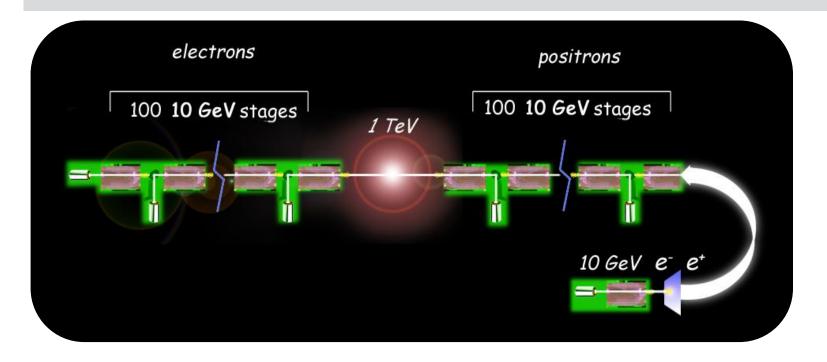


Speiner Speiner HEINRICH HEINE HEINRICH TOUSSELDORE

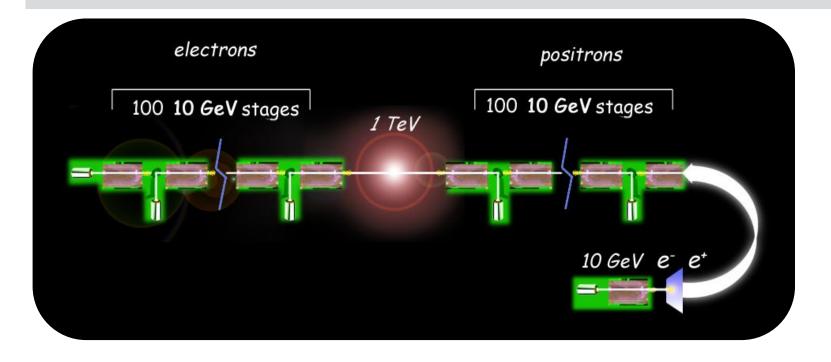
Simulations of electron and positron polarization preservation in plasma


Johannes Thomas¹, Yitong Wu³, Anna Hützen^{1,2}, Alexander Pukhov¹, Liangliang Ji³, and Markus Büscher^{1,2}

¹University of Düsseldorf, ²Forschungszentrum Jülich

³ SIOM, Chinese Academy of Sciences, CAS - all in Shanghai

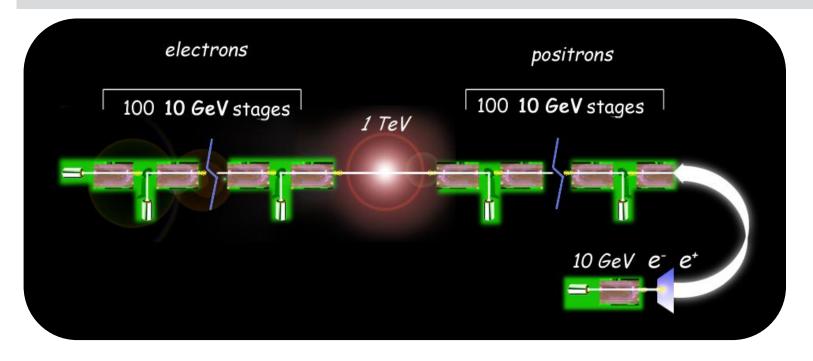
Motivation



If you work on particle acceleration in plasma you think about:

- energy (maximum, spread)beam quality and luminosity
- emittance (4D and 6D)plasma density
- beam charge and currenttransformer ratio
- repetition ratestaging, coupling, injection

Motivation



A collider running with polarized beams has certain advantages because:

- Certain observables with high sensistivity to the electroweak parameters can be measured directly only with polarized beams.
- Precise measurement of the top quark electroweak couplings and couplings associated with Higgs boson decays would be exessible.

Motivation

A collider running with polarized beams has certain advantages because:

- Certain observables with high sensistivity to the electroweak parameters can be measured directly only with polarized beams.
- Precise measurement of the top quark electroweak couplings and couplings associated with Higgs boson decays would be exessible.

