LIVING WITHOUT SUPERSYMMETRY

Philip D. Mannheim

University of Connecticut

Seminar at Discrete 2018

November 2018

The assumption of a supersymmetry between bosons and fermions has been found capable of addressing many key issues in particle physics and gravity.

(1) In flat space physics an interplay between bosons and fermions can render logarithmically divergent Feynman diagrams finite.

(2) An interplay between bosons and fermions can cancel the perturbative quadratic divergence that an elementary Higgs scalar field would possess (the hierarchy problem).

(3) The existence of fermionic supersymmetry generators allows one to evade the Coleman-Mandula theorem that forbids the combining of spacetime and bosonic internal symmetry generators in a common Lie algebra.

(4) With the inclusion of supersymmetry one can potentially achieve a unification of the coupling constants of $SU(3) \times SU(2)_L \times U(1)$ at a grand unified energy scale.
(5) In the presence of gravity an interplay between bosons and fermions can cancel the quartic divergence in the vacuum energy.

(6) Cancellation of perturbative infinities can also be found in supergravity, the local version of supersymmetry.

(7) With supersymmetry one can construct a consistent candidate quantum theory of gravity, string theory, which permits a possible unification of all of the fundamental forces and a metrication (geometrization) of them.

(8) Finally, with supersymmetry one has a prime candidate for dark matter.
Despite this quite extensive theoretical inventory, so far no sign of any superparticles.

Now while one can always push superparticle masses above current experimental capabilities, there is a tension since need a superparticle close enough in mass to Higgs boson in order to resolve the hierarchy problem.

The situation is disquieting enough that one should at least contemplate whether it might be possible to dispense with supersymmetry altogether.

If one is to consider doing so however, then one must seek an alternative that has the potential to also achieve its key successes. The best option is if it is also based on a symmetry, so consider **conformal symmetry**.
On the gravity side, consider conformal gravity. The conformal gravity theory is based on

$$I_W = -\alpha_g \int d^4 x (-g)^{1/2} C_{\lambda\mu\nu\kappa} C^{\lambda\mu\nu\kappa}$$

(1)

where

$$C_{\lambda\mu\nu\kappa} = R_{\lambda\mu\nu\kappa} - \frac{1}{2} (g_{\lambda\nu} R_{\mu\kappa} - g_{\lambda\kappa} R_{\mu\nu} - g_{\mu\nu} R_{\lambda\kappa} + g_{\mu\kappa} R_{\lambda\nu}) + \frac{1}{6} R_{\alpha}^\alpha (g_{\lambda\nu} g_{\mu\kappa} - g_{\lambda\kappa} g_{\mu\nu}),$$

is the Weyl conformal tensor and α_g is dimensionless. The action is the unique action that is invariant under the local scaling

$$g_{\mu\nu}(x) \to e^{2\beta(x)} g_{\mu\nu}(x),$$

with

$$C^\lambda_{\mu\nu\kappa} \to C^\lambda_{\mu\nu\kappa},$$

and with all derivatives of $\beta(x)$ dropping out.
On the particle physics side we consider scaling with anomalous dimensions (conformal bootstrap). For the Abelian gluon model this can be achieved by the renormalization group $\beta(\alpha)$ having a fixed point at some α, or by considering the quenched approximation in which the photon is not dressed, this being equivalent to $\beta(\alpha)$ being zero for any α.

In either case the asymptotic solution to the Schwinger-Dyson equation for the fermion propagator is of the form (Johnson, Baker, Wiley 1961)

$$\tilde{S}^{-1}(p) = \slashed{p} - m \left(\frac{-p^2 - i\epsilon}{m^2} \right)^{\gamma_\theta(\alpha)/2} + i\epsilon. \quad (2)$$

where $\gamma_\theta(\alpha)$ is the anomalous part of the dimension $d_\theta(\alpha)$ of the mass operator $\bar{\psi}\psi$, according to

$$d_\theta(\alpha) = 3 + \gamma_\theta(\alpha). \quad (3)$$
The Higgs self-energy quadratic divergence hierarchy problem is currently the most pressing concern for supersymmetry.

Problem does not exist if Higgs boson is dynamical composite rather than elementary. This is important to know anyway. We will see that Higgs width can serve as a diagnostic.

If action is scale invariant then no $-\mu^2\phi^2$ term allowed. Symmetry breaking must then be dynamical, with $\bar{\psi}\psi$ acquiring a non-vanishing vacuum expectation value. In such a case the Higgs mass is automatically of the same order as the fermion mass that is induced by dynamical symmetry breaking.
We thus need a calculational scheme to implement dynamical symmetry breaking. We shall augment the chiral symmetric Nambu-Jona-Lasinio four-fermion model by dressing its point vertices with the Johnson-Baker-Wiley scaling form for the insertion of $\bar{\psi}\psi$ into the inverse Fermion propagator:

$$\tilde{\Gamma}_S(p, p, 0, m) = \left(\frac{-p^2 - i\epsilon}{m^2} \right)^{\gamma_\theta(\alpha)/2},$$

(4)

We find that vacuum breaks if $\gamma_\theta(\alpha) = -1$ (Mannheim 1974, 1975), dynamical Goldstone and Higgs bosons being generated (Mannheim 2017), and with the four fermion theory then becoming renormalizable to all orders (Mannheim 2017).
2 THE NAMBU-JONA-LASINIO (NJL) CHIRAL FOUR-FERMION MODEL

2.1 Quick Review of the NJL Model as a Mean-Field Theory in Hartree-Fock Approximation

Introduce mass term with \(m \) as a trial parameter and note \(m^2/2g \) term

\[
I_{\text{NJL}} = \int d^4x \left[i\bar{\psi} \gamma^\mu \partial_\mu \psi - \frac{g}{2} [\bar{\psi} \psi]^2 - \frac{g}{2} [\bar{\psi} i\gamma_5 \psi]^2 \right]
\]

\[
= \int d^4x \left[i\bar{\psi} \gamma^\mu \partial_\mu \psi - m\bar{\psi} \psi + \frac{m^2}{2g} \right] + \int d^4x \left[-\frac{g}{2} \left(\bar{\psi} \psi - \frac{m}{g} \right)^2 - \frac{g}{2} (\bar{\psi} i\gamma_5 \psi)^2 \right]
\]

\[
I_{\text{NJL}} = I_{\text{MF}} + I_{\text{RI}}, \text{ mean field plus residual interaction}
\]

Hartree-Fock approximation

\[
\langle \Omega_m | \left[\bar{\psi} \psi - \frac{m}{g} \right]^2 | \Omega_m \rangle = \langle \Omega_m | \left[\bar{\psi} \psi - \frac{m}{g} \right] | \Omega_m \rangle^2 = 0,
\]

\[
\langle \Omega_m | \bar{\psi} \psi | \Omega_m \rangle = -i \int \frac{d^4k}{(2\pi)^4} \text{Tr} \left[\frac{1}{\phi - m + i\epsilon} \right] = \frac{m}{g},
\]

Satisfied by self-consistent \(M \), and defines \(g^{-1} \)

\[
- \frac{MA^2}{4\pi^2} + \frac{M^3}{4\pi^2} \ln \left(\frac{A^2}{M^2} \right) = \frac{M}{g}.
\]
2.2 Vacuum Energy

\[
\epsilon(m) = i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \ln \left[\frac{\phi - m + i\epsilon}{\phi + i\epsilon} \right] \\
= -\frac{m^2 \Lambda^2}{8\pi^2} + \frac{m^4}{16\pi^2} \ln \left(\frac{\Lambda^2}{m^2} \right) + \frac{m^4}{32\pi^2}
\]

is quadratically divergent.

\[
\tilde{\epsilon}(m) = \epsilon(m) - \frac{m^2}{g} \\
= \frac{m^4}{16\pi^2} \ln \left(\frac{\Lambda^2}{m^2} \right) - \frac{m^2 M^2}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) + \frac{m^4}{32\pi^2}.
\]

is only log divergent, with double-well potential emerging, but still cutoff dependent.
2.3 The Collective Tachyon Modes when the Fermion is Massless

\[\Pi_S(q^2) = \int d^4x e^{ip\cdot x} \langle \Omega | T(\bar{\psi}(x)\psi(x)\bar{\psi}(0)\psi(0)) | \Omega \rangle = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[\frac{1}{p + i\epsilon} \frac{1}{\bar{q} + i\epsilon} \right], \]

\[\Pi_P(q^2) = \int d^4x e^{ip\cdot x} \langle \Omega | T(\bar{\psi}(x)i\gamma_5\psi(x)\bar{\psi}(0)i\gamma_5\psi(0)) | \Omega \rangle = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[i\gamma_5 \frac{1}{p + i\epsilon} i\gamma_5 \frac{1}{\bar{q} + i\epsilon} \right]. \] (11)

\[\Pi_S(q^2) = \Pi_P(q^2) = -\frac{\Lambda^2}{4\pi^2} - \frac{q^2}{8\pi^2} \ln \left(\frac{\Lambda^2}{-q^2} \right) - \frac{q^2}{8\pi^2}. \] (12)

\[T_S(q^2) = g + g\Pi_S(q^2)g + g\Pi_S(q^2)g\Pi_S(q^2)g + \ldots = \frac{g}{1 - g\Pi_S(q^2)} = \frac{1}{g^{-1} - \Pi_S(q^2)}, \]

\[T_P(q^2) = g + g\Pi_P(q^2)g + g\Pi_P(q^2)g\Pi_P(q^2)g + \ldots = \frac{g}{1 - g\Pi_P(q^2)} = \frac{1}{g^{-1} - \Pi_P(q^2)}. \] (13)

\[T_S(q^2) = T_P(q^2) = \frac{Z^{-1}}{(q^2 + 2M^2)}, \quad Z = \frac{1}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right). \] (14)

Tachyonic poles, but at cutoff independent masses. Normal vacuum is unstable. \(g^{-1} \) takes care of the quadratic divergence.
The Collective Goldstone and Higgs Modes when the Fermion is Massive

\[\Pi_S(q^2, M) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[\frac{1}{\not{\phi} - M + i\epsilon} \frac{1}{\not{\bar{q}} - M + i\epsilon} \right] \]
\[= -\frac{\Lambda^2}{4\pi^2} + \frac{M^2}{4\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) + \frac{(4M^2 - q^2)}{8\pi^2} + \frac{(4M^2 - q^2)}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) \]
\[- \frac{1}{8\pi^2} \frac{(4M^2 - q^2)^{3/2}}{(-q^2)^{1/2}} \ln \left(\frac{(4M^2 - q^2)^{1/2} + (-q^2)^{1/2}}{(4M^2 - q^2)^{1/2} - (-q^2)^{1/2}} \right). \] (15)

\[\Pi_P(q^2, M) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[i\gamma_5 \frac{1}{\not{\phi} - M + i\epsilon} i\gamma_5 \frac{1}{\not{\bar{q}} - M + i\epsilon} \right] \]
\[= -\frac{\Lambda^2}{4\pi^2} + \frac{M^2}{4\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) - \frac{q^2}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) + \frac{(4M^2 - q^2)}{8\pi^2} \]
\[+ \frac{(8M^4 - 8M^2q^2 + q^4)}{8\pi^2(-q^2)^{1/2}(4M^2 - q^2)^{1/2}} \ln \left(\frac{(4M^2 - q^2)^{1/2} + (-q^2)^{1/2}}{(4M^2 - q^2)^{1/2} - (-q^2)^{1/2}} \right). \] (16)

\[T_S(q^2) = \frac{R_S^{-1}}{(q^2 - 4M^2)}, \quad T_P(q^2) = \frac{R_P^{-1}}{q^2}, \] (17)

\[R_S = R_P = \frac{1}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right). \] (18)

