfer efficiency
- ♦ Repeat with e⁺
- **♦**Staging
- ♦ Collider parameters ...
 - Quality of the results limited by the drive (D) and witness (W) bunch parameters available

eSPS MOTIVATIONS

Goal: study accelerator-related PWFA topics

- ♦ Provide quality accelerated bunch, same $\Delta E/E$ and ε_N as injected one
- ♦Aim for energy gain on the order of incoming energy, 3.5GeV
- ♦Aim for >1GeV/m accelerating gradient
- ♦Operate with independent D and W bunches, D=3.5GeV, W=CLEAR++
- ♦ Matching of the W-bunch to the plasma

May still be the only facility with GeV drive bunch and independent D+W bunch

Possible studies:

- ♦ Emittance preservation (in the blow-out regime)
- ♦Narrow final energy spread => beam loading
- ♦D-bunch energy depletion, energy transfer efficiency
- ♦Beam/plasma matching
- ♦Bunch shaping for >2 transformer ratio and energy transfer efficiency
- ♦ Effect of drive bunch train on wakefields and plasma as a fct of time
- ♦ Effect of plasma "quality", longitudinal density profile, ramps, reproducibility, etc.
- ♦ Test bed for plasma sources: helicon source, discharge source, etc.

Possibility to have suitable positron (e+) bunch for De-/We+-PWFA studies

Fits the ALEGRO roadmap

All knowledge at CERN, including CLEAR++, AWAKE, plasma source, etc.

Dark Sector Physics with a Primary Electron Beam Facility at CERN

Torsten Åkesson, Fabio Bossi, Antonio Boveia, Markus Brugger, Lene Bryngemark, Philip N. Burrows,^{5,4} Massimo Carpinelli,^{6,7} Nuria Catalan,⁴ Riccardo Catena,⁸ Augusto Ceccucci, ⁴ James Chappell, ⁹ Owen Colegrove, ¹⁰ Giulia Collura, ¹⁰ Jan Conrad, ¹¹ Karel Cornelis, ARoberto Corsini, Hans Danielsson, Dominik Dannheim, Steffen Doebert, Caterina Doglioni, 1 E. C. Dukes, 12 Yann Dutheil, 4 Valentina Dutta, 10 Bertrand Echenard, 13 Lyn Evans, 4 Matthew A. Fraser, 4 Alexander Friedland, 14 Jonathan Gall, 4 Jake S. Gessner, 4 Brennan Goddard, Norman Graf, 14 R. C. Group, 12 Alexej Grudiev, 4 Edda Gschwendtner, 4 Vincent Hedberg, ¹ Joshua Hiltbrand, ¹⁵ David Hitlin, ¹³ Joseph Incandela, ¹⁰ Lars Jensen, ⁴ Robert Johnson, 16 Rhodri Jones, 4 Venelin Kozhuharov, 17 Gordan Krnjaic, 18 Mike Lamont, 4 Andrea Latina, ⁴ Thibaut Lefevre, ⁴ Emanuele Leonora, ¹⁹ Lucie Linssen, ⁴ Fabio Longhitano, ¹⁹ Olle Lundh, ¹ Else Lytken, ¹ Jeremiah Mans, ¹⁵ Takashi Maruyama, ¹⁴ Jeremy McCormick, ¹⁴ Gerard Mcmonagle, Eric Montesinos, Omar Moreno, Patric Muggli, Geoffrey Mullier, Timothy Nelson, ¹⁴ Gavin Niendorf, ¹⁰ John A. Osborne, ⁴ Yannis Papaphilippou, ⁴ Reese Petersen, 15 Ruth Pöttgen, 1 Javier Prieto, 4 Mauro Raggi, 20 Nunzio Randazzo, 19 Alexander Read,²¹ Philipp Roloff,⁴ Carlo Rossi,⁴ Andre Sailer,⁴ Daniel Schulte,⁴ Philip Schuster,^{14,22} Eva Sicking, ⁴ Valeria Sipala, ^{6,7} Steinar Stapnes, ⁴ Igor Syratchev, ⁴ Natalia Toro, ^{14,22} Nhan Tran, ¹⁸ Domenico D'Urso, ^{6,7} Paolo Valente, ²³ Andrew Whitbeck, ¹⁸ and Walter Wuensch ⁴