The Problem

The Source

The Coupling

The Acceleration

The Problem

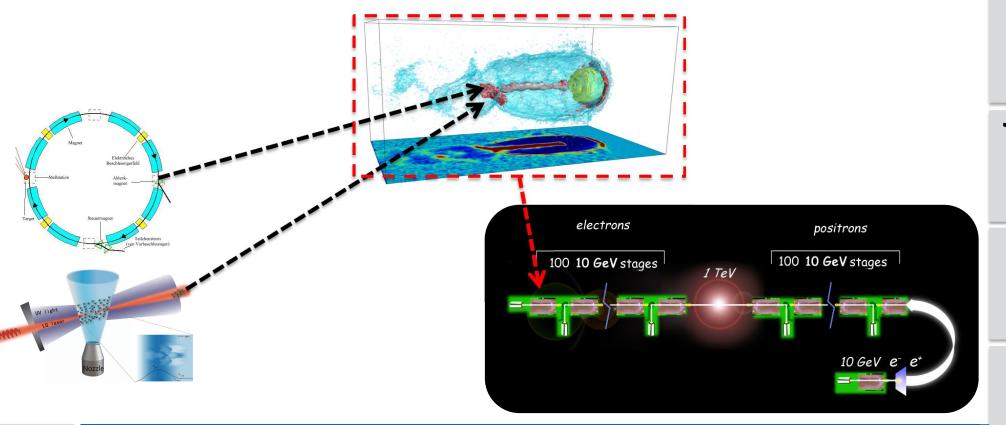
SOURCE

- gas target where the electron spins are already aligned before laser irradiation
- pre-accelerated and pre-ionized bunches

COUPLING

- polarization losses and emittance growth must be minimized
- bunch charge must be maximized

ACCELERATION


- depolarization must be prevented / minimized
- spontaneous polarization build-up is not expected

The Problem

The Source

The Coupling

The Acceleration

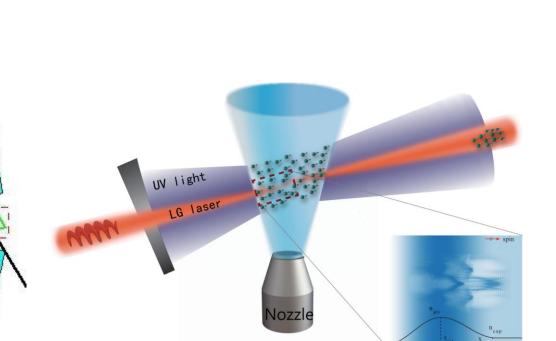
The Source

1st option

Wait until electron and positron beams are polarized in a storage ring.

Elektrisches Beschleunigerfeld

> Ablenkmagnet


> > Teilchenstrom (von Vorbeschleuniger)

Steuermagnet

Magnet

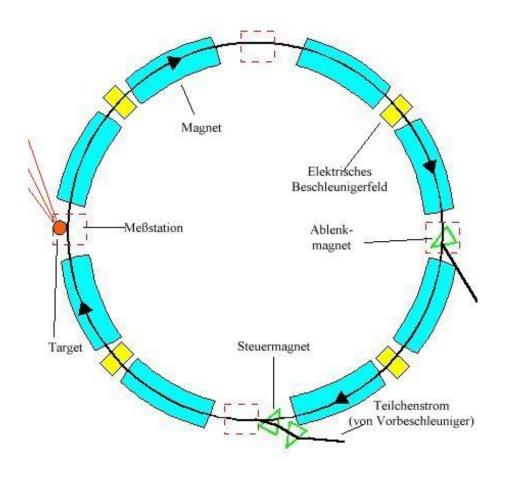
-Meßstation

2nd option Spin-polarized particle beams from laser-plasma accelerators

The Problem

The Source

The Coupling


The Acceleration

The 1st Source

1st option

Wait until electron and positron beams are polarized in a storage ring.

- achievable polarization: up to 92%
- energy in the GeV range
- polarization time for electrons in the range of minutes to hours
- storage-ring length in the km range

The Problem

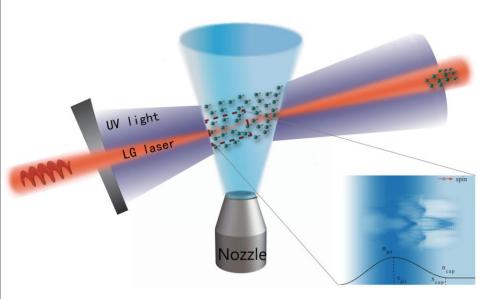
The Source

The Coupling

The Acceleration

2nd option
Spin-polarized particle beams
from laser-plasma accelerators

Sketch of the all-optical laser-driven polarized electron acceleration scheme:

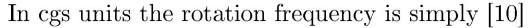

- UV light (213 nm) to photo-dissociate HCl molecules
- a 1064 nm IR laser aligns the bonds of the HCl molecules,
- a 234.62 nm UV laser ionizes the Cl atoms
- an electric field removes the Cl atoms from the target volume
- a coaxial LG laser pulse traverses the H gas target to accelerate the polarized electrons via wakefield acceleration

The Problem

The Source

The Coupling

The Acceleration



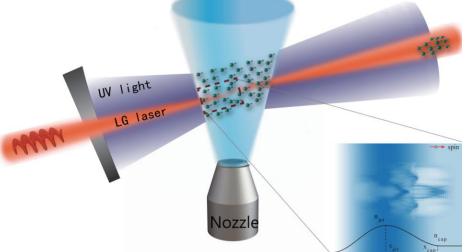
2nd option
Spin-polarized particle beams
from laser-plasma accelerators

evolve according to the T-BMT equation

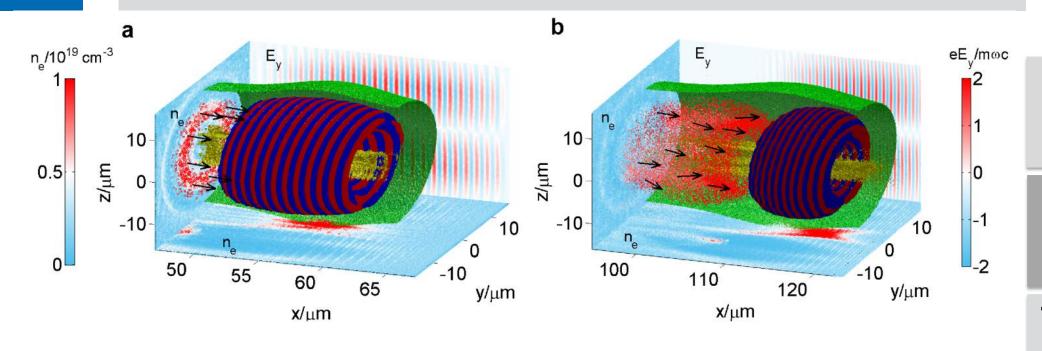
$$\frac{d\mathbf{s}}{dt} = -\vec{\Omega} \times \mathbf{s}.$$

$$\vec{\Omega} = \frac{q}{mc} \left[\Omega_B \mathbf{B} - \Omega_v \left(\frac{\mathbf{v}}{c} \cdot \mathbf{B} \right) \frac{\mathbf{v}}{c} - \Omega_E \frac{\mathbf{v}}{c} \times \mathbf{E} \right],$$

where


$$\Omega_B = a + \frac{1}{\gamma}, \quad \Omega_v = \frac{a\gamma}{\gamma + 1}, \quad \Omega_E = a + \frac{1}{1 + \gamma}.$$

