

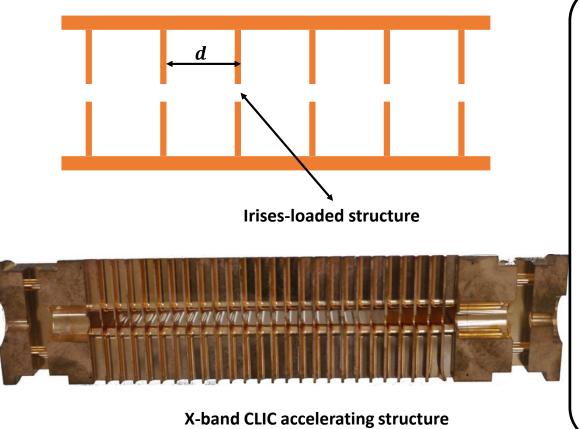
Alternative accelerating structures for CLIC main linac based on dielectrics

Yelong Wei, Alexej Grudiev

CERN, European Organization for Nuclear Research Email: yelong.wei@cern.ch

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

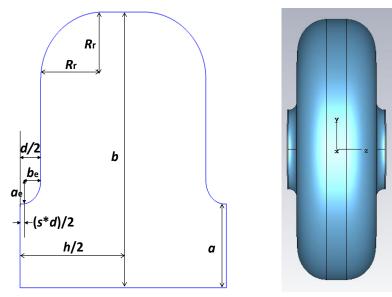

Outline

Background & Introduction

- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

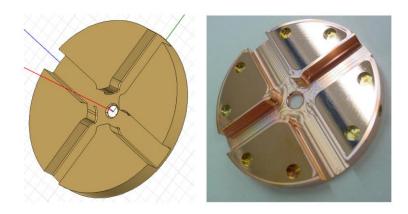
Introduction

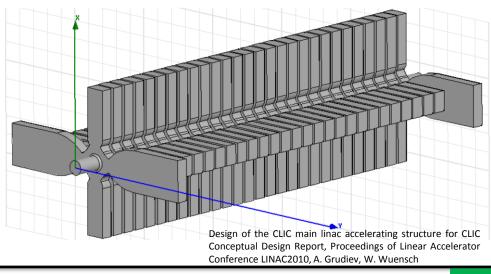
• Slow wave accelerators: Irises-loaded accelerating structures



Irises form periodic structure in waveguide:

- Irises reflect part of the wave;
- Irises slow down the phase velocity so that it equals the particle velocity;
- The group velocity is usually around 1% of c.
- In CLIC studies, gradient up to 100 MV/m (pulse length of 200 ns) has been demonstrated at X-band frequency with rf pulses of 100s ns.

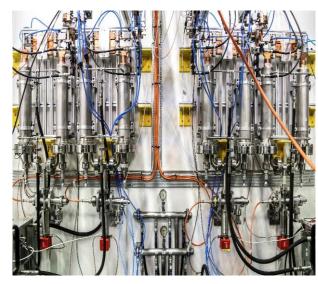

CLIC-G Accelerating Structure


Without HOM Damping

Undamped Geometry	CST	HFSS
Phase advance	120°	120°
Frequency [GHz]	11.9949	11.9943
Unloaded Q ₀	7295.2	7245
<i>r'/Q</i> ₀ [Ω/m]	15892	15924
vg/c	0.018	0.018

With HOM Damping

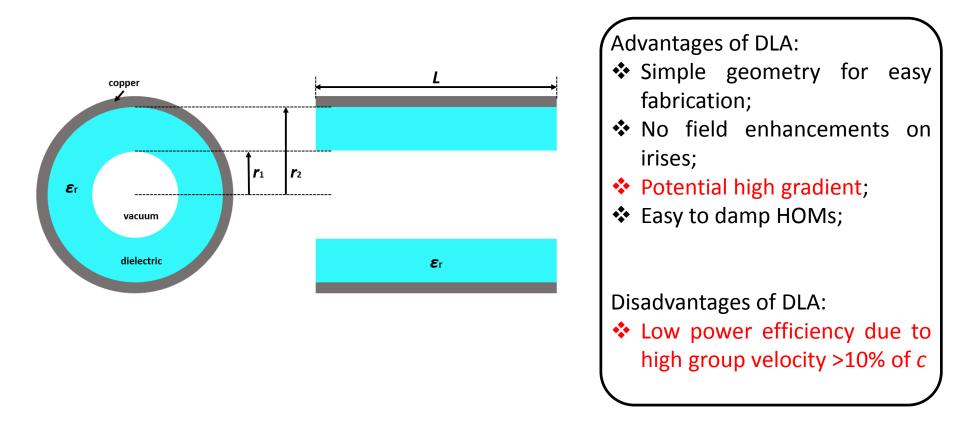
Test Stands at CERN


- Xbox 1: 50 MW klystron, 50 Hz, connection with CLEAR (e⁻ linac)
- Xbox 2: 50 MW klystron, 50 Hz
- Xbox 3: 4x6 MW klystrons, 400 Hz, 4 structure test slots
- Sbox: 43 MW klystron, 25 Hz, S-band (2.9985 GHz)