The scalar Higgs mass is finite and of order the dynamical fermion mass, and residue is determined.
3 SCALE INVARIANT QED COUPLED TO FOUR FERMI THEORY AT $\gamma_\theta(\alpha) = -1$

$$\mathcal{L}_{\text{QED-FF}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \gamma^\mu (i \partial_\mu - e A_\mu) \psi - \frac{g}{2} [\bar{\psi} \psi]^2 - \frac{g}{2} [\bar{\psi} i \gamma_5 \psi]^2$$

$$= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \gamma^\mu (i \partial_\mu - e A_\mu) \psi - m \bar{\psi} \psi + \frac{m^2}{2g} - \frac{g}{2} \left(\frac{\bar{\psi} \psi - m}{g} \right)^2 - \frac{g}{2} \left(\bar{\psi} i \gamma_5 \psi \right)^2$$

$$= \mathcal{L}_{\text{QED-MF}} + \mathcal{L}_{\text{QED-RI}}. \quad (19)$$

$$\tilde{S}^{-1}(p) = \mp - m \left(\frac{-p^2 - i\epsilon}{\mu^2} \right)^{-1/2} + i\epsilon, \quad \tilde{\Gamma}_S(p, p, 0) = \left(\frac{-p^2 - i\epsilon}{\mu^2} \right)^{-1/2} \quad (20)$$

as renormalized at μ^2. With dimension of $(\bar{\psi} \psi)^2$ dropping from 6 to 4 when $\gamma_\theta = -1$, quadratic divergences become logarithmic, and four-fermion interaction becomes renormalizable to all orders in g (Mannheim 2017).

$$\langle \Omega_m | \bar{\psi} \psi | \Omega_m \rangle = -\frac{m \mu^2}{4\pi^2} \ln \left(\frac{\Lambda^2}{m \mu} \right) = \frac{m}{g}. \quad (21)$$

$$-\frac{\mu^2}{4\pi^2} \ln \left(\frac{\Lambda^2}{M \mu} \right) = \frac{1}{g}, \quad M = \frac{\Lambda^2}{\mu} \exp \left(\frac{4\pi^2}{\mu^2 g} \right). \quad (22)$$

Gap equation gives $-g \sim 1/\ln \Lambda^2$. Thus g is negative, i.e. attractive, and becomes very small as $\Lambda \to \infty$, with BCS-type essential singularity in gap equation at $g = 0$. Hence dynamical symmetry breaking with weak coupling.
3.1 Vacuum Energy

\[\epsilon(m) = \frac{i}{2} \int \frac{d^4p}{(2\pi)^4} \text{Tr} \ln \left[1 - \frac{m^2}{p^2 + i\epsilon} \left(\frac{-p^2 - i\epsilon}{\mu^2} \right)^{-1} \right] = -\frac{m^2\mu^2}{8\pi^2} \left[\ln \left(\frac{\Lambda^2}{m\mu} \right) + \frac{1}{2} \right] \]

and is only log divergent. Due to presence of \(m^2 / 2g \) term we obtain the completely finite

\[\tilde{\epsilon}(m) = \epsilon(m) - \frac{m^2}{2g} = \frac{m^2\mu^2}{16\pi^2} \left[\ln \left(\frac{m^2}{M^2} \right) - 1 \right], \]

which we recognize as a double-well potential, dynamically induced.

We thus see the power of dynamical symmetry breaking. It reduces divergences. Moreover, since \(m^2 / 2g \) is a cosmological term, dynamical symmetry breaking has a control over the cosmological constant problem that an elementary Higgs field potential does not. When coupled to conformal gravity, the cosmological constant problem is completely solved.
\[\Pi_S(q^2, m = 0) = \Pi_P(q^2, m = 0) = -\frac{\mu^2}{4\pi^2} \left[\ln \left(\frac{\Lambda^2}{(-q^2)} \right) - 3 + 4 \ln 2 \right]. \quad (25) \]

\[T_S(q^2) = \frac{g}{1 - g\Pi_S(q^2)} = \frac{1}{g^{-1} - \Pi_S(q^2)}, \]

\[T_P(q^2) = \frac{g}{1 - g\Pi_P(q^2)} = \frac{1}{g^{-1} - \Pi_P(q^2)}, \quad (26) \]

\[q^2 = -M\mu e^{4\ln 2 - 3} = -0.797M\mu, \quad (27) \]

\[T_S(q^2) = T_P(q^2) = \frac{31.448M\mu}{(q^2 + 0.797M\mu)} \quad (28) \]
3.3 The Collective Goldstone Mode when the Fermion is Massive

\[
\Pi_P(q^2 = 0, m) = -4i\mu^2 \int \frac{d^4p}{(2\pi)^4} \frac{(p^2)(-p^2) - m^2\mu^2}{((p^2 + i\epsilon)^2 + m^2\mu^2)^2}.
\]

\[
= 4i\mu^2 \int \frac{d^4p}{(2\pi)^4} \frac{1}{(p^2 + i\epsilon)^2 + m^2\mu^2} = \frac{1}{g}.
\] (29)

\[
T_P(q^2) = \frac{128\pi M}{7\mu q^2} = \frac{57.446M}{\mu q^2}.
\] (30)

3.4 The Collective Higgs Mode when the Fermion is Massive

\[
q_0(\text{Higgs}) = (1.480 - 0.017i)(M\mu)^{1/2}, \quad q^2(\text{Higgs}) = (2.189 - 0.051i)M\mu.
\] (31)

\[
q_0(\text{Higgs}) = (1.480 - 0.017i)M, \quad q^2(\text{Higgs}) = (2.189 - 0.051i)M^2,
\] (32)

Higgs mass is close to dynamical fermion mass, but above threshold, and thus has a width. In na double well elementary Higgs field theory Higgs mass is real. Width can be used to distinguish an elementary Higgs from a dynamical one.
4 WE GET LOCAL CONFORMAL SYMMETRY FOR FREE

To implement local Lorentz invariance for a Dirac spinor (i.e. $\psi \rightarrow \exp(\omega_{\mu\nu}(x)M^{\mu\nu})\psi$ where $\omega_{\mu\nu}(x)$ depends on x^μ), one introduces a set of vierbeins V_μ^a and a spin connection ω_{μ}^{ab}, where

$$-\omega_{\mu}^{ab} = V_\nu^b \partial_\mu V^{av} + V_\lambda^b \Gamma_{\nu\mu}^\lambda V^{av}, \quad \Gamma_{\mu\nu}^\lambda = \frac{1}{2}g_{\lambda\alpha}(\partial_\mu g_{\nu\alpha} + \partial_\nu g_{\mu\alpha} - \partial_\alpha g_{\nu\mu}).$$

(33)

In a standard curved Riemannian space the massless Dirac action is given by

$$I_D = \int d^4x (-g)^{1/2}i\bar{\psi}\gamma^aV_\mu^a(\partial_\mu + \Gamma_\mu)\psi, \quad \Gamma_\mu = \frac{1}{8}(\gamma_a \gamma_b - \gamma_b \gamma_a)\omega_{\mu}^{ab}.$$

(34)

The Dirac action I_D possesses four local translation invariances and six local Lorentz invariances. However, I_D also possesses one local conformal invariance as well, since it is left invariant under

$$g_{\mu\nu}(x) \rightarrow e^{2\beta(x)}g_{\mu\nu}(x), \quad V_\mu^a(x) \rightarrow e^{\beta(x)}V_\mu^a(x), \quad \psi(x) \rightarrow e^{-3\beta(x)/2}\psi(x),$$

(35)

with arbitrary spacetime-dependent $\beta(x)$.

Local Lorentz invariance implies local conformal invariance, with $\Gamma_\mu = \Sigma_{bc}\omega_{\mu}^{bc}$ acting as a gauge field for local conformal transformations, just as A_μ is the gauge field for local gauge transformations. In $\psi \rightarrow e^{\beta+i\alpha}\psi$, gauging β is gravity, gauging α is Yang-Mills.

Thus unify fundamental forces with gravity through gauging real and imaginary parts of fermion phase. No longer need to unify them using a Lie group, So no need to evade Coleman-Mandula theorem, and thus no need for supersymmetry.
5 WE GET LOCAL CONFORMAL GRAVITY FOR FREE

\[I_W = -\alpha_g \int d^4 x (-g)^{1/2} C_{\lambda\mu\nu\kappa} C^{\lambda\mu\nu\kappa} - 2\alpha_g \int d^4 x (-g)^{1/2} \left[R_{\mu\kappa} R^{\mu\kappa} - \frac{1}{3} (R^\alpha_\alpha)^2 \right]. \quad (36) \]

For Dirac action \(I_D \) path integration over the fermion fields is direct, and leads ('t Hooft) to

\[
\int [D\psi][D\bar{\psi}] \exp(I_D) = \exp(iI_{\text{EFF}}),
\]

\[I_{\text{EFF}} = \int d^4 x (-g)^{1/2} C \left[R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} (R^\alpha_\alpha)^2 \right] \quad (37) \]

with leading term with log divergent constant \(C \). (Path integration is same as a one loop Feynman diagram.)

Conformal gravity is unavoidable. Standard Dirac action is ghost free, so conformal gravity must be ghost free also. Confirmed by Bender and Mannheim (2008) with conformal gravity being a non-Hermitian PT theory.

When we set

\[\epsilon(m) = i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \ln [\not{p} - m + i\epsilon] - i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \ln [\not{p} + i\epsilon] \quad (38) \]

we were only looking at energy difference. But gravity sees full

\[\epsilon(m) = i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \ln [\not{p} - m + i\epsilon] \quad (39) \]

and it is quartically divergent. Cancelled by graviton loop quartic divergence.
5.1 Conformal Gravity and the Cosmological Constant Problem

\[\mathcal{L}_{\text{EFF}} = \frac{M^4}{16\pi^2} - \frac{M^2}{512\pi} R^\alpha_\alpha. \] (40)

\[T_M^{\mu\nu} = i\hbar \overline{\psi} \gamma^\mu \partial^\nu \psi - \frac{M^2}{256\pi} \left(R^{\mu\nu} - \frac{g^{\mu\nu}}{2} R^\alpha_\alpha \right) - g^{\mu\nu} \frac{M^4}{16\pi^2}. \] (41)

\[d_L = -\frac{c}{H_0} \frac{(1 + z)^2}{q_0} \left(1 - \left[1 + q_0 - \frac{q_0}{(1 + z)^2} \right]^{1/2} \right), \] (42)
Figure 1: Hubble plot expectations for $q_0 = -0.37$ (highest curve) and $q_0 = 0$ (middle curve) conformal gravity and for $\Omega_M(t_0) = 0.3$, $\Omega_\Lambda(t_0) = 0.7$ standard gravity (lowest curve).
5.2 Conformal Gravity and the Dark Matter Problem

\[\nabla^4 B(r) = \frac{3}{4\alpha_g B(r)}(T^0_0 - T^r_r) = f(r). \] \hspace{1cm} (43)

\[B(r) = -\frac{1}{6} \int_0^r dr' f(r') \left(3r'^2 r + \frac{r'^4}{r} \right) \]
\[- \frac{1}{6} \int_r^\infty dr' f(r')(3r'^3 + r'r^2) + B_0(r), \] \hspace{1cm} (44)

\[v^2_{\text{LOC}} = \frac{N^* \beta^* c^2 R^2}{2R_0^3} \left[I_0 \left(\frac{R}{2R_0}\right) K_0 \left(\frac{R}{2R_0}\right) - I_1 \left(\frac{R}{2R_0}\right) K_1 \left(\frac{R}{2R_0}\right)\right] + \frac{N^* \gamma^* c^2 R^2}{2R_0^3} I_1 \left(\frac{R}{2R_0}\right) K_1 \left(\frac{R}{2R_0}\right), \] \hspace{1cm} (45)

\[v^2_{\text{TOT}} = v^2_{\text{LOC}} + \frac{\gamma_0 c^2 R}{2} - \kappa c^2 R^2 \rightarrow -\frac{N^* \beta^* c^2}{R} + \frac{N^* \gamma^* c^2 R}{2} + \frac{\gamma_0 c^2 R}{2} - \kappa c^2 R^2. \] \hspace{1cm} (46)

\[\beta^* = 1.48 \times 10^5 \text{cm}, \quad \gamma^* = 5.42 \times 10^{-41} \text{cm}^{-1}, \]
\[\gamma_0 = 3.06 \times 10^{-30} \text{cm}^{-1}, \quad \kappa = 9.54 \times 10^{-54} \text{cm}^{-2}, \] \hspace{1cm} (47)

Fit 138 galaxies with VISIBLE N^* of each galaxy (i.e. galactic mass to light ratio M/L) as only variable, with β^*, γ^*, γ_0^* and κ all universal, and with NO DARK MATTER, and with 276 fewer free parameters than in dark matter calculations. Works since $(v^2/c^2 R)_{\text{last}} \sim 10^{-30} \text{cm}^{-1}$ for every galaxy.
FIG. 1: Fitting to the rotational velocities (in km sec$^{-1}$) of the THINGS 18 galaxy sample
FIG. 2: Fitting to the rotational velocities of the Ursa Major 30 galaxy sample – Part 1
FIG. 3: Fitting to the rotational velocities of the Ursa Major 30 galaxy sample – Part 2
FIG. 4: Fitting to the rotational velocities of the LSB 20 galaxy sample
FIG. 5: Fitting to the rotational velocities of the LSB 21 galaxy sample
FIG. 6: Fitting to the rotational velocities of the Miscellaneous 22 galaxy sample
FIG. 7: Fitting to the rotational velocities (in km sec$^{-1}$) of the 24 dwarf galaxy sample – Part 1
FIG. 8: Fitting to the rotational velocities of the 24 dwarf galaxy sample – Part 2
FIG. 9 Fitting to the rotational velocities of the 6 dwarf galaxy sample

FIG. 10: Extended distance predictions for DDO 154, UGC 128, and Malin 1
(1) In flat space physics an interplay between bosons and fermions can render logarithmically divergent Feynman diagrams finite. Conformal symmetry takes care of quartic and quadratic as well.