¹Lund University, Department of Physics, Box 118, 221 00 Lund, Sweden ²INFN Laboratori Nazionali di Frascati, Italy ³The Ohio State University, Department of Physics and Center for Cosmology and Astroparticle Physics, 191 W. Woodruff Ave., Columbus, Ohio 43210, USA ⁴CERN, CH-1211 Geneva 23, Switzerland ⁵University of Oxford, Oxford, United Kingdom ⁶Chemistry and Pharmacy Department, Università degli Studi di Sassari, Sassari 07100, Italy ⁷INFN Laboratori Nazionali del Sud, Catania 95123, Italy ⁸Chalmers University of Technology, Department of Physics, SE-412 96 Göteborg, Sweden ⁹University College London, Gower Street, LONDON, WC1E 6BT, UK ¹⁰University of California at Santa Barbara, Santa Barbara, CA 93106, USA 11 Oskar Klein Centre for Cosmoparticle Physics, Fysikum, Stockholm University, 10961 Stockholm, Sweden ¹²University of Virginia, Charlottesville, VA 22904, USA 13 California Institute of Technology, Pasadena, CA 91125, USA ¹⁴SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA ¹⁵University of Minnesota, Minneapolis, MN 55455, USA ¹⁶Santa Cruz Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA ¹⁷Sofia University, Bulgaria ¹⁸Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ¹⁹INFN- Sezione di Catania, Italy ²⁰Dipartimento di Fisica, Sapienza Università di Roma and INFN Roma, Italy ²¹Department of Physics, University of Oslo, Postbox 1048, 0316 Oslo, Norway

²²Perimeter Institute for Theoretical Physics, Waterloo ON N2L 2Y5, Canada
²³INFN Roma, Italy

V. A primary electron beam facility at CERN	42
A. Introduction and overview	42
B. Electron linac	44
S-band electron injector	44
2. High gradient X-band linac	45
3. Beam stability	47
C. Electron beam in the SPS	47
1. Linac to SPS	47
2. RF system	49
3. Beam dynamics and stability	49
D. Beam delivery and parameters	51
1. SPS slow extraction	51
SPS to target	52
E. Instrumentation	55
Source and Linac systems	55
2. Linac transfer and SPS injection	55
3. SPS ring systems	55
4. SPS Extraction and TT10 Transfer Line	56
F. Civil engineering and experimental area	57
1. Location	57
2. Proposed facilities	58
3. Construction Methods	61
4. Recommendations for work at the next stage of project development	62

VII. CERN and R&D on acceleration technology	79
A. Introduction	79
 Studies with relevance for future facilities. 	79
Plasma acceleration.	79
General accelerator R&D.	80
The SPS electron beam.	80
B. Large scale X-band linac prototype	80
 C. Other future machines needing electrons 	82
D. Plasma studies using electrons	83
1. Introduction	83
General beam and plasma parameters requirements	84
Witness bunch	84
4. Simulation results	85
Plasma source	86
6. Experimental area	86
7. Conclusion	87
 E. A future high energy CLEAR facility 	87
F. Added capabilities: Positron production and studies with positrons	90
 Studies for future lepton colliders 	92
2. The LEMMA muon collider	92
Plasma wakefield experiments with a positron beam	93
Physics of Positron Acceleration in Plasma	93
Crystal undulators and photon production	94
G. Summary and user community	95
The accelerator community involved as developers or users	96
VIII. Conclusions	97
A. Schedule and cost	98
Electron beam facility	98
2. LDMX	99

101

EoI to the SPSC Oct 2018: https://cds.cern.ch/record/2640784

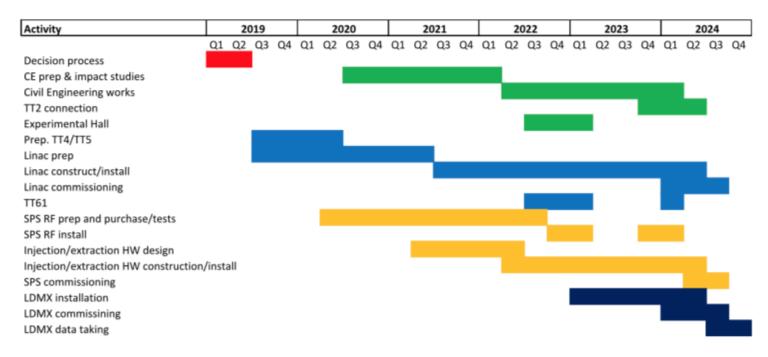
Also submitted in "compact form" to ESPP update 18.12: https://indico.cern.ch/event/765096/contributions/3295600/

