Modelling and optimization of a PWFA-LC stage

CERN/University of Oslo

Ben Chen

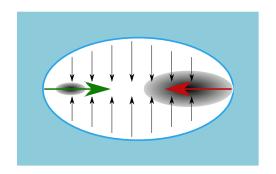
ALEGRO Workshop 28 March 2019

Introduction

Wakefield Modelling

Simple Quasi-Static Numerical Model

Summary


References

Why PWFA?

Advantages:

- ► Can sustain enormous gradients on the order of tens of GV/m [3].
- ► Focusing everywhere inside the bubble.

Transverse instabilities

Challenges, for instance:

- ► Transverse wakefields
 - ► Field generated by a driving particle's interaction with the acc. cavity due to misalignment.
 - Unstable oscillations.
 - ► CLIC: 7 V/pC/mm/m [4].
 - ► PWFA simulations: $5 \cdot 10^7 \text{ V/pC/mm/m}$.
 - ▶ Limits the beam charge.
- Crucial to understand in order to develop mitigation techniques.
 - "banana shape"
 >> off-axis
 >> electric axi:

Figure: Off-axis beam kicked towards the cavity walls, S. Di Mitri, USPAS 2015.

- ► Mitigation methods exist.
- ► Need
 - systematic parameter studies.
 - study of emittance growth through many stages to verify the effectiveness of suppression.

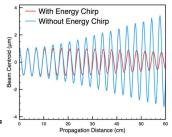
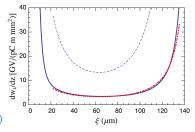


Figure: FACET-II parameters, 10% energy spread, W. An.

Related work


Intra-beam transverse wake of trailing beam

▶ G. Stupakov [7]:

$$\frac{\mathrm{d}w_{\rm t}}{\mathrm{d}z} = \frac{8}{(r_{\rm b}(\xi) + 0.75k_{\rm p}^{-1})^4}$$

V. Lebedev et al. [6]:

$$W_{\perp}(\xi, \xi_2) \approx \frac{8(\xi - \xi_2)}{r_{\rm b}(\xi)r_{\rm b}^3(\xi_2)}\Theta(\xi - \xi_2)$$

Expressing the hosing instability in terms of a wakefunction will allow a more global parameter optimization.

Section 2

Wakefield Modelling

- ► Find an appropriate wakefunction for PWFA.
- ► Benchmarked with modified FACET-II parameters.
- ► Compared the transverse wakefield

$$\mathcal{W}_{\perp}(\xi) = \int_{\xi_{\mathrm{H}}}^{\xi} W_{\perp}(\xi' - \xi) \lambda(\xi') X(\xi') \,\mathrm{d}\xi',$$

to the directly calculated $W_{\rm QP}$ using the fields from the QuickPIC simulation results.

 $X(\xi)$: mean transverse offset of a slice at ξ . $\lambda(\xi)$: longitudinal charge distribution. $\xi_{\rm H}$: longitudinal coordinate of beam head.

	Drive	Trailing
	beam	beam
γ	195690	195690
$N_{\rm B} \ [10^{10}]$	1.0	0.333
X_0 [µm]	0	3.7575
σ_x [µm]	2.05	2.05
σ_y [µm]	2.05	2.05
σ_z [µm]	12.77	6.38

Table: Beam parameters used in the simulation. Q is the charge per particle, m is the mass per particle, γ is the initial Lorentz factor, $N_{\rm B}$ is the total number of particles, X_0 is the transverse offset, from the ξ -axis, and the various σ 's give the beam dimension along the x, y and z-direction.

QuickPIC open source

- ► Fully parallelized, fully relativistic, three-dimensional quasi-static PIC code.
- ► Quasi-static approximation.
- ► Reduces computation time with 2-3 OM.
- ▶ Agrees well with full PIC codes for problems of interest.

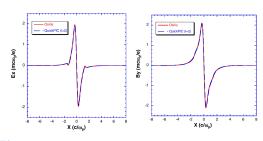


Figure: Radial electric and azimuthal magnetic fields comparisons for electron drive beam. [5]

Parametric wakefunction

$$W_{\perp}(\xi' - \xi) = \frac{2}{\pi \varepsilon_0 a^{*4}} (\xi' - \xi) \Theta(\xi' - \xi)$$
 (2)

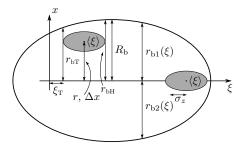


Figure: The driving and trailing beams shown together with the plasma bubble and various scales used in the calculations.

