

Crystal focusing-based Final Focus for a Collider

Vera Cilento and Rogelio Tomás

Advanced LinEar collider study GROup

Outline

Introduction

- Principle of Crystal Focusing
- Implementation of the Crystal in MAD-X
- Simulation studies
 - Impact on the beta function and on the horizontal dispersion
 - Impact on the natural chromaticity
 - Impact on the beam size
 - Impact on the luminosity for CLIC 1.5 TeV
- > Conclusions

Introduction

> The main goal of ATF2 is to achieve a 37 nm vertical beam size at the IP

28/03/2019

Introduction

- > The main goal of ATF2 is to achieve a 37 nm vertical beam size at the IP
- > Two different cases have been studied in simulation:
 - 1. Lattice with QD0 from MAD-X of ATF2 \rightarrow ultra-low β_y^* optics
 - 2. Development of a new lattice which includes the Si crystal \rightarrow QD0 has been replaced by the crystal and 2 drifts

Introduction

- > The main goal of ATF2 is to achieve a 37 nm vertical beam size at the IP
- > Two different cases have been studied in simulation:
 - 1. Lattice with QD0 from MAD-X of ATF2 \rightarrow ultra-low β_y^* optics
 - 2. Development of a new lattice which includes the Si crystal \rightarrow QD0 has been replaced by the crystal and 2 drifts

Principle of Crystal Focusing

- The focal length f is then $f = (4r^2 R^2)^{1/2}$
- The critical angle is quite small $\rightarrow \theta_c = 0.02-0.002$ mrad for particles of energies from 100 GeV to 10 TeV for planar channelling in silicon
- This technology makes possible to achieve a focal length of the order of several centimeters
- The dimensions of the beam are $\approx 10 \mu m$ for the GeV energies and $\approx 1 \mu m$ for the TeV range.

Principle of Crystal Focusing

- The focal length f is then $f = (4r^2 R^2)^{1/2}$
- The critical angle is quite small $\rightarrow \theta_c = 0.02-0.002$ mrad for particles of energies from 100 GeV to 10 TeV for planar channelling in silicon
- This technology makes possible to achieve a focal length of the order of several centimeters
- The dimensions of the beam are $\approx 10 \mu m$ for the GeV energies and $\approx 1 \mu m$ for the TeV range.

Some references:

- → Biryukov V. M., Vladilen Ivanovich Kotov, and Yu A. Chesnokov. "Steering of high-energy charged-particle beams by bent single crystals." *Physics-Uspekhi* 37.10 (1994): 937.
- → Denisov A. S., et al. "First results from a study of a 70 GeV proton beam being focused by a bent crystal." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 69.2-3 (1992): 382-384.
- → Scandale W., et al. "Observation of focusing of 400 GeV/c proton beam with the help of bent crystals." Physics letters B 733 (2014): 366-372.

Implementation of the crystal in MAD-X

- Approximation of the crystal with a thin matrix element that only focuses in the vertical plane
- > The crystal does not act in the horizontal plane
- Neglect of the bending of the beam by the crystal in the vertical direction
- Neglect of the volume reflection
- The chromatic aberration can be neglected due to the achromatic property of the crystal
- Neglect the fact that the particles inside a channel are not focused and the channel beam size grows with the divergence of the beam

Impact on the beta functions

Impact on the beta functions and on horizontal dispersion

Impact on the natural chromaticity

> Sextupoles are switched off in order to get the natural chromaticity of quadrupoles that is expressed as:

•
$$\xi_x^2 = X_{x,10001} X_{x,10001} \frac{\beta_{yo}}{\beta_y^*} + X_{x,01001} X_{x,01001} \frac{1}{\beta_{y0}\beta_y^*}$$

•
$$\xi_y^2 = X_{y,00101} X_{y,00101} \frac{\beta_{y0}}{\beta_y^*} + X_{y,00011} X_{y,00011} \frac{1}{\beta_{y0}\beta_y^*}$$