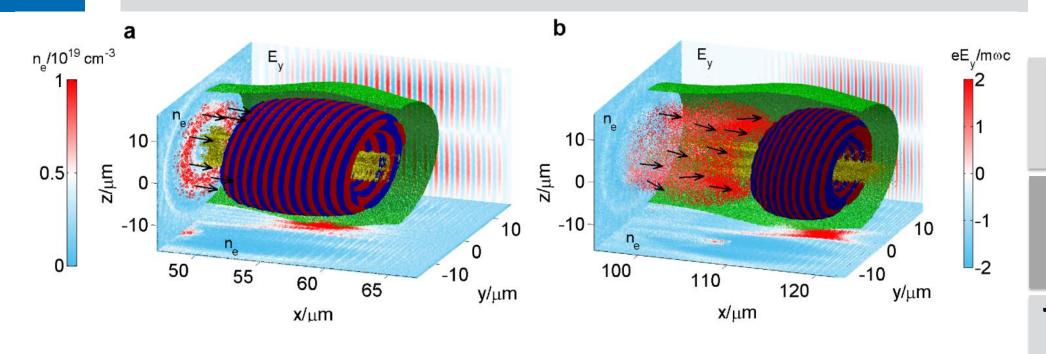
The Problem


The Source

The Coupling

The Acceleration

The Problem

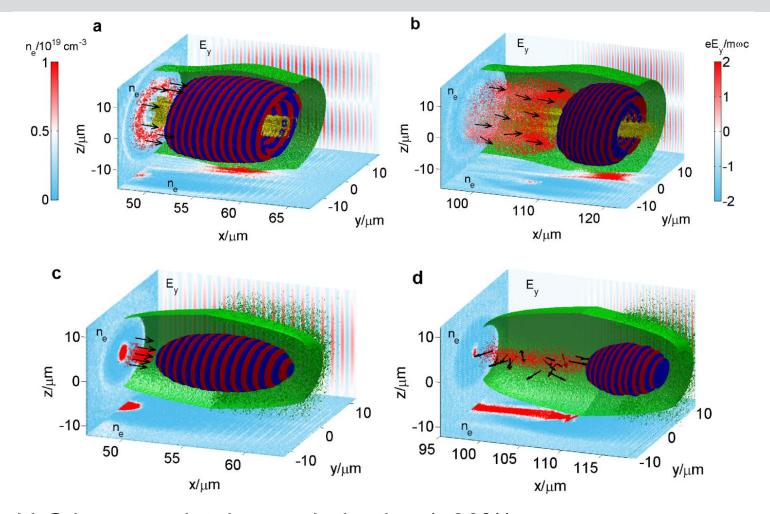

The Source

The Coupling

The Acceleration

- coaxial LG with unique transverse intensity profile
- different topology introduced to the wakefield/bubble structure
- electrons clusterize off axis in the donut-shaped bubble
- electrons get injected as a ring bunch

The Problem

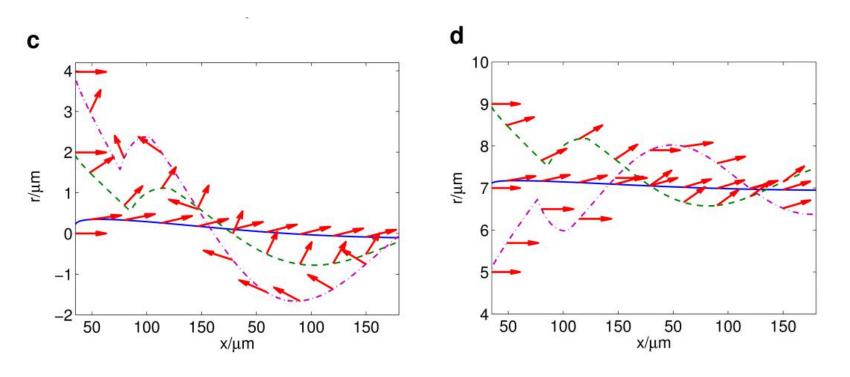

The Source

The Coupling

The Acceleration

- electrons near the symmetry axis leak through the beam center and form a counter-propagating return flux
- the B field is compensated by the anti-clockwise field generated by the return current
- the B field is lowered down but the total beam charge is maintained
- electrons are accelerated to 5 MeV

- coaxial LG beam maintaince polarization (>80%)
- in Gaussian beam polarization is lost almost immediately


The Problem

The Source

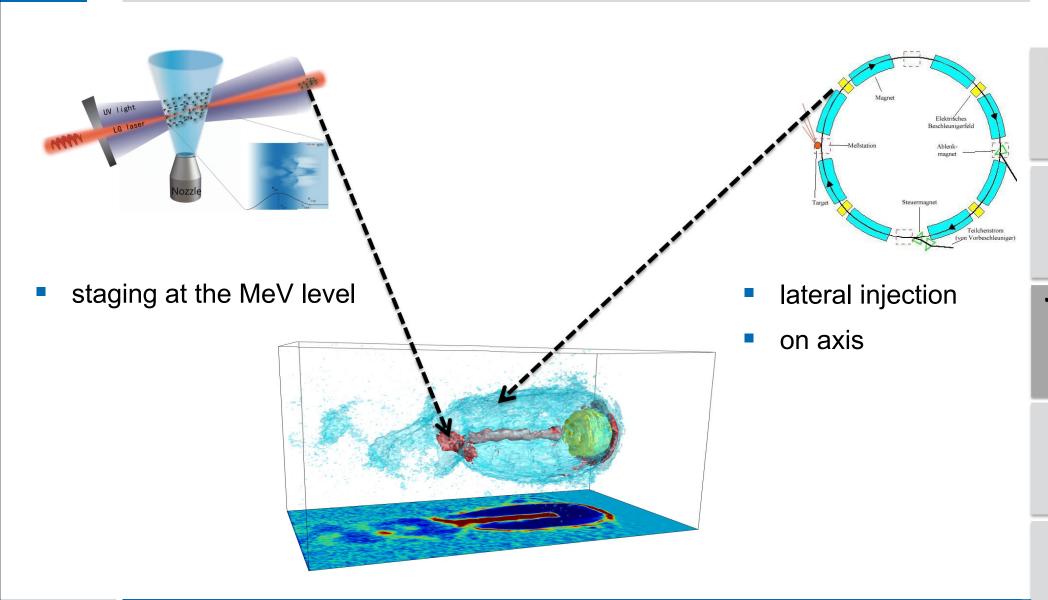
The Coupling

The Acceleration

LEFT: in the Gaussian case, the electron spins oscillate incoherently at high frequencies and lose their initial spin orientations instantly