(2) An interplay between bosons and fermions can cancel the perturbative quadratic divergence that an elementary Higgs scalar field would possess (the hierarchy problem). Problem does not exist if Higgs is composite.

(3) The existence of fermionic supersymmetry generators allows one to evade the Coleman-Mandula theorem that forbids the combining of spacetime and bosonic internal symmetry generators in a common Lie algebra. No need to put spacetime in a Lie group.

(4) With the inclusion of supersymmetry one can potentially achieve a unification of the coupling constants of $SU(3) \times SU(2)_L \times U(1)$ at a grand unified energy scale. Not addressed by conformal symmetry, but would need something beyond standard model.
(5) In the presence of gravity an interplay between bosons and fermions can cancel the quartic divergence in the vacuum energy. Ditto conformal gravity since conformal gravity graviton is a boson. All contributions to vacuum energy under control and cosmological constant problem solved.

(6) Cancellation of perturbative infinities can also be found in supergravity, the local version of supersymmetry. Local conformal symmetry also cancels infinities, including those associated with mass generation.

(7) With supersymmetry one can construct a consistent candidate quantum theory of gravity, string theory, which permits a possible unification of all of the fundamental forces and a metircation (geometrization) of them. Conformal gravity is a consistent quantum gravity theory. Only requires four dimensions and no new particles. Admits of a metircation of the fundamental forces.

(8) Finally, with supersymmetry one has a prime candidate for dark matter. With conformal gravity, dark matter not needed, nor dark energy either.
Properties of the THINGS 18 Galaxy Sample

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>Type</th>
<th>Distance (Mpc)</th>
<th>L_B ($10^{10} L_\odot$)</th>
<th>R_0 (kpc)</th>
<th>R_{last} (kpc)</th>
<th>M_{HI} ($10^{10} M_\odot$)</th>
<th>M_{disk} ($10^{10} M_\odot$)</th>
<th>$(M/L){stars}$ ($M\odot/L_\odot$)</th>
<th>$(v^2/c^2 R)_{last}$ (10$^{-30}$ cm$^{-1}$)</th>
<th>Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDO 0154</td>
<td>LSB</td>
<td>4.2</td>
<td>0.007</td>
<td>0.8</td>
<td>8.1</td>
<td>0.03</td>
<td>0.003</td>
<td>0.45</td>
<td>1.12</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>IC 2574</td>
<td>LSB</td>
<td>4.5</td>
<td>0.345</td>
<td>4.2</td>
<td>13.1</td>
<td>0.19</td>
<td>0.098</td>
<td>0.28</td>
<td>1.69</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 0925</td>
<td>LSB</td>
<td>8.7</td>
<td>1.444</td>
<td>3.9</td>
<td>12.4</td>
<td>0.41</td>
<td>1.372</td>
<td>0.95</td>
<td>4.17</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 2403</td>
<td>HSB</td>
<td>4.3</td>
<td>1.647</td>
<td>2.7</td>
<td>23.9</td>
<td>0.46</td>
<td>2.370</td>
<td>1.44</td>
<td>2.89</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 2841</td>
<td>HSB</td>
<td>14.1</td>
<td>4.742</td>
<td>3.5</td>
<td>51.6</td>
<td>0.86</td>
<td>19.552</td>
<td>4.12</td>
<td>5.83</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 2903</td>
<td>HSB</td>
<td>9.4</td>
<td>4.088</td>
<td>3.0</td>
<td>30.9</td>
<td>0.49</td>
<td>7.155</td>
<td>1.75</td>
<td>3.75</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 2976</td>
<td>LSB</td>
<td>3.6</td>
<td>0.201</td>
<td>1.2</td>
<td>2.6</td>
<td>0.01</td>
<td>0.322</td>
<td>1.60</td>
<td>10.43</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 3031</td>
<td>HSB</td>
<td>3.7</td>
<td>3.187</td>
<td>2.6</td>
<td>15.0</td>
<td>0.38</td>
<td>8.662</td>
<td>2.72</td>
<td>9.31</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 3198</td>
<td>HSB</td>
<td>14.1</td>
<td>3.241</td>
<td>4.0</td>
<td>38.6</td>
<td>1.06</td>
<td>3.644</td>
<td>1.12</td>
<td>2.09</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 3521</td>
<td>HSB</td>
<td>12.2</td>
<td>4.769</td>
<td>3.3</td>
<td>35.3</td>
<td>1.03</td>
<td>9.245</td>
<td>1.94</td>
<td>4.21</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 3621</td>
<td>HSB</td>
<td>7.4</td>
<td>2.048</td>
<td>2.9</td>
<td>28.7</td>
<td>0.89</td>
<td>2.891</td>
<td>1.41</td>
<td>3.18</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 3627</td>
<td>HSB</td>
<td>10.2</td>
<td>3.700</td>
<td>3.1</td>
<td>8.2</td>
<td>0.10</td>
<td>6.622</td>
<td>1.79</td>
<td>15.64</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 4736</td>
<td>HSB</td>
<td>5.0</td>
<td>1.460</td>
<td>2.1</td>
<td>10.3</td>
<td>0.05</td>
<td>1.630</td>
<td>1.60</td>
<td>4.66</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 4826</td>
<td>HSB</td>
<td>5.4</td>
<td>1.441</td>
<td>2.6</td>
<td>15.8</td>
<td>0.03</td>
<td>3.640</td>
<td>2.53</td>
<td>5.46</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 5055</td>
<td>HSB</td>
<td>9.2</td>
<td>3.622</td>
<td>2.9</td>
<td>44.4</td>
<td>0.76</td>
<td>6.035</td>
<td>1.87</td>
<td>2.36</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 6946</td>
<td>HSB</td>
<td>6.9</td>
<td>3.732</td>
<td>2.9</td>
<td>22.4</td>
<td>0.57</td>
<td>6.272</td>
<td>1.68</td>
<td>6.39</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 7331</td>
<td>HSB</td>
<td>14.2</td>
<td>6.773</td>
<td>3.2</td>
<td>24.4</td>
<td>0.85</td>
<td>12.086</td>
<td>1.78</td>
<td>9.61</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 7793</td>
<td>HSB</td>
<td>5.2</td>
<td>0.910</td>
<td>1.7</td>
<td>10.3</td>
<td>0.16</td>
<td>0.793</td>
<td>0.87</td>
<td>3.61</td>
<td>[?] [?] [?] [?] [?]</td>
</tr>
</tbody>
</table>
Properties of the Ursa Major 30 Galaxy Sample