50 MW klystron with pulse duration of 1.2 μs

Pulse Compressors

CLIC test platform

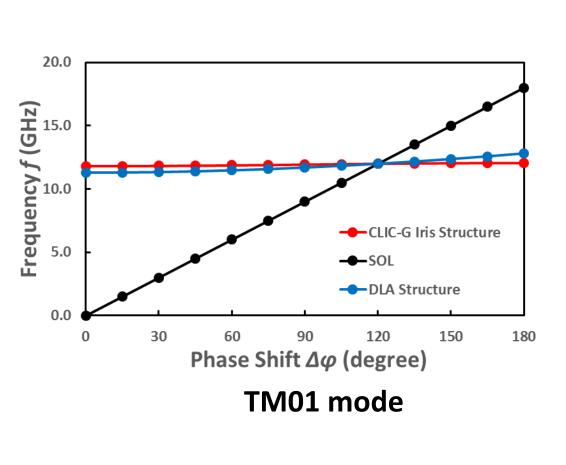

Courtesy of slides from Jan Paszkiewicz, CERN

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

Introduction

• Slow wave accelerators: dielectric-lined accelerating (DLA) structures



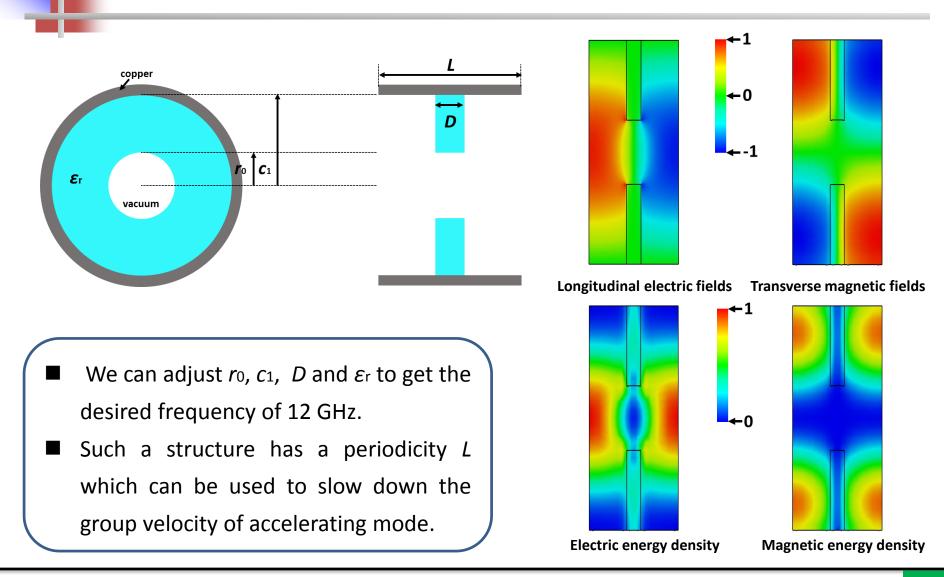
DLA Structures

E-field of the TM01 mode ($ u_{ m p}=c$)	Electric energy density
dielectric	
Vacuum	
<i>↓ X X X X X X X X X X X X X X X X X X X</i>	
i i i i i i i i i i i i i i i i i i i	
Ez of the TM01 mode ($ u_{ m p}=c$)	Magnetic energy density
Ez of the TM ₀₁ mode ($v_{\rm p} = c$)	Magnetic energy density
dielectric	Magnetic energy density
	Magnetic energy density
dielectric	Magnetic energy density

- 1) The axial accelerating field is the maximum electric field in the structure;
- 2) The phase velocity of TM01 mode can be slowed down to c;
- 3) Most of energy is stored in dielectric area, resulting in low power efficiency.