RIGHT: the spin precession time in the LG case is large compared to the acceleration duration

The Problem


The Source

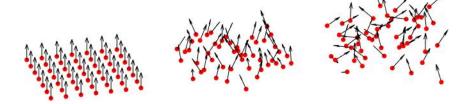
The Coupling

The Acceleration

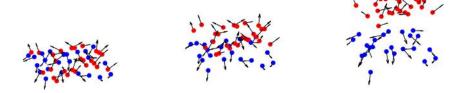
The Coupling

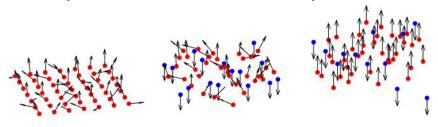
The Problem

The Source


The Coupling

The Acceleration


Possible (De-)Polarization mechanisms


(asynchrone) spin rotation described by the T-BMT equation

beam splitter (Stern-Gerlach)

self-polarization (Sokolov-Ternov)

The Problem

The Source

The Coupling

The Acceleration

Possible (De-)Polarization mechanisms

(asynchrone) spin rotation described by the T-BMT equation

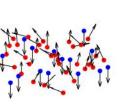
implemented in PIC, fluid and quasi-static codes

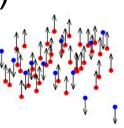
The Problem

The Source

The Coupling

always discussed away:


- SGT is weaker than Lorenz force
- ST is coupled to radiation which is neglegible


• se

self-polarization (Sokolov-Ternov)

beam splitter (Stern-Gerlach)

The Acceleration

evolve according to the T-BMT equation

$$\frac{d\mathbf{s}}{dt} = -\vec{\Omega} \times \mathbf{s}.$$

In cgs units the rotation frequency is simply [10]

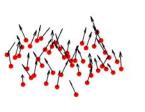
$$\vec{\Omega} = \frac{q}{mc} \left[\Omega_B \mathbf{B} - \Omega_v \left(\frac{\mathbf{v}}{c} \cdot \mathbf{B} \right) \frac{\mathbf{v}}{c} - \Omega_E \frac{\mathbf{v}}{c} \times \mathbf{E} \right], \quad \bullet$$

where

$$\Omega_B = a + \frac{1}{\gamma}, \quad \Omega_v = \frac{a\gamma}{\gamma + 1}, \quad \Omega_E = a + \frac{1}{1 + \gamma}.$$

- If an electron bunch has zero emittance, all particle spin vectors precess coherently.
- If all spins are synchronised, the beam polarization changes its orientation but its norm is conserved.
 - How long can a given polarization be conserved, if the spins stay synchronized?
 - How long can a given polarization be conserved, if the spins precess incoherently?

The Problem


The Source

The Coupling

The Acceleration

evolve according to the T-BMT equation

$$\frac{d\mathbf{s}}{dt} = -\vec{\Omega} \times \mathbf{s}.$$

In cgs units the rotation frequency is simply [10]

$$\vec{\Omega} = \frac{q}{mc} \left[\Omega_B \mathbf{B} - \Omega_v \left(\frac{\mathbf{v}}{c} \cdot \mathbf{B} \right) \frac{\mathbf{v}}{c} - \Omega_E \frac{\mathbf{v}}{c} \times \mathbf{E} \right],$$

where

$$\Omega_B = a + \frac{1}{\gamma}, \quad \Omega_v = \frac{a\gamma}{\gamma + 1}, \quad \Omega_E = a + \frac{1}{1 + \gamma}.$$

- If an electron bunch has zero emittance, all particle spin vectors precess coherently.
- If all spins are synchronised, the beam polarization changes its orientation but its norm is conserved.
 - How long can a given polarization be conserved, if the spins stay synchronized?
 - How long can a given polarization be conserved, if the spins precess incoherently?