Costs

Sources

- Industrial (e.g. RF components, structures for linacs)
- "Standard" rates (e.g. civil engineering)
- PBS with ~80 items, estimates from technical responsible

TABLE I: Cost summary


PBS	Item	Cost MCHF
1.1	Source	6.0
1.2	X-band linac	34.1
2.1	Linac to SPS transfer	4.6
2.2	SPS fast injection	3.4
2.3	SPS ring	10.5
2.4	SPS slow extraction	3.3
2.5	Transfer SPS to Exp. Area	4.2
3.2	Civil Engineering	11.4
3.3	Exp. Area infrastructure	2.0
	Sum	79.5

Schedule in the Eol

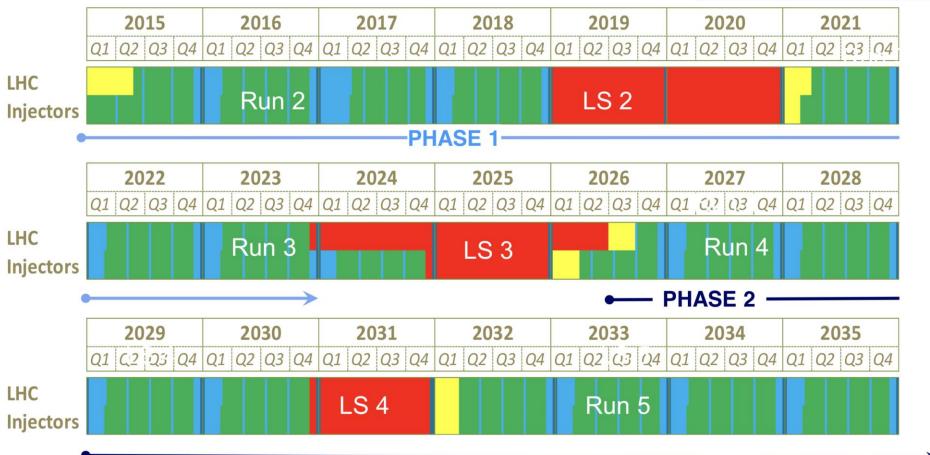
Technically based ... however

- Respects that efforts during LS2 has to be limited
- No major spending or commitments until Spring/mid 2020 (ESU completion) -> need significant resources from then
- Final connection after end of LHC run in 2023
- Can run during LS3 when/if the SPS is available
- Need to decide now if we move ahead towards a CDR or similar in a years time – resource/priority issue

LHC roadmap: according to MTP 2016-2020 V2

LS2 starting in 2019

=> 24 months + 3 months BC


LS3 LHC: starting in 2024

=> 30 months + 3 months BC

Injectors: in 2025

=> 13 months + 3 months BC

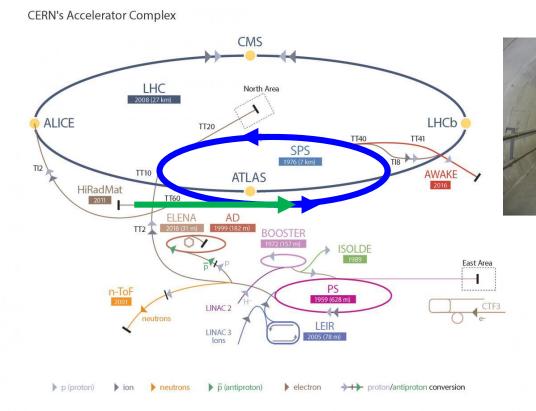
Towards a CDR this year

1. Overall	
2. Physics goals and justifications for be	eams
3. Linac	
	3.1 Gun and Injector
	3.2 X-band LINAC
	3.3 Positron production and DR
4. SPS	
	4.1 Transfer to SPS
	4.2 Injection
	4.3 RF
	4.4 Extraction
	4.5 Transfer and delivery to EA
	4.6 Electron beam performance
	4.7 Impedances and hadron compatibilites
5. CE and infrastructure	
	5.1 CE including Exp.Hall
	5.2 CV
	5.3 EL
	5.4 General infrastructure TT4/5, refurbishment
	5.5 Integration
4. Instrumentation	
	4.1 Linac and positrons
	4.2 Transfer line and SPS
	4.3 Extraction line and beam-delivery
5. Radiation studies and protection	
6. Accelerator R&D	Intro
	6.1 Linac related
	6.2 Ring related (FCC-ee)
	6.3 Plasma
	6.4 CLEARER
	6.5 Positrons
7. Implementation plans	Schedules, Resources, Costs, Power