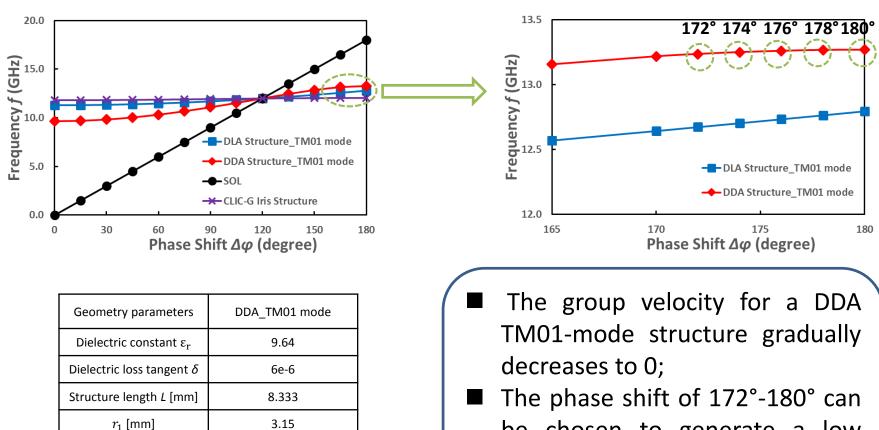
Dispersion Curves

- The red line for CLIC-G iris gradually saturates, and group velocity gradually decreases to 0 with the increase of phase advance;
- The blue line for DLA structure gradually increases, but group velocity can't be 0 with the increase of phase advance.


RF parameters on DLA structures

	CLIC-G iris structure	Quartz (SiO2)	Diamond	Alumina (Al2O3)	MgCaTi	BaTi
Dielectric constant ε_r		3.75	5.7	9.64	20	35
Dielectric loss tangent δ		0.00005	0.0001	0.000006	0.0001	0.0001
Structure length [mm]	8.33	8.33	8.33	8.33	8.33	8.33
Phase advance	120°	120°	120°	120°	120°	120°
Inner radius <i>r</i> 1 [mm]	3.15	3.15	3.15	3.15	3.15	3.15
Outer radius r2 [mm]		7.22	6.20	5.364	4.624	4.245
Frequency [GHz]	11.9943	11.9990	11.9958	11.9966	11.9942	11.9919
Unloaded Qo	7245	6127	3998	4231	2214	1691
<i>r'/Q</i> ₀ [Ω/m]	15924	10719	11166	10427	8463	6878
<i>r</i> ' [MΩ/m]	115	66	45	44	19	12
vg/c	0.018	0.273	0.183	0.111	0.057	0.034
Es/Ea	2.4819	1.0757	1.0755	1.0756	1.0760	1.0760
Es/Ea [dielectric]		1.0289	1.0024	1.0010	1.0152	1.0141
Power required to generate 100 MV/m [MW]	45.0	1013	652	424	266	197

Outline


- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

DDA Structures-TM01 mode

ALEGRO Workshop, 26th – 29th March 2019, CERN

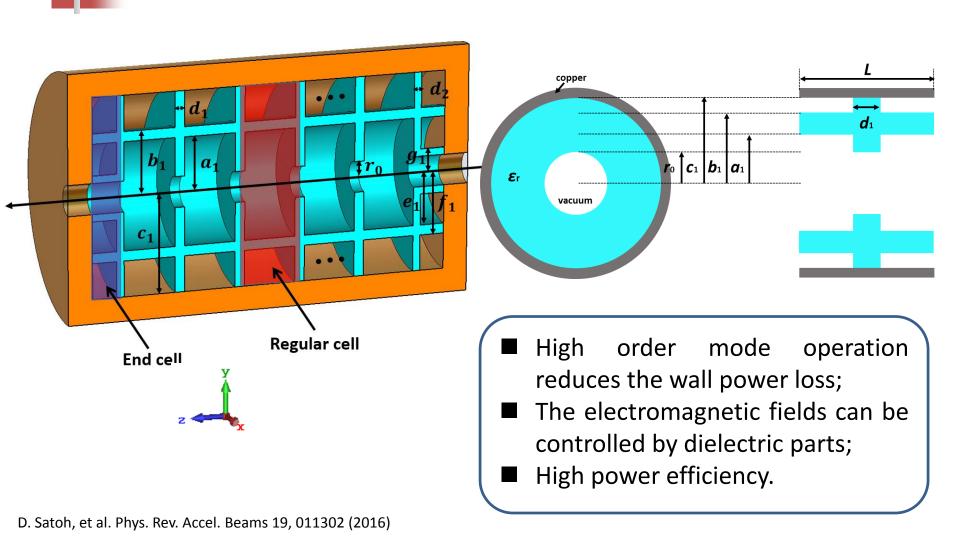
Dispersion Curves

 IIIC	P''	use s	iiiit	U1	т/с	ТС	50	can
be	cho	osen	to	ge	nera	te	а	low
gro	up	velo	city	fo	r ac	cel	era	iting
mo	des	•						