Impact on the natural chromaticity

> Sextupoles are switched off in order to get the natural chromaticity of quadrupoles that is expressed as:

•
$$\xi_x^2 = X_{x,10001} X_{x,10001} \frac{\beta_{yo}}{\beta_y^*} + X_{x,01001} X_{x,01001} \frac{1}{\beta_{y0}\beta_y^*}$$

•
$$\xi_y^2 = X_{y,00101} X_{y,00101} \frac{\beta_{yo}}{\beta_y^*} + X_{y,00011} X_{y,00011} \frac{1}{\beta_{y0}\beta_y^*}$$

- Visible impact on the chromaticity in both planes
 - Strong reduction of the chromaticity when including the Crystal → we replace a quadrupole with an achromatic element

	QD0	CRYSTAL
ξ_x	5868.55	2639.82
ξ_y	87888.89	56734.92

Sextupoles position in the FFS

• In order to compute the beam size we switched on the sexupoles:

Sextupoles phases

• An important feature of the FFS is that the phase advance between the sextupoles and the IP satisfies the condition:

μ_{x}	QD0	CRYSTAL
SF1FF- SF5FF	0.50033	0.50083
SDoFF- SD4FF	0.49987	0.50024

μ_Y	QDo	CRYSTAL
SF1FF-SF5FF	0.50001	0.49994
SD0FF-SD4FF	0.50003	0.49999

Impact on the beam size

28/03/2019

5

Impact on the beam size (without energy spread)

- To compute the beam size at the IP considering only the geometric aberrations \rightarrow dpp =0
 - ➢ For QD0:

28/03/2019

Impact on the Luminosity for CLIC 1.5 TeV

These results on the luminosity reached for CLIC 1.5 TeV show a significant lower luminosity performance when using crystals to focus e- & e+ beams. Lumonisity design values for CLIC 1.5 TeV: \mathcal{L}_{tot} = 3.7 and $\mathcal{L}_{\%}$ = 1.4 [10³⁴ cm⁻² s⁻¹]

	$1 \text{ TeV } e^-$	$1 \text{ TeV } e^+$
σ_x^* [nm]	50	20-50
σ_{y}^{*} [nm]	15	1
channeling efficiency [%]	50-70	70-90

Impact on the Luminosity for CLIC 1.5 TeV

Impact on the Luminosity for CLIC 1.5 TeV

These results on the luminosity reached for CLIC 1.5 TeV show a significant lower luminosity performance when using crystals to focus e- & e+ beams. Lumonisity design values for CLIC 1.5 TeV: \mathcal{L}_{tot} = 3.7 and $\mathcal{L}_{\%}$ = 1.4 [10³⁴ cm⁻² s⁻¹]

	$1 \text{ TeV } e^-$	$1 \text{ TeV } e^+$
σ_x^* [nm]	50	20-50
σ_{y}^{*} [nm]	15	1
channeling efficiency [%]	50-70	70-90

Conclusions

> The optics simulations done initially showed a good potential for crystal focusing:

- Good results in terms of beta functions and natural chromaticity
- Good decrease of the beam size at the IP both in horizontal and vertical planes
- Aberrations that contribute the most for a σ_x^* , σ_y^* increase are the 2nd and 3rd order
- ➤ The results on CLIC 1.5 TeV showed a very significant decrease of luminosity for all the possible cases → significant limitations in using crystals for focusing e- beams

Thanks for your attention!

24/10/2018

Backup Slides

24/10/2018

Sextupoles strengths

• Comparison between the sextupoles strengths for QD0 and Crystal:

	k _s [m ⁻²]	QD0	CRYSTAL
<	SF6FF	9.08	8.77
	SF5FF	-0.43	1.44
	SD4FF	15.02	8.82
	SF1FF	-2.62	-7.84
	SDoff	4.33	5.72
	SK1FF	0.0029	-0.011
	SK2FF	-0.12	-0.062
	SK3FF	-0.059	-0.022
	SK4FF	-0.092	-0.025