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>Type</th>
<th>Distance (Mpc)</th>
<th>L_B ($10^{10}L_\odot$)</th>
<th>R_0 (kpc)</th>
<th>R_{last} (kpc)</th>
<th>M_{HI} ($10^{10}M_\odot$)</th>
<th>M_{disk} ($10^{10}M_\odot$)</th>
<th>$(M/L)_{stars}$</th>
<th>$(v^2/c^2R_{last})_{last}$</th>
<th>Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 3726</td>
<td>HSB</td>
<td>17.4</td>
<td>3.340</td>
<td>3.2</td>
<td>31.5</td>
<td>0.60</td>
<td>3.82</td>
<td>1.15</td>
<td>3.19</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 3769</td>
<td>HSB</td>
<td>15.5</td>
<td>0.684</td>
<td>1.5</td>
<td>32.2</td>
<td>0.41</td>
<td>1.36</td>
<td>1.99</td>
<td>1.43</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 3877</td>
<td>HSB</td>
<td>15.5</td>
<td>1.948</td>
<td>2.4</td>
<td>9.8</td>
<td>0.11</td>
<td>3.44</td>
<td>1.76</td>
<td>10.51</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 3893</td>
<td>HSB</td>
<td>18.1</td>
<td>2.928</td>
<td>2.4</td>
<td>20.5</td>
<td>0.59</td>
<td>5.00</td>
<td>1.71</td>
<td>3.85</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 3917</td>
<td>LSB</td>
<td>16.9</td>
<td>1.334</td>
<td>2.8</td>
<td>13.9</td>
<td>0.17</td>
<td>2.23</td>
<td>1.67</td>
<td>4.85</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 3949</td>
<td>HSB</td>
<td>18.4</td>
<td>2.327</td>
<td>1.7</td>
<td>7.2</td>
<td>0.35</td>
<td>2.37</td>
<td>1.02</td>
<td>14.23</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 3953</td>
<td>HSB</td>
<td>18.7</td>
<td>4.236</td>
<td>3.9</td>
<td>16.3</td>
<td>0.31</td>
<td>9.79</td>
<td>2.31</td>
<td>10.20</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 3972</td>
<td>HSB</td>
<td>18.6</td>
<td>0.978</td>
<td>2.0</td>
<td>9.0</td>
<td>0.13</td>
<td>1.49</td>
<td>1.53</td>
<td>7.18</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 3992</td>
<td>HSB</td>
<td>25.6</td>
<td>8.456</td>
<td>5.7</td>
<td>49.6</td>
<td>1.94</td>
<td>13.94</td>
<td>1.65</td>
<td>4.08</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4010</td>
<td>LSB</td>
<td>18.4</td>
<td>0.883</td>
<td>3.4</td>
<td>10.6</td>
<td>0.29</td>
<td>2.03</td>
<td>2.30</td>
<td>5.03</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4013</td>
<td>HSB</td>
<td>18.6</td>
<td>2.088</td>
<td>2.1</td>
<td>33.1</td>
<td>0.32</td>
<td>5.58</td>
<td>2.67</td>
<td>3.14</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4051</td>
<td>HSB</td>
<td>14.6</td>
<td>2.281</td>
<td>2.3</td>
<td>9.9</td>
<td>0.18</td>
<td>3.17</td>
<td>1.39</td>
<td>8.52</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4085</td>
<td>HSB</td>
<td>19.0</td>
<td>1.212</td>
<td>1.6</td>
<td>6.5</td>
<td>0.15</td>
<td>1.34</td>
<td>1.11</td>
<td>10.21</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4088</td>
<td>HSB</td>
<td>15.8</td>
<td>2.957</td>
<td>2.8</td>
<td>18.8</td>
<td>0.64</td>
<td>4.67</td>
<td>1.58</td>
<td>5.79</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4100</td>
<td>HSB</td>
<td>21.4</td>
<td>3.388</td>
<td>2.9</td>
<td>27.1</td>
<td>0.44</td>
<td>5.74</td>
<td>1.69</td>
<td>3.35</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4138</td>
<td>LSB</td>
<td>15.6</td>
<td>0.827</td>
<td>1.2</td>
<td>16.1</td>
<td>0.11</td>
<td>2.97</td>
<td>3.59</td>
<td>5.04</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4157</td>
<td>HSB</td>
<td>18.7</td>
<td>2.901</td>
<td>2.6</td>
<td>30.9</td>
<td>0.88</td>
<td>5.83</td>
<td>2.01</td>
<td>3.99</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4183</td>
<td>HSB</td>
<td>16.7</td>
<td>1.042</td>
<td>2.9</td>
<td>19.5</td>
<td>0.30</td>
<td>1.43</td>
<td>1.38</td>
<td>2.36</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4217</td>
<td>HSB</td>
<td>19.6</td>
<td>3.031</td>
<td>3.1</td>
<td>18.2</td>
<td>0.30</td>
<td>5.53</td>
<td>1.83</td>
<td>6.28</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>NGC 4399</td>
<td>HSB</td>
<td>15.5</td>
<td>0.610</td>
<td>1.2</td>
<td>4.6</td>
<td>0.04</td>
<td>0.42</td>
<td>0.68</td>
<td>9.49</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6399</td>
<td>LSB</td>
<td>18.7</td>
<td>0.291</td>
<td>2.4</td>
<td>8.1</td>
<td>0.07</td>
<td>0.59</td>
<td>2.04</td>
<td>3.42</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6446</td>
<td>LSB</td>
<td>15.9</td>
<td>0.263</td>
<td>1.9</td>
<td>13.6</td>
<td>0.24</td>
<td>0.36</td>
<td>1.36</td>
<td>1.70</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6667</td>
<td>LSB</td>
<td>19.8</td>
<td>0.422</td>
<td>3.1</td>
<td>8.6</td>
<td>0.10</td>
<td>0.71</td>
<td>1.67</td>
<td>3.09</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6818</td>
<td>LSB</td>
<td>21.7</td>
<td>0.352</td>
<td>2.1</td>
<td>8.4</td>
<td>0.16</td>
<td>0.11</td>
<td>0.33</td>
<td>2.35</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6917</td>
<td>LSB</td>
<td>18.9</td>
<td>0.563</td>
<td>2.9</td>
<td>10.9</td>
<td>0.22</td>
<td>1.24</td>
<td>2.20</td>
<td>4.05</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6923</td>
<td>LSB</td>
<td>18.0</td>
<td>0.297</td>
<td>1.5</td>
<td>5.3</td>
<td>0.08</td>
<td>0.35</td>
<td>1.18</td>
<td>4.43</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6930</td>
<td>LSB</td>
<td>17.0</td>
<td>0.601</td>
<td>2.2</td>
<td>15.7</td>
<td>0.29</td>
<td>1.02</td>
<td>1.69</td>
<td>2.68</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6973</td>
<td>HSB</td>
<td>25.3</td>
<td>1.647</td>
<td>2.2</td>
<td>11.0</td>
<td>0.35</td>
<td>3.99</td>
<td>2.42</td>
<td>10.58</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 6983</td>
<td>LSB</td>
<td>20.2</td>
<td>0.577</td>
<td>2.9</td>
<td>17.6</td>
<td>0.37</td>
<td>1.28</td>
<td>2.22</td>
<td>2.43</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>UGC 7089</td>
<td>LSB</td>
<td>13.9</td>
<td>0.352</td>
<td>2.3</td>
<td>7.1</td>
<td>0.07</td>
<td>0.35</td>
<td>0.98</td>
<td>3.18</td>
<td>[?]?[?]?[?]?</td>
</tr>
<tr>
<td>Galaxy</td>
<td>Type</td>
<td>Distance (Mpc)</td>
<td>L_B ($10^{10} L_\odot$)</td>
<td>R_0 (kpc)</td>
<td>R_{last} (kpc)</td>
<td>M_{HI} ($10^{10} M_\odot$)</td>
<td>M_{disk} ($10^{10} M_\odot$)</td>
<td>$(M/L)_{stars}$</td>
<td>$(v^2/c^2 R)_{last}$</td>
<td>Data Sources</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>DDO 0064</td>
<td>LSB</td>
<td>6.8</td>
<td>0.015</td>
<td>1.3</td>
<td>2.1</td>
<td>0.02</td>
<td>0.04</td>
<td>2.87</td>
<td>6.05</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>F563-1</td>
<td>LSB</td>
<td>46.8</td>
<td>0.140</td>
<td>2.9</td>
<td>18.2</td>
<td>0.29</td>
<td>1.35</td>
<td>9.65</td>
<td>2.44</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>F563-V2</td>
<td>LSB</td>
<td>57.8</td>
<td>0.266</td>
<td>2.0</td>
<td>6.3</td>
<td>0.20</td>
<td>0.60</td>
<td>2.26</td>
<td>6.15</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>F568-3</td>
<td>LSB</td>
<td>80.0</td>
<td>0.351</td>
<td>4.2</td>
<td>11.6</td>
<td>0.30</td>
<td>1.20</td>
<td>3.43</td>
<td>3.16</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>F583-1</td>
<td>LSB</td>
<td>32.4</td>
<td>0.064</td>
<td>1.6</td>
<td>14.1</td>
<td>0.18</td>
<td>0.15</td>
<td>2.32</td>
<td>1.92</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>F583-4</td>
<td>LSB</td>
<td>50.8</td>
<td>0.096</td>
<td>2.8</td>
<td>7.0</td>
<td>0.06</td>
<td>0.31</td>
<td>3.25</td>
<td>2.52</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 0959</td>
<td>LSB</td>
<td>13.5</td>
<td>0.333</td>
<td>1.3</td>
<td>2.9</td>
<td>0.05</td>
<td>0.37</td>
<td>1.11</td>
<td>7.43</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 4395</td>
<td>LSB</td>
<td>4.1</td>
<td>0.374</td>
<td>2.7</td>
<td>0.9</td>
<td>0.13</td>
<td>0.83</td>
<td>2.21</td>
<td>2.29</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>NGC 7137</td>
<td>LSB</td>
<td>25.0</td>
<td>0.959</td>
<td>1.7</td>
<td>3.6</td>
<td>0.10</td>
<td>0.27</td>
<td>0.28</td>
<td>3.91</td>
<td>[?] [?] ES [?]</td>
</tr>
<tr>
<td>UGC 0128</td>
<td>LSB</td>
<td>64.6</td>
<td>0.597</td>
<td>6.9</td>
<td>54.8</td>
<td>0.73</td>
<td>2.75</td>
<td>4.60</td>
<td>1.03</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 0191</td>
<td>LSB</td>
<td>15.9</td>
<td>0.129</td>
<td>1.7</td>
<td>2.2</td>
<td>0.26</td>
<td>0.49</td>
<td>3.81</td>
<td>15.48</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 0477</td>
<td>LSB</td>
<td>35.8</td>
<td>0.871</td>
<td>3.5</td>
<td>10.2</td>
<td>1.02</td>
<td>1.00</td>
<td>1.14</td>
<td>4.42</td>
<td>[?] [?] ES [?]</td>
</tr>
<tr>
<td>UGC 1230</td>
<td>LSB</td>
<td>54.1</td>
<td>0.366</td>
<td>4.7</td>
<td>37.1</td>
<td>0.65</td>
<td>0.67</td>
<td>1.82</td>
<td>0.97</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 1281</td>
<td>LSB</td>
<td>5.1</td>
<td>0.017</td>
<td>1.6</td>
<td>1.7</td>
<td>0.03</td>
<td>0.01</td>
<td>0.53</td>
<td>3.02</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 1551</td>
<td>LSB</td>
<td>35.6</td>
<td>0.780</td>
<td>4.2</td>
<td>6.6</td>
<td>0.44</td>
<td>0.16</td>
<td>0.20</td>
<td>3.69</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 4325</td>
<td>LSB</td>
<td>11.9</td>
<td>0.373</td>
<td>1.9</td>
<td>3.4</td>
<td>0.10</td>
<td>0.40</td>
<td>1.08</td>
<td>7.39</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 5005</td>
<td>LSB</td>
<td>51.4</td>
<td>0.200</td>
<td>4.6</td>
<td>27.7</td>
<td>0.28</td>
<td>1.02</td>
<td>5.11</td>
<td>1.30</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 5750</td>
<td>LSB</td>
<td>56.1</td>
<td>0.472</td>
<td>3.3</td>
<td>8.6</td>
<td>0.10</td>
<td>0.10</td>
<td>0.21</td>
<td>1.58</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 5999</td>
<td>LSB</td>
<td>44.9</td>
<td>0.170</td>
<td>4.4</td>
<td>15.0</td>
<td>0.18</td>
<td>3.36</td>
<td>19.81</td>
<td>5.79</td>
<td>[?] [?] [?] [?]</td>
</tr>
<tr>
<td>UGC 11820</td>
<td>LSB</td>
<td>17.1</td>
<td>0.169</td>
<td>3.6</td>
<td>3.7</td>
<td>0.40</td>
<td>1.68</td>
<td>9.95</td>
<td>8.44</td>
<td>[?] [?] [?] [?]</td>
</tr>
</tbody>
</table>
Properties of the LSB 21 Galaxy Sample

