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Why PWFA?

Advantages:
» Can sustain enormous gradients on the order of tens of
GV/m [3].

» Focusing everywhere inside the bubble.
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Transverse instabilities

Challenges, for instance: L .
» Mitigation methods exist.
» Transverse wakefields

> Need
> Field generated by a driving
particle’s interaction with the acc. > systematic parameter studies.
cavity due to misalignment. > study of emittance growth
» Unstable oscillations. through many stages to
» CLIC: 7V/pC/mm/m [4]. verify the effectiveness of
» PWFA simulations: suppression.
5107 V/pC/mm/m. e
> Limits the beam charge. — With Energy Chirp

— Without Energy Chirp

~

» Crucial to understand in order to
develop mitigation techniques.
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. Figure: FACET-II parameters, 10% energy
Flgure: Off-axis beam kicked towards the spread, W. An.

cavity walls, S. Di Mitri, USPAS 2015.




Related work

Intra-beam transverse wake of trailing beam

» G. Stupakov [7]:
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» Expressing the hosing instability in terms of a wakefunction will allow a
more global parameter optimization.
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Section 2

Wakefield Modelling
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» Find an appropriate
wakefunction for PWFA.

. . Drive Trailing
» Benchmarked with modified beam beam

FACET-II parameters. v 195690 195690
Ng [10%°] 1.0 0.333

> Compared the transverse Xo [pm] 0 3.7575
wakefield o [pm] 2.05 2.05
oy [pum| 2.05 2.05

o |pm]| 12.77 6.38

3
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Table: Beam parameters used in the

&n simulation. @ is the charge per particle, m
(1) is the mass per particle, v is the initial
A Lorentz factor, Ng is the total number of
to the dlrectly Calculated WQP particles, X is the transverse offset, from
. the &-axis, and the various o’s give the
usnlg the ﬁelds from the beam dimension along the x, y and
QuickPIC simulation results. #-direction.

X (&): mean transverse offset of a slice at &.
A(€): longitudinal charge distribution.
& longitudinal coordinate of beam head.
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QuickPIC open source

» Fully parallelized, fully relativistic, three-dimensional quasi-static
PIC code.

» Quasi-static approximation.
» Reduces computation time with 2-3 OM.
> Agrees well with full PIC codes for problems of interest.
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Flgure: Radial electric and azimuthal magnetic fields
comparisons for electron drive beam. [5]




Parametric wakefunction

Wi —¢) = ’

(=96 -9 (2)

TEQQ

» Originally proposed for metal
structures [2].

» Structure iris @ in plasma?

> Best choice: a* = ryp + k'
Similar approach used by
Stupakov [7].

Figure: The driving and trailing beams
shown together with the plasma bubble and
various scales used in the calculations.
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Parametric wakefunction
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Figure: The beam and plasma electron
density per unit per unit initial plasma density
and the axial electric field.
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Results

» Comparison of the theoretical and simulated wakes.

» Relative error
WL —Wap

8= (Wap)

> (...): fields directly extracted from QuickPIC and averaged over the
area of interest.
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Figure: s =0, A = 0.0965. Figure: s =1.1m, A = 0.253.
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Results
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Figure: s =2.2, A =0.397. Figure: s =3.3m, A =0.0776

» Not perfect, but gives decent agreement.

» Is used in the numerical model.
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Section 3

Simple Quasi-Static Numerical Model
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Preparations

» Plasma element transverse
position: x4
» Inspired by D. Schulte’s model, and
developed together with D. Schulte
and E. Adli.

» Long plasma too heavy in

QuickPIC. -

» Beam of length L divided into N
slices with thickness d.

» Longitudinal position of slices: X0 Q [ e
£=1[&,&,¢nN] ;

» Initial offset Xj. ~d

» Offset of each beam slice:
X(§) = X(&) = [X1, Xz, ., Xn] -




Procedure

Leapfrog integration, drift-kick-drift.
Quasi-static approximation.
Propagate the beam half a time step and update X(¢&;).

vV vYyy

Plasma-beam interaction by "scanning" the plasma slices

backwards along the beam.

> F,(&) on the beam slices determined by W (£ — &;,a*) and
X (&)

» Kick the beam longitudinally and transversely.

» Propagate the beam half a time step and update X (&;).

x
X(&) X(&) + 32 AT
LD -~
T S 1 > S
g Si + §CAT
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Benchmarking
Comparison with QuickPIC

» Mean transverse offset of beam slices located 0 — 2 rms beam
length o, behind the beam center VS. propagation distance.

» Modified FACET-II parameters for stable propagation through
one plasma cell.
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Figure: From QuickPIC. s o]

Figure: Beam center.
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Figure: One o, behind beam center. Figure: 20, behind beam center.
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Procedure for the study of PWFA parameters

» Focused on beam length and charge.
» SNOWMASS parameters by E. Adli et al. [1]:

Drive beam  Trailing beam

ol 48924 48924
Ng [10°] 2.0 1.0
o, [nm] 0.69 0.69
oy [pm] 0.69 0.69
o, [pm] 40 20

> ng=2-101%cm™3, Az = 187 pm.

Simplifications/assumptions:
1. Perfect drive beam.

2. Gradient profile remain unchanged (extracted from QuickPIC
simulations).

3. The beam length is scaled proportionally to the beam charge.
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Procedure for the study of PWFA parameters

Procedure:
1. Start with an offset beam.
2. Calculate the initial RMS amplitude

wrlEE] e

3

3. After propagating beam through 60 plasma cells: calculate the
final RMS amplitude A.

4. Check the stability A/Ay.

5. Loop through different beam charges, adjust the length and
check the stability.

Final relative RMS energy spread and efficiency:

N
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Results
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Flgure: Amplification of Ag VS. Npg- Figure: Zoomed into the lhs.

» What A/Ag is acceptable?

> A/Ay =2 was chosen.

> Already 100% luminosity loss.

» Limit: Npg < 3-10°, 0, < 6pm.
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What A/Ag is acceptable?

A/Ay = 2 was chosen.

Already 100% luminosity loss.
Limit: Npg < 3-10°, 0. < 6 pm.
n =~ 20%, og/(€) ~ 10%.

vV Vv VY
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Summary

» Acc. gradient several o.m. larger than conventional NC acc.
structures may be achieved with PWFA.

» Transverse wakefields have to be understood and mitigated.
» Proposed the wakefunction:

2
TEQQ

Wi =€) = i (S ICIISE

» Compared against QuickPIC simulations.

» Simple quasi-static model.

» Simple PWFA parameter study attempting in finding a
rough limit for a stable beam.
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Make accelerators wa again!
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