Concluding remarks

- Important physics opportunities with e-beams at CERN
- Based on previous usage of the CERN accelerator complex, and building on the accelerator R&D for CLIC, an electron beam facility would be a natural next step
 - No show-stoppers have been found when exploring this option
 - LDMX interest in pursuing this option as beam close to ideal
- Will also provide many opportunities for important and strategic accelerator R&D at CERN – and opens the door to future electron facilities in general

- Thank you -

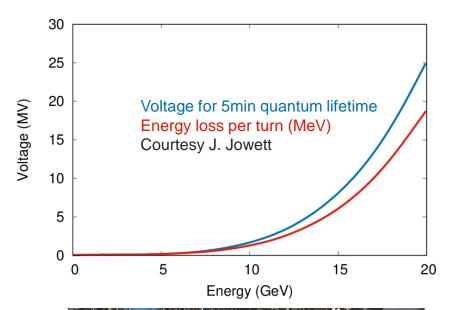

More information

Transfer tunnel, TT60, from the Linac into the SPS

Injection into the SPS

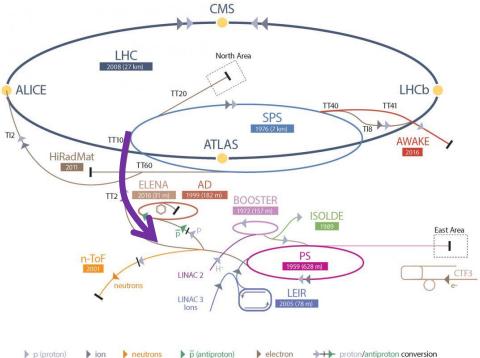
Bunch to bucket injection in the 200MHz SPS longitudinal RF structure.

Total of 75 trains of 40 bunches 3000 bunches 10¹² electrons in the ring

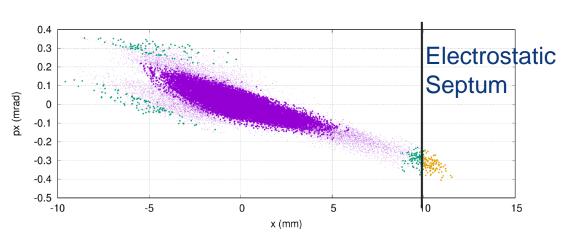


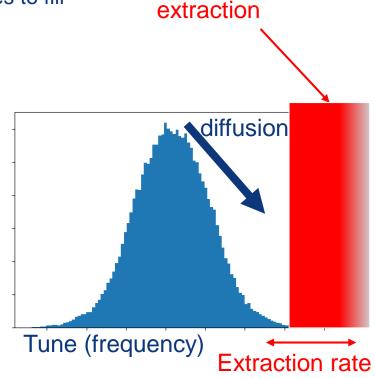
SPS RF system

- Acceleration to 16 GeV can safely be achieved
- Existing 200 MHz cavities from LEP era to be re-installed
 - Need 10MV for 16GeV electrons
 - (12 + 1) 200 MHz Standing
 Wave Cavities [1 MV per cavity]
 available
- Space is available to install them
- 5ns, 10ns, ... 40 ns longitudinal structure is imposed by the available cavities
- Trains of 200ns (linac) separated by 100ns gaps (injections kicker)



Slow extraction to experiments





Extraction

Slow extraction principle, in frequency space

- Spread in oscillation frequency within the beam follows
 - Transverse distribution
 - Longitudinal distribution in presence of chromatic lattice
- Position of the resonant condition is set by the machine
- Synchrotron radiation constantly diffuse the particles to fill the tail in the distribution
- The extraction rate can be controlled by changing the position of the resonant condition



Resonant condition

Electron beam transfer line from the SPS to experiments

- Uses existing TT10 line, designed to transport 10/20 GeV beams
- Collimation in the line for control of beam distribution and intensity
 - Gaussian beam can be made almost flat by careful collimation