The Problem

The Source

The Coupling

The Acceleration

evolve according to the T-BMT equation

$$\frac{d\mathbf{s}}{dt} = -\vec{\Omega} \times \mathbf{s}.$$

In cgs units the rotation frequency is simply [10]

$$\vec{\Omega} = \frac{q}{mc} \left[\Omega_B \mathbf{B} - \Omega_v \left(\frac{\mathbf{v}}{c} \cdot \mathbf{B} \right) \frac{\mathbf{v}}{c} - \Omega_E \frac{\mathbf{v}}{c} \times \mathbf{E} \right],$$

where

$$\Omega_B = a + \frac{1}{\gamma}, \quad \Omega_v = \frac{a\gamma}{\gamma + 1}, \quad \Omega_E = a + \frac{1}{1 + \gamma}.$$

- If an electron bunch has zero emittance, all particle spin vectors precess coherently.
- If all spins are synchronised, the beam polarization changes its orientation but its norm is conserved.
 - How long can a given polarization be conserved, if the spins stay synchronized?
 - How long can a given polarization be conserved, if the spins precess incoherently?

The Problem

The Source

The Coupling

The Acceleration

evolve according to the T-BMT equation

$$\frac{d\mathbf{s}}{dt} = -\vec{\Omega} \times \mathbf{s}.$$

In cgs units the rotation frequency is simply [10]

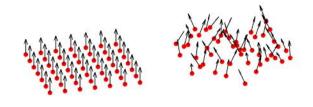
$$\vec{\Omega} = \frac{q}{mc} \left[\Omega_B \mathbf{B} - \Omega_v \left(\frac{\mathbf{v}}{c} \cdot \mathbf{B} \right) \frac{\mathbf{v}}{c} - \Omega_E \frac{\mathbf{v}}{c} \times \mathbf{E} \right], \quad \bullet$$

where

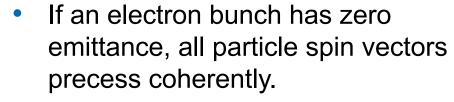
$$\Omega_B = a + \frac{1}{\gamma}, \quad \Omega_v = \frac{a\gamma}{\gamma + 1}, \quad \Omega_E = a + \frac{1}{1 + \gamma}.$$

- If an electron bunch has zero emittance, all particle spin vectors precess coherently.
- If all spins are synchronised, the beam polarization changes its orientation but its norm is conserved.
 - How long can a given polarization be conserved, if the spins stay synchronized?

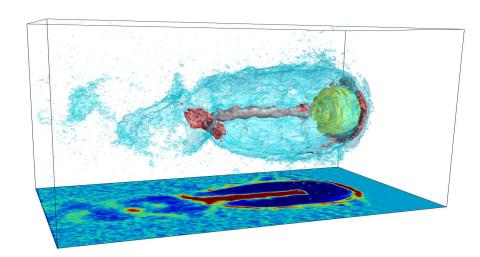
How long can a given polarization be conserved, if the spins precess incoherently?


The Problem

The Source


The Coupling

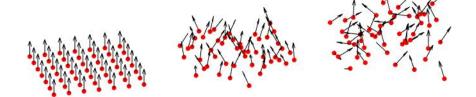
The Acceleration



- If all spins are synchronised, the beam polarization changes its orientation but its norm is conserved.
- How long can a given polarization be conserved, if the spins stay synchronized?
- How long can a given polarization be conserved, if the spins precess incoherently?

- inside the laser
- in front of the laser

- in the wake
- in the sheath
- in the bunch


The Problem

The Source

The Coupling

The Acceleration

$$T_{D,e} \propto \frac{\pi}{2\Omega_{e,GeV}} = \frac{\pi}{6a_e F}$$

- this formula holds for arbitrary field strength
- no information about field configuration
- this formula is to harsh
- better estimations possible if fields are known

The Problem


The Source

The Coupling

The Acceleration

$$T_{D,e} \propto \frac{\pi}{2\Omega_{e,GeV}} = \frac{\pi}{6a_e F}$$

- this formula holds for arbitrary field strength
- no information about field configuration
- this formula is to harsh
- better estimations possible if fields are known