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>Type</th>
<th>Distance (Mpc)</th>
<th>L_B ($10^{10} L_\odot$)</th>
<th>R_0 (kpc)</th>
<th>R_{last} (kpc)</th>
<th>M_{HI} ($10^{10} M_\odot$)</th>
<th>M_{disk} ($10^{10} M_\odot$)</th>
<th>$(M/L)_{stars}$</th>
<th>$(v^2/c^2R)_{last}$ (10$^{-30}$ cm$^{-1}$)</th>
<th>Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESO 0140040</td>
<td>LSB</td>
<td>217.8</td>
<td>7.169</td>
<td>10.1</td>
<td>30.0</td>
<td>20.70</td>
<td>3.38</td>
<td>8.29</td>
<td>NA</td>
<td>[?][?][?]</td>
</tr>
<tr>
<td>ESO 0840411</td>
<td>LSB</td>
<td>82.4</td>
<td>0.287</td>
<td>3.5</td>
<td>9.1</td>
<td>0.06</td>
<td>0.21</td>
<td>1.49</td>
<td>[?][?][?]</td>
<td>ES NA</td>
</tr>
<tr>
<td>ESO 1200211</td>
<td>LSB</td>
<td>15.2</td>
<td>0.028</td>
<td>2.0</td>
<td>3.5</td>
<td>0.01</td>
<td>0.20</td>
<td>0.66</td>
<td>[?][?][?]</td>
<td>ES NA</td>
</tr>
<tr>
<td>ESO 1870510</td>
<td>LSB</td>
<td>16.8</td>
<td>0.054</td>
<td>2.1</td>
<td>2.8</td>
<td>0.09</td>
<td>1.62</td>
<td>2.02</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>ESO 2060140</td>
<td>LSB</td>
<td>59.6</td>
<td>0.735</td>
<td>5.1</td>
<td>11.6</td>
<td>3.51</td>
<td>4.78</td>
<td>4.34</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>ESO 3020120</td>
<td>LSB</td>
<td>7.09</td>
<td>0.717</td>
<td>3.4</td>
<td>11.2</td>
<td>0.77</td>
<td>1.07</td>
<td>2.37</td>
<td>[?][?][?]</td>
<td>ES NA</td>
</tr>
<tr>
<td>ESO 3050090</td>
<td>LSB</td>
<td>13.2</td>
<td>0.186</td>
<td>1.3</td>
<td>5.6</td>
<td>0.06</td>
<td>0.32</td>
<td>1.87</td>
<td>[?][?][?]</td>
<td>ES NA</td>
</tr>
<tr>
<td>ESO 4250180</td>
<td>LSB</td>
<td>88.3</td>
<td>2.600</td>
<td>7.3</td>
<td>14.6</td>
<td>4.79</td>
<td>1.84</td>
<td>5.17</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>ESO 4880490</td>
<td>LSB</td>
<td>28.7</td>
<td>0.139</td>
<td>1.6</td>
<td>7.8</td>
<td>0.43</td>
<td>3.07</td>
<td>4.34</td>
<td>[?][?][?]</td>
<td>ES NA</td>
</tr>
<tr>
<td>F571-8</td>
<td>LSB</td>
<td>50.3</td>
<td>0.191</td>
<td>5.4</td>
<td>14.6</td>
<td>0.16</td>
<td>4.48</td>
<td>23.49</td>
<td>5.10</td>
<td>[?][?][?]</td>
</tr>
<tr>
<td>F579-V1</td>
<td>LSB</td>
<td>86.9</td>
<td>0.557</td>
<td>5.2</td>
<td>14.7</td>
<td>0.21</td>
<td>3.33</td>
<td>5.98</td>
<td>3.18</td>
<td>[?][?][?]</td>
</tr>
<tr>
<td>F730-V1</td>
<td>LSB</td>
<td>148.3</td>
<td>0.756</td>
<td>5.8</td>
<td>12.2</td>
<td>5.95</td>
<td>7.87</td>
<td>6.22</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>UGC 04115</td>
<td>LSB</td>
<td>5.5</td>
<td>0.004</td>
<td>0.3</td>
<td>1.7</td>
<td>0.01</td>
<td>0.97</td>
<td>3.42</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>UGC 06614</td>
<td>LSB</td>
<td>86.2</td>
<td>2.109</td>
<td>8.2</td>
<td>62.7</td>
<td>2.07</td>
<td>9.70</td>
<td>4.60</td>
<td>2.39</td>
<td>[?][?][?]</td>
</tr>
<tr>
<td>UGC 11454</td>
<td>LSB</td>
<td>93.9</td>
<td>0.456</td>
<td>3.4</td>
<td>12.3</td>
<td>3.15</td>
<td>6.90</td>
<td>6.79</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>UGC 11557</td>
<td>LSB</td>
<td>23.7</td>
<td>1.806</td>
<td>3.0</td>
<td>6.7</td>
<td>0.25</td>
<td>0.37</td>
<td>0.20</td>
<td>3.49</td>
<td>[?][?][?]</td>
</tr>
<tr>
<td>UGC 11583</td>
<td>LSB</td>
<td>7.1</td>
<td>0.012</td>
<td>0.7</td>
<td>2.1</td>
<td>0.01</td>
<td>0.96</td>
<td>2.15</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>UGC 11616</td>
<td>LSB</td>
<td>74.9</td>
<td>2.159</td>
<td>3.1</td>
<td>9.8</td>
<td>2.43</td>
<td>1.13</td>
<td>7.49</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>UGC 11648</td>
<td>LSB</td>
<td>49.0</td>
<td>4.073</td>
<td>4.0</td>
<td>13.0</td>
<td>2.57</td>
<td>0.63</td>
<td>5.79</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>UGC 11748</td>
<td>LSB</td>
<td>75.3</td>
<td>23.930</td>
<td>2.6</td>
<td>21.6</td>
<td>9.67</td>
<td>0.40</td>
<td>1.01</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>UGC 11819</td>
<td>LSB</td>
<td>61.5</td>
<td>2.155</td>
<td>4.7</td>
<td>11.9</td>
<td>4.83</td>
<td>2.24</td>
<td>7.03</td>
<td>[?][?][?]</td>
<td>NA</td>
</tr>
<tr>
<td>Galaxy</td>
<td>Type</td>
<td>Distance (Mpc)</td>
<td>L_B $(10^{10}L_\odot)$</td>
<td>R_0 (kpc)</td>
<td>R_{last} (kpc)</td>
<td>M_{HI} $(10^{10}M_\odot)$</td>
<td>M_{disk} $(10^{10}M_\odot)$</td>
<td>$(M/L){stars}$ $(M\odot/L_\odot)$</td>
<td>(v^2/c^2R_{last}) (10$^{-30}$ cm$^{-1}$)</td>
<td>Data Sources</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>DDO 0168</td>
<td>LSB</td>
<td>4.5</td>
<td>0.032</td>
<td>1.2</td>
<td>4.4</td>
<td>0.03</td>
<td>0.06</td>
<td>2.03</td>
<td>2.22</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>DDO 0170</td>
<td>LSB</td>
<td>16.6</td>
<td>0.023</td>
<td>1.9</td>
<td>13.3</td>
<td>0.09</td>
<td>0.05</td>
<td>1.97</td>
<td>1.18</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>M 0033</td>
<td>HSB</td>
<td>0.9</td>
<td>0.850</td>
<td>2.5</td>
<td>8.9</td>
<td>0.11</td>
<td>1.13</td>
<td>1.33</td>
<td>4.62</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 0055</td>
<td>LSB</td>
<td>1.9</td>
<td>0.588</td>
<td>1.9</td>
<td>12.2</td>
<td>0.13</td>
<td>0.30</td>
<td>0.50</td>
<td>2.22</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 0247</td>
<td>LSB</td>
<td>3.6</td>
<td>0.512</td>
<td>4.2</td>
<td>14.3</td>
<td>0.16</td>
<td>1.25</td>
<td>2.43</td>
<td>2.94</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 0300</td>
<td>LSB</td>
<td>2.0</td>
<td>0.271</td>
<td>2.1</td>
<td>11.7</td>
<td>0.08</td>
<td>0.65</td>
<td>2.41</td>
<td>2.69</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 0801</td>
<td>HSB</td>
<td>63.0</td>
<td>4.746</td>
<td>9.5</td>
<td>46.7</td>
<td>1.39</td>
<td>6.93</td>
<td>2.37</td>
<td>3.59</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 1003</td>
<td>LSB</td>
<td>11.8</td>
<td>1.480</td>
<td>1.9</td>
<td>31.2</td>
<td>0.63</td>
<td>0.66</td>
<td>0.45</td>
<td>1.53</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 1560</td>
<td>LSB</td>
<td>3.7</td>
<td>0.053</td>
<td>1.6</td>
<td>10.3</td>
<td>0.12</td>
<td>0.17</td>
<td>3.16</td>
<td>2.16</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 2683</td>
<td>HSB</td>
<td>10.2</td>
<td>1.882</td>
<td>2.4</td>
<td>36.0</td>
<td>0.15</td>
<td>6.03</td>
<td>3.20</td>
<td>2.28</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 2998</td>
<td>HSB</td>
<td>59.3</td>
<td>5.186</td>
<td>4.8</td>
<td>41.1</td>
<td>1.78</td>
<td>7.16</td>
<td>1.75</td>
<td>3.43</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 3109</td>
<td>LSB</td>
<td>1.5</td>
<td>0.064</td>
<td>1.3</td>
<td>7.1</td>
<td>0.06</td>
<td>0.02</td>
<td>0.35</td>
<td>2.29</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 5033</td>
<td>HSB</td>
<td>15.3</td>
<td>3.058</td>
<td>7.5</td>
<td>45.6</td>
<td>1.07</td>
<td>0.27</td>
<td>3.28</td>
<td>3.16</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 5371</td>
<td>HSB</td>
<td>35.3</td>
<td>7.593</td>
<td>4.4</td>
<td>41.0</td>
<td>0.89</td>
<td>8.52</td>
<td>1.44</td>
<td>3.98</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 5533</td>
<td>HSB</td>
<td>42.0</td>
<td>3.173</td>
<td>7.4</td>
<td>56.0</td>
<td>1.39</td>
<td>2.00</td>
<td>4.14</td>
<td>3.31</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 5585</td>
<td>HSB</td>
<td>9.0</td>
<td>0.333</td>
<td>2.0</td>
<td>14.0</td>
<td>0.28</td>
<td>0.36</td>
<td>1.09</td>
<td>2.06</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 5907</td>
<td>HSB</td>
<td>16.5</td>
<td>5.400</td>
<td>5.5</td>
<td>48.0</td>
<td>1.90</td>
<td>2.49</td>
<td>1.89</td>
<td>3.44</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 6503</td>
<td>HSB</td>
<td>5.5</td>
<td>0.417</td>
<td>1.6</td>
<td>20.7</td>
<td>0.14</td>
<td>1.53</td>
<td>3.66</td>
<td>2.30</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>NGC 6674</td>
<td>HSB</td>
<td>42.0</td>
<td>4.935</td>
<td>7.1</td>
<td>59.1</td>
<td>2.18</td>
<td>2.00</td>
<td>2.52</td>
<td>3.57</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>UGC 2259</td>
<td>LSB</td>
<td>10.0</td>
<td>0.110</td>
<td>1.4</td>
<td>7.8</td>
<td>0.04</td>
<td>0.47</td>
<td>4.23</td>
<td>3.76</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>UGC 2885</td>
<td>HSB</td>
<td>80.4</td>
<td>23.955</td>
<td>13.3</td>
<td>74.1</td>
<td>3.98</td>
<td>8.47</td>
<td>0.72</td>
<td>4.31</td>
<td>[?][?][?][?][?]</td>
</tr>
<tr>
<td>Malin 1</td>
<td>LSB</td>
<td>338.5</td>
<td>7.912</td>
<td>84.2</td>
<td>98.0</td>
<td>5.40</td>
<td>1.00</td>
<td>1.32</td>
<td>1.77</td>
<td>[?][?][?][?][?]</td>
</tr>
</tbody>
</table>
Properties of the 30 Dwarf Galaxy Sample

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>Distance (Mpc)</th>
<th>L_B (10^9 L☉)</th>
<th>i (°)</th>
<th>R_0/disk (kpc)</th>
<th>R_{last} (kpc)</th>
<th>M_HI (10^9 M☉)</th>
<th>M_disk (10^9 M☉)</th>
<th>(M/L_B)disk (M☉/L_B☉)</th>
<th>(v^2/c^2 R)_last (10^{-30} cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F568-V1</td>
<td>78.20</td>
<td>2.15</td>
<td>40</td>
<td>3.11</td>
<td>17.07</td>
<td>2.32</td>
<td>16.00</td>
<td>7.45</td>
<td>2.95</td>
</tr>
<tr>
<td>F574-1</td>
<td>94.10</td>
<td>3.42</td>
<td>65</td>
<td>4.20</td>
<td>13.69</td>
<td>3.31</td>
<td>14.90</td>
<td>4.35</td>
<td>2.77</td>
</tr>
<tr>
<td>UGC 731</td>
<td>11.80</td>
<td>0.69</td>
<td>57</td>
<td>2.43</td>
<td>10.30</td>
<td>1.61</td>
<td>3.21</td>
<td>4.63</td>
<td>1.91</td>
</tr>
<tr>
<td>UGC 3371</td>
<td>18.75</td>
<td>1.54</td>
<td>49</td>
<td>4.53</td>
<td>15.00</td>
<td>2.62</td>
<td>4.49</td>
<td>2.91</td>
<td>1.78</td>
</tr>
<tr>
<td>UGC 4173</td>
<td>16.70</td>
<td>0.33</td>
<td>-5</td>
<td>4.43</td>
<td>12.14</td>
<td>2.24</td>
<td>0.07</td>
<td>0.20</td>
<td>1.21</td>
</tr>
<tr>
<td>UGC 4325</td>
<td>11.87</td>
<td>1.71</td>
<td>41</td>
<td>1.92</td>
<td>6.91</td>
<td>1.04</td>
<td>6.51</td>
<td>3.82</td>
<td>4.37</td>
</tr>
<tr>
<td>UGC 4499</td>
<td>12.80</td>
<td>1.01</td>
<td>50</td>
<td>1.46</td>
<td>8.38</td>
<td>1.15</td>
<td>1.80</td>
<td>1.79</td>
<td>2.37</td>
</tr>
<tr>
<td>UGC 5414</td>
<td>9.40</td>
<td>0.49</td>
<td>55</td>
<td>1.40</td>
<td>4.10</td>
<td>0.57</td>
<td>1.13</td>
<td>2.29</td>
<td>3.31</td>
</tr>
<tr>
<td>UGC 5721</td>
<td>7.60</td>
<td>0.48</td>
<td>+10</td>
<td>0.76</td>
<td>8.41</td>
<td>0.57</td>
<td>1.90</td>
<td>3.96</td>
<td>2.27</td>
</tr>
<tr>
<td>UGC 5750</td>
<td>56.10</td>
<td>4.72</td>
<td>64</td>
<td>5.60</td>
<td>21.77</td>
<td>1.00</td>
<td>3.68</td>
<td>0.78</td>
<td>1.03</td>
</tr>
<tr>
<td>UGC 7232</td>
<td>3.14</td>
<td>0.08</td>
<td>59</td>
<td>0.30</td>
<td>0.91</td>
<td>0.06</td>
<td>0.14</td>
<td>1.76</td>
<td>7.64</td>
</tr>
<tr>
<td>UGC 7323</td>
<td>7.90</td>
<td>2.39</td>
<td>47</td>
<td>2.13</td>
<td>5.75</td>
<td>0.70</td>
<td>4.19</td>
<td>1.75</td>
<td>4.59</td>
</tr>
<tr>
<td>UGC 7399</td>
<td>24.66</td>
<td>4.61</td>
<td>32</td>
<td>3.22</td>
<td>32.30</td>
<td>6.38</td>
<td>5.42</td>
<td>1.18</td>
<td>1.32</td>
</tr>
<tr>
<td>UGC 7524</td>
<td>4.12</td>
<td>1.37</td>
<td>46</td>
<td>3.02</td>
<td>9.29</td>
<td>1.34</td>
<td>5.29</td>
<td>3.86</td>
<td>2.67</td>
</tr>
<tr>
<td>UGC 7559</td>
<td>4.20</td>
<td>0.04</td>
<td>61</td>
<td>0.87</td>
<td>2.75</td>
<td>0.12</td>
<td>0.05</td>
<td>1.32</td>
<td>1.43</td>
</tr>
<tr>
<td>UGC 7577</td>
<td>2.13</td>
<td>0.05</td>
<td>-15</td>
<td>0.51</td>
<td>1.39</td>
<td>0.04</td>
<td>0.01</td>
<td>0.20</td>
<td>1.18</td>
</tr>
<tr>
<td>UGC 7603</td>
<td>9.45</td>
<td>0.80</td>
<td>78</td>
<td>1.24</td>
<td>8.24</td>
<td>1.04</td>
<td>0.41</td>
<td>0.52</td>
<td>1.81</td>
</tr>
<tr>
<td>UGC 8490</td>
<td>5.28</td>
<td>0.95</td>
<td>+10</td>
<td>0.71</td>
<td>11.51</td>
<td>0.72</td>
<td>1.53</td>
<td>1.61</td>
<td>1.47</td>
</tr>
<tr>
<td>UGC 9211</td>
<td>14.70</td>
<td>0.33</td>
<td>44</td>
<td>1.54</td>
<td>9.62</td>
<td>1.43</td>
<td>1.23</td>
<td>3.69</td>
<td>1.55</td>
</tr>
<tr>
<td>UGC 11707</td>
<td>21.46</td>
<td>1.13</td>
<td>68</td>
<td>5.82</td>
<td>20.30</td>
<td>6.78</td>
<td>9.89</td>
<td>8.76</td>
<td>1.77</td>
</tr>
<tr>
<td>UGC 11861</td>
<td>19.55</td>
<td>9.44</td>
<td>50</td>
<td>4.69</td>
<td>12.80</td>
<td>4.33</td>
<td>45.84</td>
<td>4.86</td>
<td>6.55</td>
</tr>
<tr>
<td>UGC 12060</td>
<td>15.10</td>
<td>0.39</td>
<td>40</td>
<td>1.70</td>
<td>9.89</td>
<td>1.67</td>
<td>3.45</td>
<td>8.94</td>
<td>2.00</td>
</tr>
<tr>
<td>UGC 12632</td>
<td>9.20</td>
<td>0.86</td>
<td>46</td>
<td>3.43</td>
<td>11.38</td>
<td>1.55</td>
<td>4.26</td>
<td>4.97</td>
<td>1.82</td>
</tr>
<tr>
<td>UGC 12732</td>
<td>12.40</td>
<td>0.71</td>
<td>39</td>
<td>2.10</td>
<td>14.43</td>
<td>3.23</td>
<td>4.11</td>
<td>5.76</td>
<td>2.40</td>
</tr>
<tr>
<td>UGC 3851</td>
<td>4.85</td>
<td>2.33</td>
<td></td>
<td>2.07</td>
<td>11.70</td>
<td>1.32</td>
<td>0.47</td>
<td>0.20</td>
<td>1.37</td>
</tr>
<tr>
<td>UGC 4305</td>
<td>2.34</td>
<td>0.41</td>
<td>-5</td>
<td>0.68</td>
<td>4.75</td>
<td>0.31</td>
<td>0.08</td>
<td>0.20</td>
<td>1.18</td>
</tr>
<tr>
<td>UGC 4459</td>
<td>3.06</td>
<td>0.03</td>
<td>27</td>
<td>0.60</td>
<td>2.47</td>
<td>0.04</td>
<td>0.01</td>
<td>0.20</td>
<td>0.97</td>
</tr>
<tr>
<td>UGC 5139</td>
<td>4.69</td>
<td>0.20</td>
<td>14</td>
<td>0.96</td>
<td>3.58</td>
<td>0.21</td>
<td>0.05</td>
<td>0.24</td>
<td>1.19</td>
</tr>
<tr>
<td>UGC 5423</td>
<td>7.14</td>
<td>0.14</td>
<td>45</td>
<td>0.61</td>
<td>1.97</td>
<td>0.05</td>
<td>0.28</td>
<td>2.01</td>
<td>1.82</td>
</tr>
<tr>
<td>UGC 5666</td>
<td>3.85</td>
<td>2.53</td>
<td>56</td>
<td>3.56</td>
<td>11.25</td>
<td>1.37</td>
<td>1.96</td>
<td>0.77</td>
<td>1.88</td>
</tr>
</tbody>
</table>
7 The Nambu-Jona-Lasinio (NJL) Chiral Four-Fermion Model