- ▶ Originally proposed for metal structures [2].
- ightharpoonup Structure iris a in plasma?
- ▶ Best choice: $a^* = r_{\rm bT} + k_{\rm p}^{-1}$. Similar approach used by Stupakov [7].

Parametric wakefunction

$$W_{\perp}(\xi' - \xi) = \frac{2}{\pi \varepsilon_0 a^{*4}} (\xi' - \xi) \Theta(\xi' - \xi)$$
 (2)

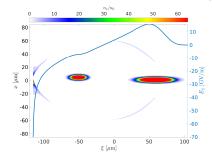
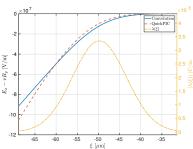
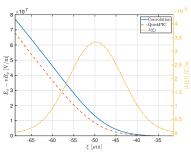


Figure: The beam and plasma electron density per unit per unit initial plasma density and the axial electric field.


- ▶ Plasma density $n_0 = 4.0 \cdot 10^{16} \, \text{cm}^{-3}$.
- Area of interest: $\pm 3\sigma_{z\text{WB}}$ from the center of the witness beam.

Results


- Comparison of the theoretical and simulated wakes.
- ▶ Relative error

$$\Delta = \left| \frac{\mathcal{W}_{\perp} - \mathcal{W}_{\mathrm{QP}}}{\langle \mathcal{W}_{\mathrm{QP}} \rangle} \right|$$

\(\ldots \rightarrow \): fields directly extracted from QuickPIC and averaged over the area of interest.

Figure: $s = 0, \Delta = 0.0965.$

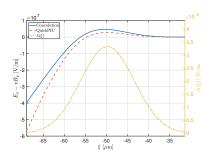


Figure: $s = 1.1 \,\mathrm{m}, \, \Delta = 0.253.$

← ← □ → ← □ → ← □ → ← ○ ← ○ ←

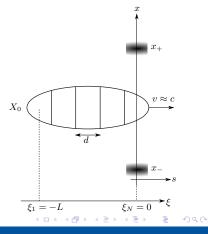
Results

Figure: $s = 2.2, \Delta = 0.397.$

Figure: $s = 3.3 \,\mathrm{m}, \, \Delta = 0.0776$

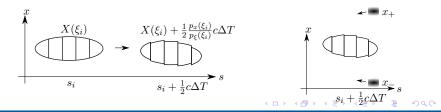
- ▶ Not perfect, but gives decent agreement.
- ▶ Is used in the numerical model.

Section 3


Simple Quasi-Static Numerical Model

Preparations

- Inspired by D. Schulte's model, and developed together with D. Schulte and E. Adli.
- ► Long plasma too heavy in QuickPIC.
- ▶ Beam of length L divided into N slices with thickness d.
- ► Longitudinal position of slices: $\xi = [\xi_1, \xi_2, ..., \xi_N]$
- ▶ Initial offset X_0 .
- Offset of each beam slice: $X(\xi) = X(\xi_i) = [X_1, X_2, ..., X_N]$


▶ Plasma element transverse position: x_{\pm}

Procedure

- ► Leapfrog integration, drift-kick-drift.
- ► Quasi-static approximation.
- ▶ Propagate the beam half a time step and update $X(\xi_i)$.
- ▶ Plasma-beam interaction by "scanning" the plasma slices backwards along the beam.
- ▶ $F_x(\xi_i)$ on the beam slices determined by $W_{\perp}(\xi' \xi_i, a^*)$ and $X(\xi_i)$.
- ► Kick the beam longitudinally and transversely.
- ▶ Propagate the beam half a time step and update $X(\xi_i)$.

Benchmarking

Comparison with QuickPIC

- ▶ Mean transverse offset of beam slices located 0-2 rms beam length σ_z behind the beam center VS. propagation distance.
- ► Modified FACET-II parameters for stable propagation through one plasma cell.

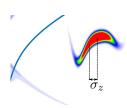


Figure: From QuickPIC.

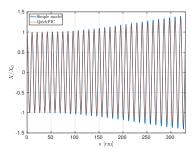


Figure: Beam center.

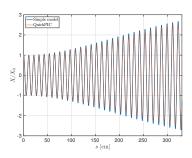


Figure: One σ_z behind beam center.

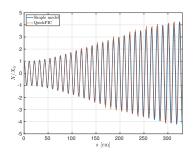


Figure: $2\sigma_z$ behind beam center.