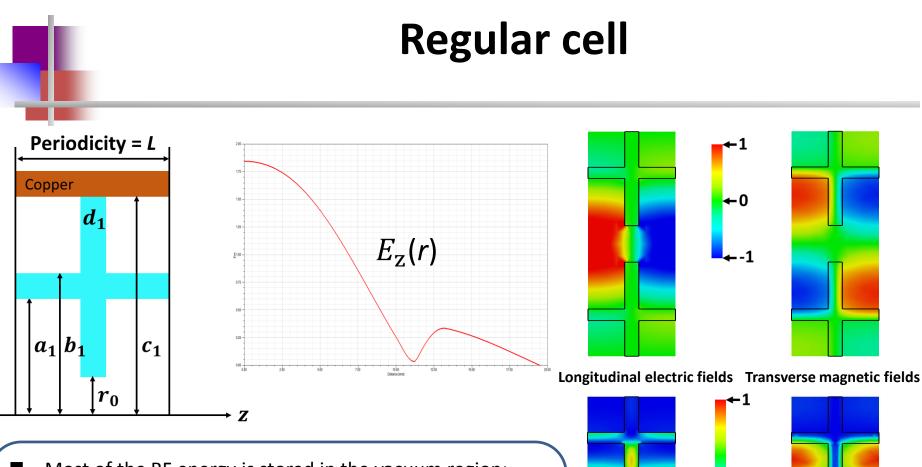
*r*₂ [mm]

D [mm]

10.59 2


Comparisons

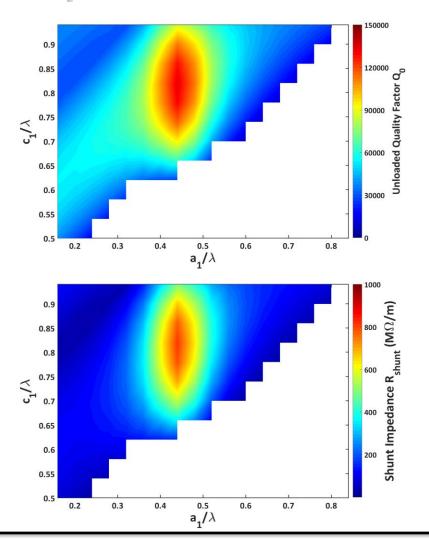
	CLIC-G	DLA	DDA_ TM01_ 0. 96 <i>π</i> -mode	DDA_ TM01_ 0. 99 <i>π</i> -mode	DDA_ <mark>TM01</mark> _ <i>π</i> - mode
Dielectric constant <i>ɛ</i> r		9.64	9.64	9.64	9.64
Dielectric loss tangent		6e-6	6e-6	6e-6	6e-6
Period length [mm]	8.33	8.33	11.94	12.36	12.50
Phase advance	120°	120°	172°	178°	180°
Frequency [GHz]	11.9943	11.9924	11.9973	11.9973	11.9953
Unloaded Q0	7245	4232	14815	14870	14872
<i>r'/Q</i> 0 [Ω/m]	15924	10423	9544	10027	10092
<i>r</i> ′ [MΩ/m]	115	44	141	149	150
vg/c	0.018	0.111	0.073	0.018	0
Es/Ea	2.4819	1.0762	4.3071	3.4399	2.8773
Es/Ea [dielectric]		1.0029	0.91723	0.64648	0.65432
Power required to generate 100 MV/m [MW]	45	424	304	71	


Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

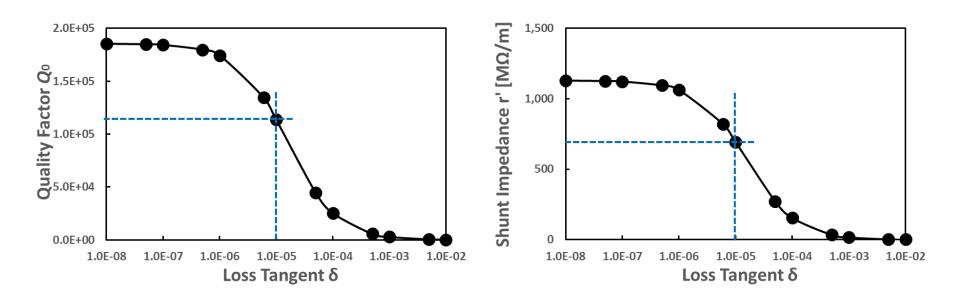
DDA Structures-TM₀₂ π-mode

ALEGRO Workshop, 26th – 29th March 2019, CERN



Most of the RF energy is stored in the vacuum region;
 The total RF loss including both the wall loss on the conducting cylinder and dielectric loss in the DDA structure can be drastically reduced, thereby resulting in both an extremely high quality factor and a very high shunt impedance at room temperature.