7.1 Quick Review of the NJL Model as a Mean-Field Theory in Hartree-Fock Approximation

\[I_{NJL} = \int d^4x \left[i\bar{\psi}\gamma^\mu \partial_\mu \psi - \frac{g}{2}[\bar{\psi}\psi]^2 - \frac{g}{2}[\bar{\psi}i\gamma_5\psi]^2 \right]. \]

\[= \int d^4x \left[i\bar{\psi}\gamma^\mu \partial_\mu \psi - m\bar{\psi}\psi + \frac{m^2}{2g} \right] + \int d^4x \left[-\frac{g}{2} \left(\bar{\psi}\psi - \frac{m}{g} \right)^2 - \frac{g}{2} \left(\bar{\psi}i\gamma_5\psi \right)^2 \right] \]

\[I_{NJL} = I_{MF} + I_{RI}, \text{ i.e. introduce mass term with } m \text{ as a trial parameter (48)} \]

\[\langle \Omega_m | \left[\bar{\psi}\psi - \frac{m}{g} \right]^2 | \Omega_m \rangle = \langle \Omega_m | \left[\bar{\psi}\psi - \frac{m}{g} \right] | \Omega_m \rangle^2 = 0, \quad (49) \]

\[\langle \Omega_m | \bar{\psi}\psi | \Omega_m \rangle = -i \int \frac{d^4k}{(2\pi)^4} \text{Tr} \left[\frac{1}{\bar{\psi} - m + i\epsilon} \right] = \frac{m}{g}, \quad (50) \]

\[-\frac{M\Lambda^2}{4\pi^2} + \frac{M^3}{4\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) = \frac{M}{g}. \quad (51) \]

\[\tilde{\epsilon}(m) = i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \ln \left[\frac{\psi - m + i\epsilon}{\bar{\psi} + i\epsilon} \right] - \frac{m^2}{2g} = \frac{m^4}{16\pi^2} \ln \left(\frac{\Lambda^2}{m^2} \right) - \frac{m^2M^2}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) + \frac{m^4}{32\pi^2}. \quad (52) \]
7.2 Higgs-Like Lagrangian

Vacuum to vacuum functional due to \(m(x) \bar{\psi} \psi \):
\[
\langle \Omega(t = -\infty) | \Omega(t = +\infty) \rangle = e^{iW(m(x))}
\]

\[
W(m(x)) = \sum (1/n!) \int d^4x_1...d^4x_n G_0^n(x_1, ..., x_n) m(x_1)...m(x_n),
\]

\[
W(m(x)) = \int d^4x [-\epsilon(m(x)) + (1/2) Z(m(x)) \partial_\mu m(x) \partial^\mu m(x) +].
\]

![Diagram of graphs](image)

Figure 2: Vacuum energy density \(\epsilon(m) \) via an infinite summation of massless graphs with zero-momentum point \(m\bar{\psi}\psi \) insertions.

![Diagram of graphs](image)

Figure 3: \(\Pi_S(q^2, m(x)) \) developed as an infinite summation of massless graphs, each with two point \(m\bar{\psi}\psi \) insertions carrying momentum \(q_\mu \) (shown as external lines), with all other point \(m\bar{\psi}\psi \) insertions carrying zero momentum.

Eguchi and Sugawara (1974), Mannheim (1976):

\[
I_{\text{EFF}} = \int \frac{d^4x}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) \left[\frac{1}{2} \partial_\mu m(x) \partial^\mu m(x) + m^2(x) M^2 - \frac{1}{2} m^4(x) \right].
\]

(53)

Set \(\phi = \langle \Omega_m | \bar{\psi}(1 + \gamma^5) \psi | \Omega_m \rangle \). Couple to an axial gauge field via \(\bar{\psi} g_A \gamma^\mu \gamma^5 A_{\mu 5} \psi \). Get effective Higgs:
\[I_{\text{EFF}} = \int \frac{d^4x}{8\pi^2 \ln \left(\frac{\Lambda^2}{M^2} \right)} \left[\frac{1}{2} \left(\partial_\mu - 2ig_A A_\mu \right) \phi(x) \right]^2 + \phi(x)^2 M^2 - \frac{1}{2} \phi(x)^4 - \frac{g_A^2}{6} F_{\mu\nu 5} F^{\mu\nu 5} \right]. \]

(54)
The Collective Tachyon Modes when the Fermion is Massless

\[\Pi_S(x) = \langle \Omega | T(\bar{\psi}(x)\psi(x)\bar{\psi}(0)\psi(0)) | \Omega \rangle, \]
\[\Pi_P(x) = \langle \Omega | T(\bar{\psi}(x)i\gamma_5\psi(x)\bar{\psi}(0)i\gamma_5\psi(0)) | \Omega \rangle \]

(55)

\[\Pi_S(q^2) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[\frac{1}{\slashed{p} + i\epsilon} \slashed{p} + \slashed{q} + i\epsilon \right], \]
\[\Pi_P(q^2) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[i\gamma_5 \frac{1}{\slashed{p} + i\epsilon} i\gamma_5 \frac{1}{\slashed{p} + \slashed{q} + i\epsilon} \right], \]

(56)

\[\Pi_S(q^2) = \Pi_P(q^2) = -\frac{\Lambda^2}{4\pi^2} - \frac{q^2}{8\pi^2 \ln \left(-\frac{\Lambda^2}{q^2} \right)} - \frac{q^2}{8\pi^2}. \]

(57)

\[T_S(q^2) = g + g\Pi_S(q^2)g + g\Pi_S(q^2)g\Pi_S(q^2)g + \ldots = \frac{g}{1 - g\Pi_S(q^2)} = \frac{1}{g^{-1} - \Pi_S(q^2)}, \]
\[T_P(q^2) = g + g\Pi_P(q^2)g + g\Pi_P(q^2)g\Pi_P(q^2)g + \ldots = \frac{g}{1 - g\Pi_P(q^2)} = \frac{1}{g^{-1} - \Pi_P(q^2)}. \]

(58)

\[T_S(q^2) = T_P(q^2) = \frac{Z^{-1}}{(q^2 + 2M^2)}, \quad Z = \frac{1}{8\pi^2 \ln \left(\frac{\Lambda^2}{M^2} \right)} \]

(59)
The Collective Goldstone and Higgs Modes when the Fermion is Massive

\[\Pi_S(q^2, M) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[\frac{1}{\not{\nu} - M + i \epsilon} \frac{1}{\not{\nu} + \not{q} - M + i \epsilon} \right] \]
\[= -\frac{\Lambda^2}{4\pi^2} + \frac{M^2}{4\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) + \frac{(4M^2 - q^2)}{8\pi^2} + \frac{(4M^2 - q^2)}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) \]
\[- \frac{1}{8\pi^2} \frac{(4M^2 - q^2)^{3/2}}{(-q^2)^{1/2}} \ln \left(\frac{(4M^2 - q^2)^{1/2} + (-q^2)^{1/2}}{(4M^2 - q^2)^{1/2} - (-q^2)^{1/2}} \right) . \] (60)

\[\Pi_P(q^2, M) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[i\gamma_5 \frac{1}{\not{\nu} - M + i \epsilon} i\gamma_5 \frac{1}{\not{\nu} + \not{q} - M + i \epsilon} \right] \]
\[= -\frac{\Lambda^2}{4\pi^2} + \frac{M^2}{4\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) - \frac{q^2}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) + \frac{(4M^2 - q^2)}{8\pi^2} \]
\[+ \frac{(8M^4 - 8M^2q^2 + q^4)}{8\pi^2(-q^2)^{1/2}(4M^2 - q^2)^{1/2}} \ln \left(\frac{(4M^2 - q^2)^{1/2} + (-q^2)^{1/2}}{(4M^2 - q^2)^{1/2} - (-q^2)^{1/2}} \right) . \] (61)

\[T_S(q^2) = \frac{R_S^{-1}}{(q^2 - 4M^2)}, \quad T_P(q^2) = \frac{R_P^{-1}}{q^2} , \] (62)
\[R_S = R_P = \frac{1}{8\pi^2} \ln \left(\frac{\Lambda^2}{M^2} \right) . \] (63)
7.5 Fixing the Wick Contour for the Vacuum Energy Density