Procedure for the study of PWFA parameters

- ► Focused on beam length and charge.
- ► SNOWMASS parameters by E. Adli et al. [1]:

	Drive beam	Trailing beam
$\overline{\gamma}$	48924	48924
$N_{\rm B} \ [10^{10}]$	2.0	1.0
σ_x [µm]	0.69	0.69
σ_y [µm]	0.69	0.69
σ_z [µm]	40	20

 $n_0 = 2 \cdot 10^{16} \,\mathrm{cm}^{-3}, \,\Delta z = 187 \,\mathrm{\mu m}.$

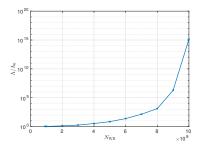
Simplifications/assumptions:

- 1. Perfect drive beam.
- 2. Gradient profile remain unchanged (extracted from QuickPIC simulations).
- 3. The beam length is scaled proportionally to the beam charge.

Procedure for the study of PWFA parameters

Procedure:

- 1. Start with an offset beam.
- 2. Calculate the initial RMS amplitude


$$\Lambda_0 = \sum_i \left[\left(\frac{X_i}{\sigma_x} \right)^2 + \left(\frac{X_i'}{\sigma_{x'}} \right)^2 \right]. \tag{3}$$

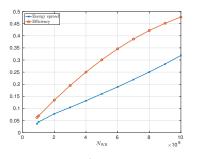
- 3. After propagating beam through 60 plasma cells: calculate the final RMS amplitude Λ .
- **4.** Check the stability Λ/Λ_0 .
- 5. Loop through different beam charges, adjust the length and check the stability.

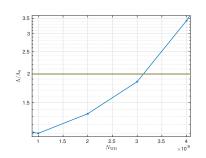
Final relative RMS energy spread and efficiency:

$$\frac{\sigma_{\mathcal{E}}}{\langle \mathcal{E} \rangle} = \frac{1}{\langle \mathcal{E} \rangle} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\mathcal{E}_i - \langle \mathcal{E} \rangle)^2} \qquad \eta = \frac{E_{\text{dec}}^{\text{max}}}{\langle E_{\text{acc}} \rangle} \frac{N_{\text{WB}}}{N_{\text{DB}}} = T \frac{N_{\text{WB}}}{N_{\text{DB}}}. \quad (4)$$

Results

3.5 2.5 1.5 2.5 1.5 2.2 2.5 3.5 4 ×10⁹


Figure: Amplification of Λ_0 VS. N_{DB} .


Figure: Zoomed into the lhs.

- ▶ What Λ/Λ_0 is acceptable?
- \wedge $\Lambda/\Lambda_0 = 2$ was chosen.
- ► Already 100% luminosity loss.
- ▶ Limit: $N_{\rm DB} \lesssim 3 \cdot 10^9$, $\sigma_z \lesssim 6 \,\mu{\rm m}$.

Results

- ▶ What Λ/Λ_0 is acceptable?
- $ightharpoonup \Lambda/\Lambda_0 = 2$ was chosen.
- ► Already 100% luminosity loss.
- Limit: $N_{\rm DB} \lesssim 3 \cdot 10^9$, $\sigma_z \lesssim 6 \,\mu {\rm m}$.

Summary

- ▶ Acc. gradient several o.m. larger than conventional NC acc. structures may be achieved with PWFA.
- ► Transverse wakefields have to be understood and mitigated.
- ► Proposed the wakefunction:

$$W_{\perp}(\xi' - \xi) = \frac{2}{\pi \varepsilon_0 a^{*4}} (\xi' - \xi) \Theta(\xi' - \xi)$$

- ► Compared against QuickPIC simulations.
- ► Simple quasi-static model.
- ► Simple PWFA parameter study attempting in finding a rough limit for a stable beam.

Make accelerators small again!

E. Adli, J-P. Delahaye, S. J. Gessner, M. J. Hogan, T. Raubenheimer, W. An, C. Joshi, and W. Mori.

A beam driven plasma-wakefield linear collider: From higgs factory to multi-tev.

In Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013, 2013.

K. Bane.

Short-range dipole wakefields in accelerating structures for the NLC, 2003.

I. Blumenfeld et al.

Energy doubling of 42 gev electrons in a metre-scale plasma wake field accelerator.

 $Nature,\ 445:741-744,\ 02\ 2007.$

A. Grudiev and W. Wuensch.

Design of the CLIC main linac accelerating structure for CLIC conceptual design report, Jan 2010.

C. Huang.

Quasi-static modeling of beam-plasma and laser-plasma interactions.

PhD thesis, University of California, Los Angeles, Dec 2018.

V. Lebedev, A. Burov, and S. Nagaitsev.

Efficiency versus instability in plasma accelerators.

Physical Review Accelerators and Beams, 20(12):121301, 2017.

G. Stupakov.

Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration.

Phys. Rev. Accel. Beams, 21:041301, Apr 2018.