Electric energy density

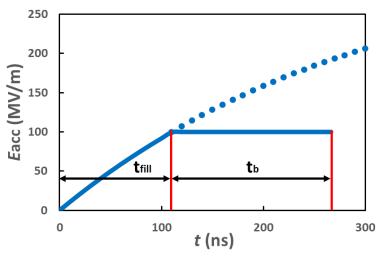

Magnetic energy density

Optimization for a regular cell

Optimum parameters	
Dielectric constant Er	9.64
Dielectric loss tangent δ	6E-6
Inner radius ro [mm]	3.15
Outer radius c1 [mm]	20.5
a1 [mm]	11.10
b1 [mm]	13.16
d1 [mm]	2.0
Structure period length L [mm]	12.50
Phase advance	180°
Acceleration mode	TM02 π -mode
Frequency [GHz]	11.9969
Unloaded Qo	134542
<i>r'/Q</i> ₀ [Ω/m]	6089
<i>r</i> ′ [MΩ/m]	819

Regular cell with different loss tangent

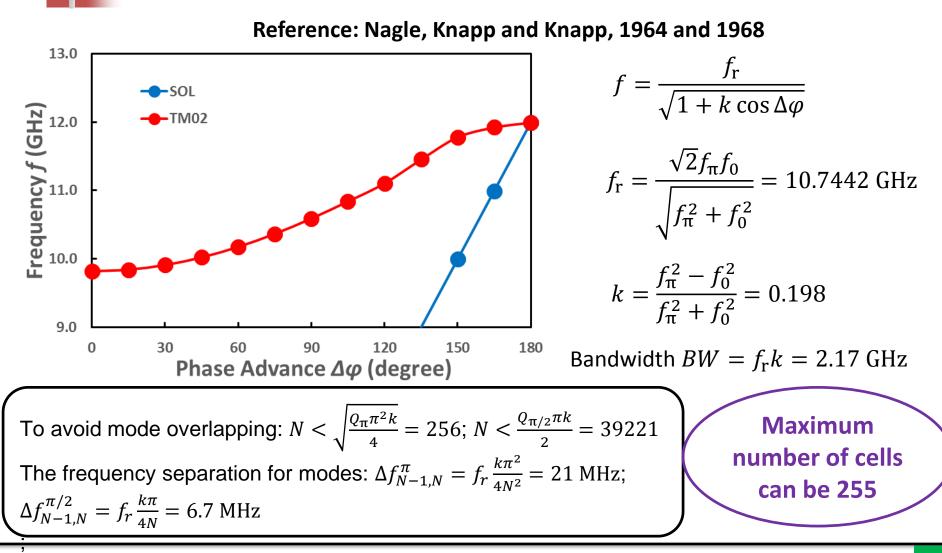
Dielectric loss tangent δ affects quality factor Q_0 and shunt impedance r'; The highest quality factor and shunt impedance: $Q_0 = 185000$, r' = 1100 MΩ/m When loss tangent δ = 1E-5, $Q_0 = 113733$, r' = 693 MΩ/m. This can be achievab