Figure 4: Vacuum energy density $\epsilon(m)$ via an infinite summation of massless graphs with zero-momentum point $m\bar{\psi}\psi$ insertions.

\[
\epsilon(m) = \langle \Omega_m | H_m | \Omega_m \rangle - \langle \Omega_0 | H_0 | \Omega_0 \rangle, \tag{64}
\]

\[
\epsilon(m) = \langle \Omega_m | H_m | \Omega_m \rangle - \langle \Omega_0 | H_m | \Omega_0 \rangle, \tag{65}
\]

\[
\epsilon(m) = \sum_{n=1}^{\infty} \frac{1}{n!} G_0^{(n)}(q_\mu = 0, m = 0)m^n \tag{66}
\]

Massive theory contour fixed by massless theory graphs

\[
G^{(2)}(q_\mu = 0, m = 0) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[\frac{1}{\phi + i\epsilon} \frac{1}{\phi + i\epsilon} \right] \tag{67}
\]

\[
G^{(4)}(q_\mu = 0, m = 0) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[\frac{1}{\phi + i\epsilon} \frac{1}{\phi + i\epsilon} \frac{1}{\phi + i\epsilon} \frac{1}{\phi + i\epsilon} \right] \tag{67}
\]

\[
\epsilon(m) = i \int \frac{d^4p}{(2\pi)^4} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n} \text{Tr} \left[(-i)^2 \left(\frac{i}{\phi + i\epsilon} \right)^2 m^2 \right]^n = i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \ln \left[\frac{\phi - m + i\epsilon}{\phi + i\epsilon} \right], \tag{68}
\]
\[\int_{-\infty}^{\infty} dp_0 + \int_{i\infty}^{\infty} dp_0 + \int_{-i\infty}^{i\infty} dp_0 + \int_{-\infty}^{-i\infty} dp_0 = 0. \]

(69)

\[-i \int_{-\infty}^{\infty} dp_0 = -i \int_{-i\infty}^{i\infty} dp_0 = \int_{-\infty}^{\infty} dp_4 \]

(70)
8 Johnson-Baker-Willey Electrodynamics

8.1 Vanishing of the Bare Fermion Mass

Johnson, Baker, Willey (1964-1973)

\[m_0 = m \left(\frac{\Lambda^2}{m^2} \right)^{\gamma(\alpha)/2} \]

(71)

\(m_0 \) thus vanishes if \(\gamma(\alpha) < 0 \), and \(\delta(m) = m - m_0 \) is finite and \(m \) is non-zero. So looks like dynamical symmetry breaking.

Adler, Bardeen (1971):

\[\left[m \frac{\partial}{\partial m} + \beta(\alpha) \frac{\partial}{\partial \alpha} \right] \tilde{S}^{-1}(p) = -m [1 - \gamma_\theta(\alpha)] \tilde{\Gamma}_S(p, p, 0) \]

(72)

\[\tilde{S}^{-1}(p) = \slashed{p} - m \left(\frac{-p^2 - i\epsilon}{m^2} \right)^{\gamma_\theta(\alpha)/2} + i\epsilon, \quad \tilde{\Gamma}_S(p, p, 0) = \left(\frac{-p^2 - i\epsilon}{m^2} \right)^{\gamma_\theta(\alpha)/2}. \]

(73)

Scaling achievable if \(\beta(\alpha) = 0 \). However also achievable if keep photon propagator canonical and sum all photon exchange diagrams (Johnson, Baker and Willey 1964). And if keep planar graphs only then (Maskawa and Nakajima 1974, 1975) get scaling if \(\alpha \leq \pi/3 \), with \(3 > D[\theta = \bar{\psi}\psi(\alpha < \pi/3)] = 3 + \gamma_\theta(\alpha) > 2 \) and \(D[\theta = \bar{\psi}\psi(\alpha = \pi/3)] = 3 + \gamma_\theta(\alpha = \pi/3) = 2 \). But since \(Z_\theta = (\Lambda^2/m^2)^{-\gamma_\theta(\alpha)/2} \), we see that \(m_0(\bar{\psi}\psi)_0 = m(\bar{\psi}\psi) \neq 0 \). Thus (Baker-Johnson evasion of the Goldstone theorem) the theory corresponds to a non-chiral symmetric Abelian gluon model with a non-zero bare fermion mass term, and no Goldstone boson. If \(\alpha > \pi/3 \) get Goldstone boson (Maskawa and Nakajima).

Prevailing wisdom: no Goldstone boson if \(\alpha \leq \pi/3 \). Only get one if \(\alpha > \pi/3 \), i.e only if strong coupling. In this talk we challenge this wisdom and show that there is a Goldstone boson at \(\alpha = \pi/3 \) or at the \(\alpha \) that obeys \(\beta(\alpha) = 0 \), which could be weak.

\[\{ \gamma_5, \Sigma(p) \} = \int d^4k K(p, k, 0) S(k) \{ \gamma_5, \Sigma(k) \} S(k) + 2m_0 \int d^4k K(p, k, 0) S(k) \gamma_5 S(k). \]

(74)

\[\tilde{\Gamma}_P(p, p + q, q) = Z_P i\gamma^5 + \int d^4k \tilde{K}(p, k, q) \tilde{S}(k) \tilde{\Gamma}_P(k, k + q, q) \tilde{S}(k + q). \]

(75)
\[-i\gamma_5 \tilde{\Gamma}_P = \frac{Z_P}{1 - Z_P \Pi} = \frac{1}{Z_P^{-1} - \Pi}, \quad T_P = \frac{g}{1 - g \Pi} = \frac{1}{g^{-1} - \Pi}.\]

(76)

Two possibilities: (1) \(m_0 = 0\) identically, \(Z_P\) non-zero is dynamical symmetry breaking.
(2) \(m_0 \to 0\) and \(Z_P = Z_S \to 0\) as \(\Lambda^2 \to \infty\) is Baker-Johnson evasion.
8.2 Non-Zero Vacuum Expectation Value for $\bar{\psi}\psi$ and the condition $\gamma_\theta(\alpha) = -1$

Even if m_0 vanishes in the limit of infinite cut-off, physical mass could still be zero since it satisfies a homogeneous equation. However (Mannheim 1974, 1975), if

$$\gamma_\theta(\alpha) = -1, \quad (77)$$

then $\bar{\epsilon}(m) < \bar{\epsilon}(m = 0)$, with the energy density of the vacuum having a double-well potential form and minimum at non-zero m:

$$\bar{\epsilon}(m) = \frac{m^2 \mu^2}{16\pi^2} \left[\ln \left(\frac{m^2}{M^2} \right) - 1 \right]. \quad (78)$$

Compatibility of short-distance Wilson expansion with massive Johnson-Baker-Willey propagator $S^{-1}(p) \sim \not{p} - (-p^2)^{\gamma_\theta(\alpha)/2}$ also gives $\gamma_\theta(\alpha) = -1$ (Mannheim 1975). Specifically, in a scale invariant theory the Wilson expansion is of the form

$$T(\psi(x)\bar{\psi}(0)) = \langle \Omega_0 | T(\psi(x)\bar{\psi}(0)) | \Omega_0 \rangle + (\mu^2 x^2)^{\gamma_\theta(\alpha)/2} : \psi(0)\bar{\psi}(0) : \quad (79)$$

where the normal ordering is done with respect to the unbroken massless vacuum $|\Omega_0\rangle$. Now take matrix element in the spontaneously broken vacuum $|\Omega_m\rangle$, to obtain

$$\tilde{S}(p) = \frac{1}{\not{p}} + (-p^2)^{(-\gamma_\theta(\alpha)/2/-2)}, \quad \tilde{S}^{-1}(p) = \not{p} - (-p^2)^{(-\gamma_\theta(\alpha)-2)/2}. \quad (80)$$

Compatibility with $S^{-1}(p) \sim \not{p} - (-p^2)^{\gamma_\theta(\alpha)/2}$ then gives $\gamma_\theta(\alpha) = -\gamma_\theta(\alpha) - 2$, i. e. $\gamma_\theta(\alpha) = -1$. Also shows that vacuum of Johnsson-Baker-Willey electrodynamics is a broken vacuum even though no Goldstone boson. We expain this conundrum below.

Thus in this talk we explore symmetry breaking with $\gamma_\theta(\alpha) = -1$, i. e. with $D[\bar{\psi}\psi] = 2$, which makes the four-fermion interaction $[\bar{\psi}\psi]^2$ non-perturbatively renormalizable (Mannheim 1975).
8.3 Evasion of the Baker-Johnson Evasion of the Goldstone Theorem

\[\mathcal{L} = i \bar{\psi} \gamma^\mu \partial_\mu \psi - \frac{g}{2} (\bar{\psi} \psi)^2 - \frac{g}{2} (\bar{\psi} i \gamma_5 \psi)^2 = \mathcal{L}_{\text{MF}} + \mathcal{L}_{\text{RI}}, \]

(81)

\[\mathcal{L}_{\text{MF}} = i \bar{\psi} \gamma^\mu \partial_\mu \psi - m \bar{\psi} \psi + \frac{m^2}{2g}, \]

\[\mathcal{L}_{\text{RI}} = -\frac{g}{2} \left(\bar{\psi} \psi - \frac{m}{g} \right)^2 - \frac{g}{2} (\bar{\psi} i \gamma_5 \psi)^2. \]

(82)

\[\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \gamma^\mu (i \partial_\mu - e A_\mu) \psi - m \bar{\psi} \psi + \frac{m^2}{2g}, \]

(83)

We thus interpret Johnson-Baker-Willey or Maskawa-Nakajima as a mean-field theory, and as such there is no Goldstone boson, since the mean-field never has a Goldstone boson. Rather it is generated by the residual interaction. So to see how things work we adapt the Nambu-Jona-Lasinio chiral four-fermion model to the Johnson-Baker-Willey case. However we note that the induced \(m^2/g \) term will serve as a counter-term for the vacuum energy density.
9 Johnson-Baker-Willey Electrodynamics Coupled to a Four-Fermion Interaction

9.1 Vacuum Energy Density for Arbitrary $\gamma_\theta(\alpha)$

\[
\mathcal{L}_{\text{QED-FF}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \gamma^\mu (i\partial_\mu - e A_\mu) \psi - \frac{g}{2} [\bar{\psi} \psi]^2 - \frac{g}{2} [\bar{\psi} i \gamma_5 \psi]^2 \\
= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \gamma^\mu (i\partial_\mu - e A_\mu) \psi - m\bar{\psi} \psi + \frac{m^2}{2g} - \frac{g}{2} \left(\bar{\psi} \psi - \frac{m}{g} \right)^2 - \frac{g}{2} \left(\bar{\psi} i \gamma_5 \psi \right)^2 \\
= \mathcal{L}_{\text{QED-MF}} + \mathcal{L}_{\text{QED-RI}}. \\
(84)
\]

\[
\tilde{S}^{-1}(p, m = 0) = \varphi + i\epsilon, \quad \tilde{\Gamma}_S(p, p, 0) = \left(\frac{-p^2 - i\epsilon}{\mu^2} \right)^{\gamma_\theta(\alpha)/2} \\
(85)
\]

Figure 5: Vacuum energy density $\epsilon(m)$ via an infinite summation of massless graphs with zero-momentum dressed $m\bar{\psi} \psi$ insertions.

\[
\langle \Omega_0 | T(\psi(x) : \bar{\psi}(z) \psi(z) : \bar{\psi}(y)) | \Omega_0 \rangle = \frac{\mu^{-\gamma_\theta}(\bar{\psi} - \bar{\chi})(\chi - \bar{\chi})}{[(y - z)^2(z - x)^2]^{(1+d_\theta)/2}[(x - y)^2]^{(3-d_\theta)/2}}, \\
(86)
\]