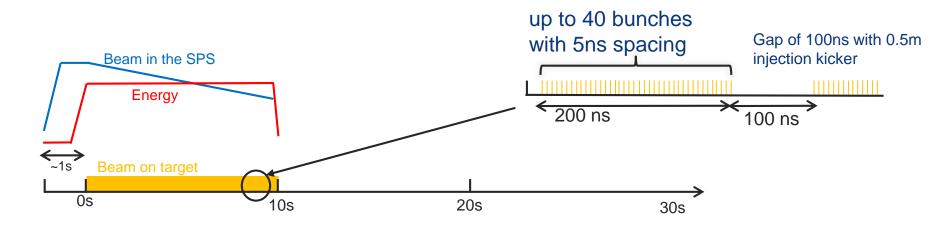
- Beam size might be increased greatly at the target
 - Size of beam-spot chosen to deliver number of electrons/cm²/bunch-crossing on target
 - For instance a 2cm vertical and 20cm horizontal beam is feasible
 - There is flexibility on the choice of both horizontal and vertical beam sizes

Instrumentation

Linac:

- Position
 - Re-use of CTF3 inductive pick-ups
 - Simple button BPMs would also do the job
- Beam Size
 - OTR screens (can also be combined with streak camera for bunch length)
- Intensity
 - Re-use of CTF3 inductive pick-up or standard beam current transformers

Extracted beam:


- Position & Intensity
 - Use of fibre monitors.
 - Developed for new EHN1 (neutrino platform) secondary lines
 - Scintillating (or Cherenkov) fibres
 - Low material budget
 - > 90% efficiency for single particles demonstrated
 - R&D required to make them UHV compatible

SPS:

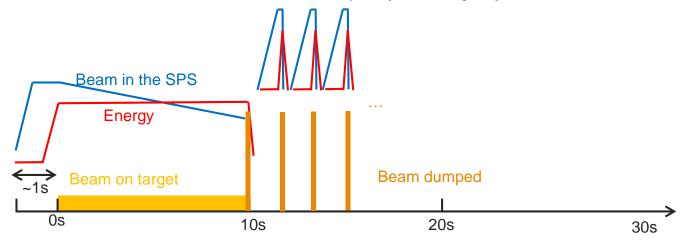
- Position
 - Standard orbit system (consolidated in LS2)
 - Should be able to measure to 1e9 (limit ~5e8)
- Beam Size
 - Wirescanners
 - Possible use of synchrotron radiation
- Intensity
 - DC Transformer OK for total current
 - Fast BCT does not distinguish 5ns spaced bunches
 - Could do batch by batch but at limit of resolution (tbc)

The challenge of measuring very low intensity beam can be circumvented using a higher intensity for beam setup

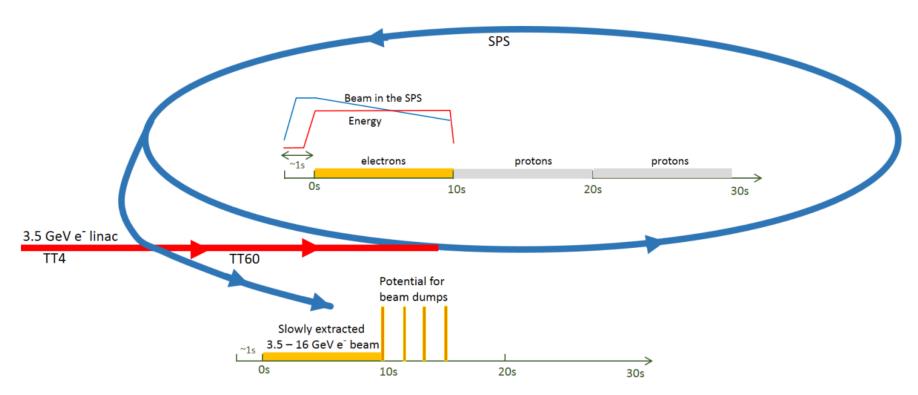
Structure of extracted beam

Flexibility

- Bunch spacing 5ns, 10ns, ... 40ns
- Average electrons per bunch can be chosen from <1 to anything
- Transverse beam spot on target from very small up to hundred cm²


This flexibility can deliver the needs of LDMX

Phase 1 : 10¹⁴ electrons
 Phase 2 : 10¹⁶ electrons


Beamdump experiments possible

- After this beam has been delivered there is still a lot of electrons in the SPS
- These can quickly be dumped into a separate beam line
 - 10¹² electrons within 23µs, possibly up to 4 times more

If there would be a high priority the dump can be repeated every 2 s

An Electron Beam Facility at CERN

Capability:

Extracting ~10 electrons per 5 ns means 10¹⁶ electrons in ~80 days Including up-times and efficiencies: a dedicated ~year or a few years as part of super-cycle