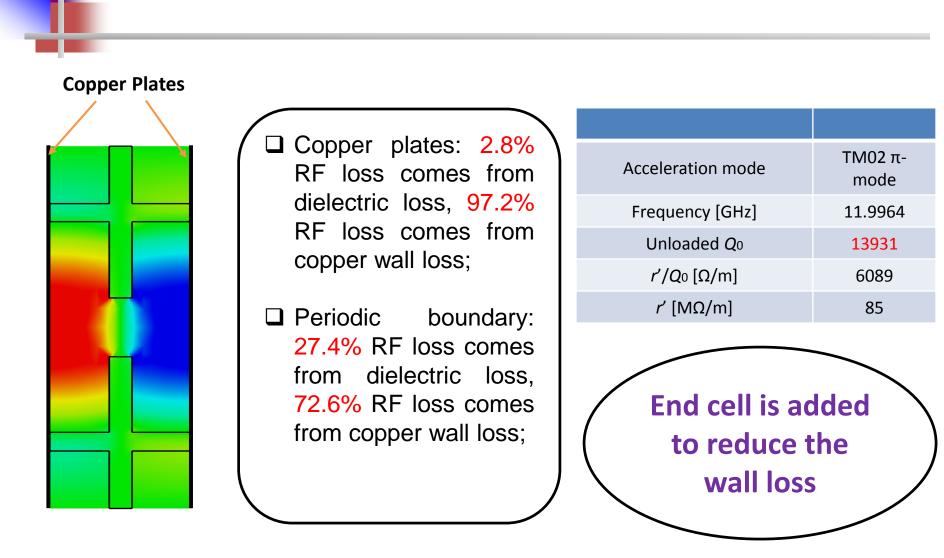

1 When loss tangent δ = 1E-5, Q_0 = 113733, r' = 693 M Ω /m. This can be achievable from other labs.

RF Properties

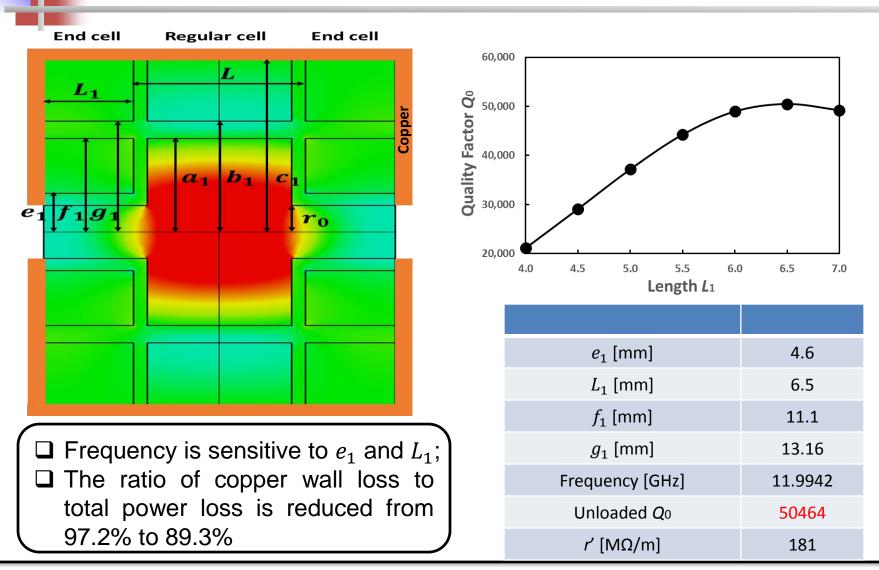
$N_{2\pi/3}^{CLIC-G} = 26$	$\iff N_{\pi}^{DDA} = 18$
N = 1	L = 12.5 mm
$E_{\rm acc}^{\rm Load} = 100 {\rm MV}$	//m
V - MIFLoad	– 1 25 MV

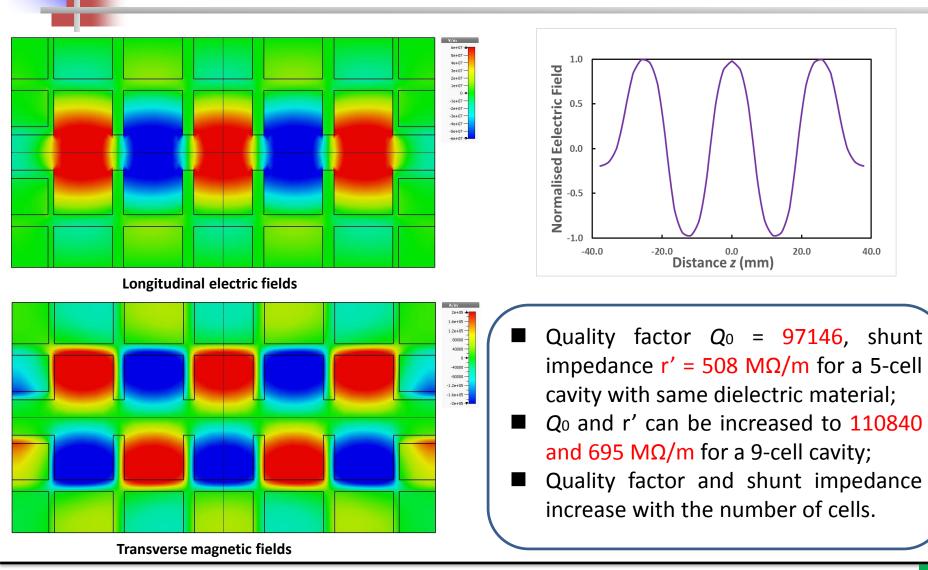
 $P_{\text{dis}} = \frac{V_{\text{acc}}^2}{r'NL} = 0.1526 \text{ MW}$ $P_{\text{b}} = V_{\text{acc}}I_{\text{b}} = 1.4875 \text{ MW}$ $P_{0} = P_{\text{dis}} + P_{\text{b}} = 1.640 \text{ MW}$ $\beta = \frac{P_{0}}{P_{\text{dis}}} = 10.746$


$$\tau = \frac{2Q_0}{\omega(1+\beta)} = 303.83 \text{ ns}$$
$$E_{\text{acc}}^{\text{Unload}} = \sqrt{\frac{P_0 r'}{NL}} = 327.8 \text{ MV/m}$$
$$E_{\text{acc}} = E_{\text{acc}}^{\text{Unload}} \left(1 - e^{-\frac{t}{\tau}}\right)$$