$$\mathbf{E} = E_r \mathbf{e}_r + E_z \mathbf{e}_z$$

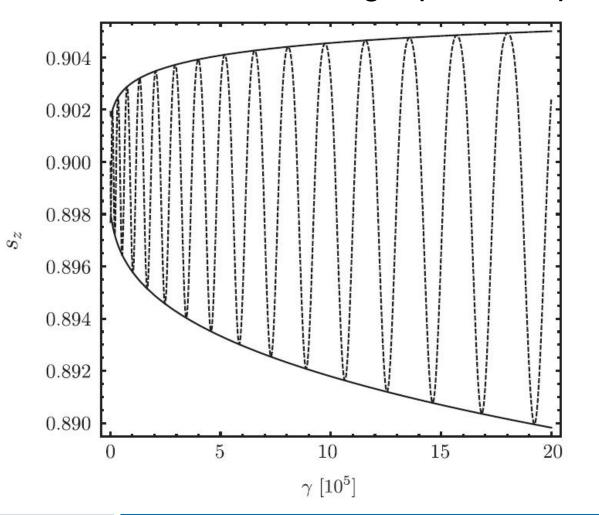
$$\mathbf{B} = B_{\phi} \mathbf{e}_{\phi}$$

$$\frac{ds_r}{dt} = s_z \left(a + \frac{1}{\gamma} \right) F_r + s_\phi \dot{\phi}$$

$$\frac{ds_z}{dt} = -\left(a + \frac{1}{\gamma}\right)F_r s_r$$

$$\frac{ds_{\phi}}{dt} = -s_r \dot{\phi},$$

The Problem


The Source

The Coupling

The Acceleration

sumilation of single particle spin

$$\mathbf{E} = E_r \mathbf{e}_r + E_z \mathbf{e}_z$$

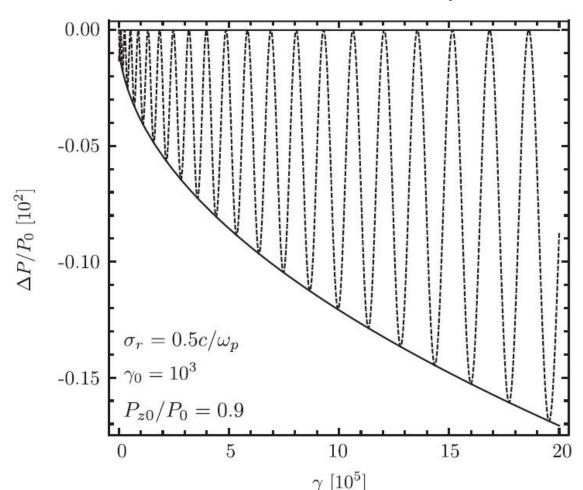
$$\mathbf{B} = B_\phi \mathbf{e}_\phi$$

$$\frac{ds_r}{dt} = s_z \left(a + \frac{1}{\gamma} \right) F_r + s_\phi \dot{\phi}$$

$$\frac{ds_z}{dt} = -\left(a + \frac{1}{\gamma} \right) F_r s_r$$

$$\frac{ds_\phi}{dt} = -s_r \dot{\phi},$$

The Problem


The Source

The Coupling

The Acceleration

evolution of the beam polarization for zero emittance

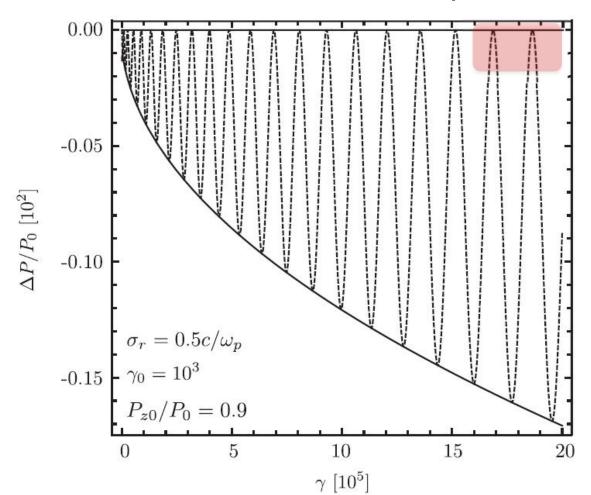
$$\frac{|\Delta P|}{P_0} = \frac{(1 + s_{z0}^2)\sigma_r^2(\alpha \gamma_0 \gamma)^{1/2}a^2}{8},$$

$$\frac{ds_r}{dt} = s_z \left(a + \frac{1}{\gamma} \right) F_r + s_\phi \dot{\phi}$$

$$\frac{ds_z}{dt} = -\left(a + \frac{1}{\gamma} \right) F_r s_r$$

$$\frac{ds_\phi}{dt} = -s_r \dot{\phi},$$

The Problem


The Source

The Coupling

The Acceleration

evolution of the beam polarization for zero emittance

$$\frac{|\Delta P|}{P_0} = \frac{(1 + s_{z0}^2)\sigma_r^2(\alpha \gamma_0 \gamma)^{1/2}a^2}{8},$$