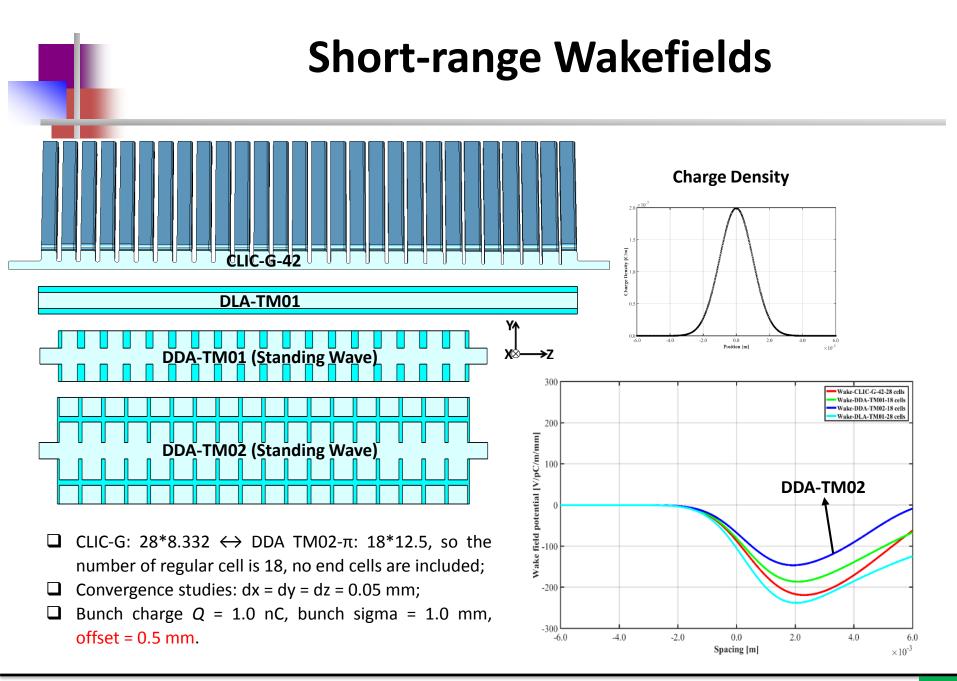

$V_{\rm acc} = NLE_{\rm acc}^{\rm Load} = 1.25 {\rm M}$	$\beta = \frac{\beta}{P_{\rm dis}} = 10.746$			
RF properties	CLIC-G (28 cells)	DDA (1 cell)	DDA (1 cell)	
Dielectric loss tangent $\boldsymbol{\delta}$		6E-6	1E-5	
Acceleration mode	2π/3	TM02 π- mode	TM02 π- mode	
Shunt impedance <i>r'</i> [MΩ/m]	92	819	693	
Peak input power [MW]	61.3	1.64	1.67	
Loaded gradient E ^{Load} [MV/m]	100	100	100	
Filling time tfill [ns]	67	110.6	117.4	
t _b [ns]	155.6	155.6	155.6	
RF to beam efficiency	28.5%	53.0%	50.8%	

ALEGRO Workshop, 26th – 29th March 2019, CERN

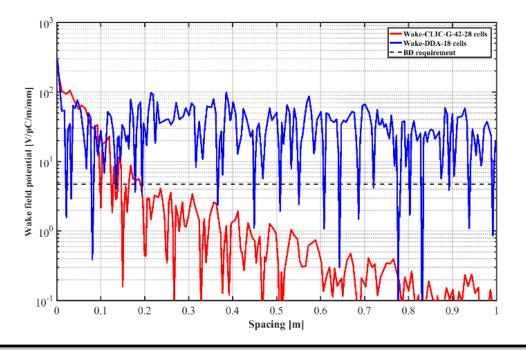

Dispersion curve


Regular cell with copper plates

End cell

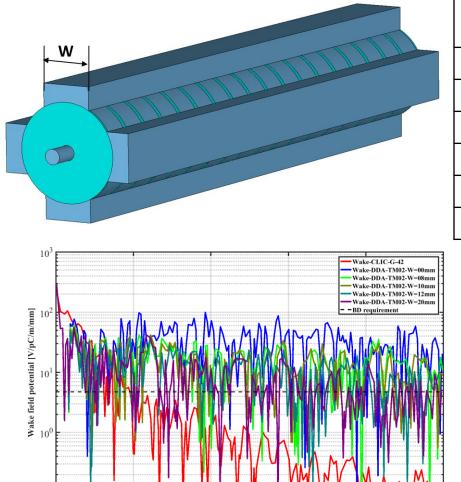


Multi-cell DDA structure



Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook


Long-range Wakefields

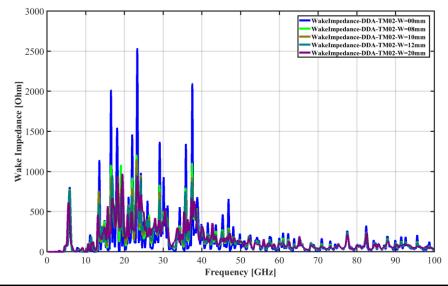
- □ The same bunch and structure parameters are used for Gdfidl simulations: dx = dy = dz = 0.05 mm, bunch charge Q = 1.0 nC, bunch sigma = 1.0 mm, offset = 0.5 mm;
- The envelope of transverse wakefields oscillate with the wakelength due to high order modes trapped inside the DDA;

Damping schemes

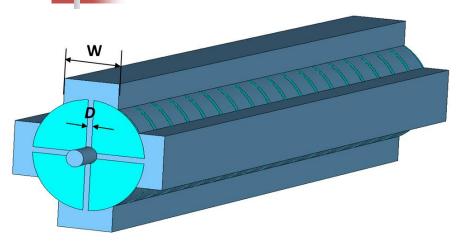
Adding Damping Waveguide

0.4

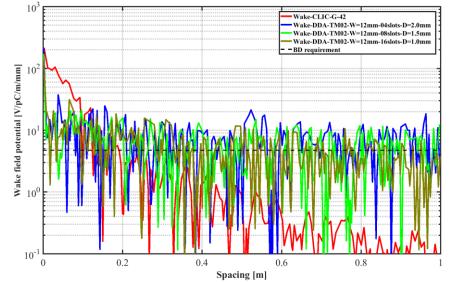
Spacing [m]

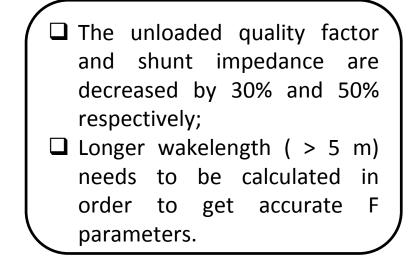

0.6

0.8

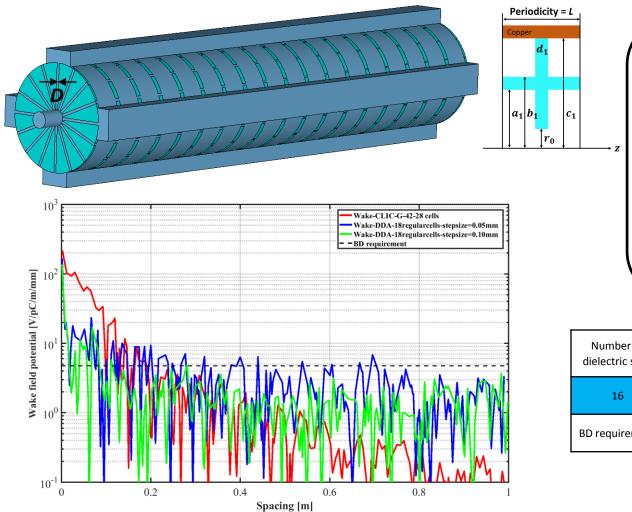

10⁻¹ L

0.2


W [mm] quality factor Q ₀	shunt		7 bunches		Envelope [7 bunches]			
	impedan ce r' [MΩ/m]	F _c	F _{rms}	F _{worst}	F _c	F _{rms}	F _{worst}	
0	134542	819	149	752	5051	4086	2836	19483
8	113810	680	6	37	174	213	149	999
10	103330	612	8	67	408	269	211	1420
12	84336	489	6	26	149	123	101	661
20	< 40000	< 200	15	54	352	40	37	185
В	D requireme	nt		< 2	< 5		< 2	< 5



Adding Dielectric Slots (W=12 mm)



Number of		quality	shunt guality impeda		7	7 bunche	s	Envelope [7 bunches]		
dielectric slots	D[mm]	factor Q ₀	ce r' [MΩ/m]	F _c	F _{rms}	F _{worst}	F _c	F _{rms}	F _{worst}	
4	2.0	45286	193	2.1	3.5	13.4	12.3	6.2	34.7	
8	1.5	95052	457	2.9	4.6	19.5	7.6	5.9	33.6	
16	1.0	95450	405	1.1	1.3	2.7	1.9	1.4	4.2	
BD requirement				< 2	< 5		< 2	< 5		

Detuning (W=12mm, 16 dielectric slots)

We can adjust b1 and dielectric slots width D to detune the 18-cell DDA structure;

- Each cell has a frequency of 12 GHz;
- □ The step size for *D* is 0.05 mm (blue line) and 0.10 mm (green line).

Number of	7	7 bunche	s	Envelope [7 bunches]			
dielectric slots	F _c	F _{rms}	F _{worst}	F _c	F _{rms}	F _{worst}	
16	1.049	1.086	1.815	1.227	1.128	2.396	
BD requirement		< 2	< 5		< 2	< 5	

Summary and Outlook

- **DLA** structures with different materials and DDA structures operating at TM01 π -mode have been studied at 12 GHz;
- **D**DA structures operating at TM02 π -mode structure:
 - Extremely high quality factor and shunt impedance: $Q_0 = 134542$, r' = 819 M Ω /m;
 - High RF-to-Beam efficiency of >50%;
 - The number of acceleration cells can be up to 255 due to high bandwidth;
 - Low short-range wakefields;
 - Using waveguides, dielectric slots and detuning are promising to damp longrange wakefields.
- □ Further optimization and wakefield studies;
- Design of RF high power coupler;
- Fabrication and experimental studies.