a proper choice of the acceleration length can preserve the emittance

$$\frac{ds_r}{dt} = s_z \left(a + \frac{1}{\gamma} \right) F_r + s_\phi \dot{\phi}$$

$$\frac{ds_z}{dt} = -\left(a + \frac{1}{\gamma} \right) F_r s_r$$

$$\frac{ds_\phi}{dt} = -s_r \dot{\phi},$$

The Problem

The Source

The Coupling

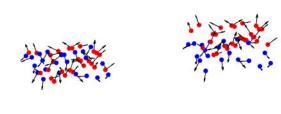
The Acceleration

summary

HEINRICH HEINE
UNIVERSITÄT DÜSSELDORF

- spin dependent scattering experiments are favourable
- acceleration of polarized beams is necessary
- pre-polarized targets are suitable as sources because:
 - conservation of initial polarization in coaxial LG pulse
 - up to 80% polarization maintained
 - simulations for energies in the range of 5 MeV
 - Gaussian beam destrois initial polarization immediately
- depolarization grows like squar root of energy
- fetching the bunch at the right energy can contain the polarization at TeV energies but:
 - radiation reaction and strong QED effects not jet included

The Problem


The Source

The Coupling

The Acceleration

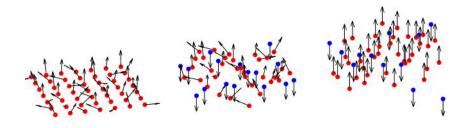
Polarization due to field gradients

$$\mathbf{F}_{\text{SGT}} = \left(\nabla - \frac{d}{dt}\nabla_{\mathbf{v}}\right) (\mathbf{\Omega} \cdot \mathbf{s})$$

$$\Delta_e(\partial F = 0) \approx \Lambda_{\rm SGT} a_e \gamma T_{\rm acc}^2 \epsilon^2$$
.

$$\Delta_e \approx \Lambda_{\rm SGT} T_{\rm acc}^2 \epsilon^2 \frac{\gamma}{2\pi}$$

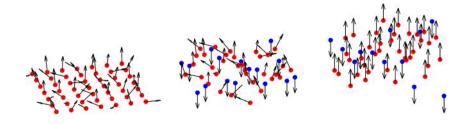
$$\Lambda_{\rm SGT} = \frac{\hbar \omega_L}{2m_e c^2} \approx 1.2 \cdot 10^{-6} \lambda_L [\mu m]^{-1}$$
 no information about field onfiguration


the temporal and spatial field variation separates two electron beams if

$$\partial F \gg a_e F^2$$

- this formula holds for arbitrary field strength

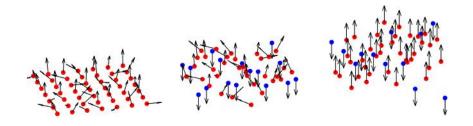
Polarization due to spin flip



- coupling of spin to radiation field
- different possibility for spin-flip up than spin-flip down
- different transition rates
- build up of polarization along a certain axis

Polarization due to spin flip

$$H_{\text{totoal}} = H_{\text{EM}} + H_{\text{SGT}} + H_{\text{RAD}} + H_{\text{ST}}$$


$$H_{\rm EM} = \gamma mc^2 + q\varphi,$$
 $H_{\rm SGT} = \vec{\Omega} \cdot \mathbf{s},$

$$H_{\text{RAD}} = q\varphi_{\text{rad}} - \frac{q}{c}\mathbf{v} \cdot \mathbf{A}_{\text{rad}}, \quad H_{\text{ST}} = \vec{\Omega}_{\text{rad}} \cdot \mathbf{s}.$$

$$P(t) = P_{\text{eq}}[1 - \exp(-t/\tau_{\text{pol}})], \quad P_{\text{eq}} = \frac{P_{\uparrow} - P_{\downarrow}}{P_{\uparrow} + P_{\downarrow}} \quad \tau_{\text{pol}} = \frac{1}{P_{\uparrow} + P_{\downarrow}}$$

Polarization due to spin flip

$$T_{\text{pol}}^{-1} = \lim_{x \to 0} \alpha_{+}(x) = \frac{q^{2} \hbar \gamma^{5} |\dot{\mathbf{v}}|^{3}}{m^{2} c^{8}} \frac{5\sqrt{3}}{8}$$
$$P_{\text{eq}} = \lim_{x \to 0} \frac{\alpha_{-}(x)}{\alpha_{+}(x)} = -\frac{8}{5\sqrt{3}} = -0.92$$