50
\[\epsilon(m) = i \int \frac{d^4p}{(2\pi)^4} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n} \text{Tr} \left[(-i)^2 \left(\frac{-p^2 - i\epsilon}{\mu^2} \right)^{\gamma_{\theta}(\alpha)} \left(\frac{i}{\gamma + i\epsilon} \right)^2 m^2 \right]^n \]

\[= \frac{i}{2} \int \frac{d^4p}{(2\pi)^4} \text{Tr} \ln \left[1 - \frac{m^2}{p^2 + i\epsilon} \left(\frac{-p^2 - i\epsilon}{\mu^2} \right)^{\gamma_{\theta}(\alpha)} \right], \quad (87) \]

\[\tilde{S}_\mu^{-1}(p) = \gamma - m \left(\frac{-p^2 - i\epsilon}{\mu^2} \right)^{\gamma_{\theta}(\alpha)/2} + i\epsilon, \quad (88) \]

\[\epsilon(m) = i \int \frac{d^4p}{(2\pi)^4} \left[\text{Tr} \ln(\tilde{S}_\mu^{-1}(p)) - \text{Tr} \ln(\gamma + i\epsilon) \right]. \quad (89) \]

\[\left[m \frac{\partial}{\partial m} + \beta(\alpha) \frac{\partial}{\partial \alpha} + \gamma_{\theta}(\alpha) \right] \tilde{\Gamma}_S(p, p, 0) = m(1 - \gamma_{\theta}(\alpha)) \tilde{\Gamma}_{SS}(p, p, 0), \quad (90) \]

\(\tilde{S}_\mu^{-1}(p) \) thus develops non-leading terms, so it cannot be the exact propagator of Johnson-Baker-Willey Electrodynamics. However, it is the exact mean-field propagator. It will be modified by the residual interaction.
9.2 Vacuum Energy Density for $\gamma_\theta(\alpha) = -1$

![Diagram](image)

Figure 6: The $\gamma_\theta(\alpha) = -1$ tadpole graph for $\langle \Omega_m | \bar{\psi} \psi | \Omega_m \rangle$ with a zero-momentum dressed $m \bar{\psi} \psi$ insertion and a dressed $\tilde{S}_\mu(p)$ propagator.

$$\epsilon(m) = -\frac{m^2 \mu^2}{8 \pi^2} \left[\ln \left(\frac{\Lambda^2}{m \mu} \right) + \frac{1}{2} \right]. \quad (91)$$

$$\langle \Omega_m | \bar{\psi} \psi | \Omega_m \rangle = \epsilon'(m) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} [\tilde{\Gamma}(p, p, 0) \tilde{S}_\mu(p)]$$

$$= 4i \int \frac{d^4p}{(2\pi)^4} \frac{m \mu^2}{(p^2 + i\epsilon)^2 + m^2 \mu^2} = -\frac{m \mu^2}{4 \pi^2} \ln \left(\frac{\Lambda^2}{m \mu} \right) = \frac{m}{g}. \quad (92)$$

$$-\frac{\mu^2}{4 \pi^2} \ln \left(\frac{\Lambda^2}{M \mu} \right) = \frac{1}{g}, \quad M = \frac{\Lambda^2}{\mu} \exp \left(\frac{4 \pi^2}{\mu^2 g} \right). \quad (93)$$

$$\tilde{\epsilon}(m) = \epsilon(m) - \frac{m^2}{2g} = \frac{m^2 \mu^2}{16 \pi^2} \left[\ln \left(\frac{m^2}{M^2} \right) - 1 \right]. \quad (94)$$

Gap equation gives $-g \sim 1/\ln \Lambda^2$. Thus g is negative, i.e. attractive, and becomes very small as $\Lambda \to \infty$, with BCS-type essential singularity in gap equation at $g = 0$. Hence dynamical symmetry breaking with weak coupling.
9.3 Higgs-Like Lagrangian

Figure 7: Dynamically generated double-well potential for the renormalized vacuum energy density when $\gamma_\theta(\alpha) = -1$.

Figure 8: $\Pi_5(q^2, m(x))$ developed as an infinite summation of massless graphs, each with two dressed $m\bar{\psi}\psi$ insertions carrying momentum q_μ (shown as external lines), with all other dressed $m\bar{\psi}\psi$ insertions carrying zero momentum.
\[
\langle \Omega_0 | T(\phi^* \psi(x) \psi(x) \phi^* \psi(y) \phi^* \psi(y)) | \Omega_0 \rangle = \frac{\mu^{-2\gamma\theta} \text{Tr}[(\phi^* - \psi^*)(\psi - \phi)]}{[(x - y)^2]^{(d\theta + 1)/2}[(y - x)^2]^{(d\theta + 1)/2}}.
\]

(95)

\[
\Pi_S(q^2, m = 0) = -i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left[p^2 (p + q)^2 \gamma^{\theta(\alpha)}/4 \frac{1}{\psi^2} (p^2 (p + q)^2) \gamma^{\theta(\alpha)/4} \frac{1}{\psi + \phi} \right].
\]

(96)

\[
\Pi_S(q^2, m) = -i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left[\Gamma_S(p + q, p, q) S_\mu(p, m = 0) \Gamma_S(p, p + q, q) S_\mu(p + q, m = 0) \right],
\]

(97)

\[
\tilde{\Gamma}_S(p, p + q, q) = \left[\frac{(-p^2) (-q^2)}{\mu^2} \right]^{\gamma^{\theta(\alpha)/4}}.
\]

(98)

\[
\Pi_S(q^2, m) = -i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left[\Gamma_S(p + q, p, q) S_\mu(p, m = 0) \Gamma_S(p, p + q, q) S_\mu(p + q) \right],
\]

(99)

\[
\mathcal{L}_{\text{EFF}} = -\bar{\psi}(m(x)) - \frac{1}{2} m(x) [\Pi_S(-\partial_\mu \partial^\mu, m(x)) - \Pi_S(0, m(x))] m(x) + ...
\]

\[
= -\frac{m^2(x) \mu^2}{16\pi^2} \left[\ln \left(\frac{m^2(x)}{M^2} \right) - 1 \right] + \frac{3\mu}{256\pi m(x)} \partial_\mu m(x) \partial^\mu m(x) + ... \quad \text{Mannheim (1978)}
\]

(100)
9.4 The Collective Tachyon Modes when the Fermion is Massless

\[
\Pi_P(q^2, m = 0) = -i \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[\left[p^2(p + q)^2 \gamma_\theta(\alpha)/4 i \gamma_5 \frac{1}{\psi} \right] \left[p^2(p + q)^2 \gamma_\theta(\alpha)/4 i \gamma_5 \frac{1}{\psi + q} \right] \right].
\] (101)

\[
\Pi_S(q^2, m = 0) = \Pi_P(q^2, m = 0) = -\frac{\mu^2}{4\pi^2} \left[\ln \left(\frac{\Lambda^2}{(-q^2)} \right) - 3 + 4 \ln 2 \right].
\] (102)

\[
T_S(q^2) = \frac{g}{1 - g\Pi_S(q^2)} = \frac{1}{g^{-1} - \Pi_S(q^2)},
\]

\[
T_P(q^2) = \frac{g}{1 - g\Pi_P(q^2)} = \frac{1}{g^{-1} - \Pi_P(q^2)},
\] (103)

\[
q^2 = -M\mu e^{4\ln 2 - 3} = -0.797M\mu,
\] (104)

\[
T_S(q^2) = T_P(q^2) = \frac{31.448M\mu}{(q^2 + 0.797M\mu)}
\] (105)
\[\Pi_P(q^2, m) = -i \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left[\tilde{\Gamma}_S(p, q, p, -q) \times i\gamma_5 \tilde{S}_\mu(p) \tilde{\Gamma}_S(p, p + q, q) i\gamma_5 \tilde{S}_\mu(p + q) \right] \]

\[\Pi_S(q^2, m) = -4i\mu^2 \int \frac{d^4 p}{(2\pi)^4} \frac{N(q, p) + m^2 \mu^2}{D(q, p, m)}, \]

\[\Pi_P(q^2, m) = -4i\mu^2 \int \frac{d^4 p}{(2\pi)^4} \frac{N(q, p) - m^2 \mu^2}{D(q, p, m)}, \]

\[N(q, p) = (p^2 + i\epsilon - q^2/4) \times (-p - q/2)^2 - i\epsilon)^{1/2}(-(p + q/2)^2 - i\epsilon)^{1/2}, \]

\[D(q, p, m) = (((p - q/2)^2 + i\epsilon)^2 + m^2 \mu^2) \times (((p + q/2)^2 + i\epsilon)^2 + m^2 \mu^2). \]

\[\Pi_P(q^2 = 0, m) = -4i\mu^2 \int \frac{d^4 p}{(2\pi)^4} \frac{(p^2)(-p^2) - m^2 \mu^2}{((p^2 + i\epsilon)^2 + m^2 \mu^2)^2} \]

\[= 4i\mu^2 \int \frac{d^4 p}{(2\pi)^4} \frac{1}{(p^2 + i\epsilon)^2 + m^2 \mu^2} = \frac{1}{g}. \]

\[T_P(q^2) = \frac{128\pi M}{7\mu q^2} = \frac{57.446 M}{\mu q^2}. \]
9.6 The Collective Higgs Mode when the Fermion is Massive – the Needed Contour

\[\Pi_S(q^2, m = 0) = -4i \mu^2 \int \frac{d^4p}{(2\pi)^4} \frac{N(q, p)}{D(q, p, m = 0)}, \]
(111)

Set timelike \(q_\mu = (q_0, 0, 0, 0) \). Branch points in \(N(q, p) \) at:

\[
\begin{align*}
p_0 &= q_0/2 + p - i\epsilon, & p_0 &= -q_0/2 + p - i\epsilon \\
p_0 &= q_0/2 - p + i\epsilon, & p_0 &= -q_0/2 - p + i\epsilon.
\end{align*}
\]
(112)

They migrate into upper right and lower left hand planes in complex \(p_0 \) plane.
Figure 10: The migrated Wick contour in the complex p_0 plane. The branch cuts are shown as lines and the poles as dots.

\[-i \int_{-\infty}^{\infty} dp_0 = \int_{-\infty}^{\infty} dp_4 + I_{\text{cut}}.\]

\(I_{\text{cut}} = -\frac{4i\mu^2}{\pi^3} \int_{0}^{q_0/2} dpp^2 \int_{0}^{q_0/2-p} dp_0 \frac{N(q_0, p, p_0)}{D(q_0, p, p_0, m)}. \)

\(I_{\text{Wick}} = \frac{\mu^2}{\pi^3} \int_{0}^{\infty} dpp^2 \int_{\infty}^{\infty} dp_4 \frac{N(q_0, p, p_4)}{D(q_0, p, p_4, m)} + m^2\mu^2. \)

9.7 The Collective Higgs Mode when the Fermion is Massive – Results

\(q_0(\text{Higgs}) = (1.480 - 0.017i)(M\mu)^{1/2}, \quad q^2(\text{Higgs}) = (2.189 - 0.051i)M\mu. \)

\(q_0(\text{Higgs}) = (1.480 - 0.017i)M, \quad q^2(\text{Higgs}) = (2.189 - 0.051i)M^2, \)
9.8 Distinguishing a Dynamical Higgs Boson from a Fundamental One

\[
Z(\bar{\eta}, \eta) = \int D[\bar{\psi}, \psi] \exp \left[i \int d^4 x \left(\bar{\psi} \gamma^\mu (i \partial_\mu - e A_\mu) \psi - \frac{g}{2} (\bar{\psi} \psi)^2 + \bar{\eta} \psi + \bar{\psi} \eta \right) \right] (118)
\]

\[
Z(\bar{\eta}, \eta) = \int D[\bar{\psi}, \psi, \sigma] \times \exp \left[i \int d^4 x \left(\bar{\psi} \gamma^\mu (i \partial_\mu - e A_\mu) \psi - \frac{g}{2} (\bar{\psi} \psi)^2 + \frac{g}{2} \left(\frac{\sigma}{g} - \bar{\psi} \psi \right)^2 + \bar{\eta} \psi + \bar{\psi} \eta \right) \right] (119)
\]

\[
Z(\bar{\eta}, \eta) = \int D[\bar{\psi}, \psi, \sigma] \exp \left[i \int d^4 x \left(\bar{\psi} \gamma^\mu (i \partial_\mu - e A_\mu) \psi - \sigma \bar{\psi} \psi + \frac{\sigma^2}{2g} + \bar{\eta} \psi + \bar{\psi} \eta \right) \right] (120)
\]

\[
Z(0, 0) = \int D[\sigma] \exp \left[i \int d^4 x \left(-\bar{\epsilon}(\sigma) + Z(\sigma) \partial_\mu \sigma \partial^\mu \sigma / 2 + \ldots \right) \right] = \int D[\sigma] \exp \left[\int d^4 x \left(-\frac{\sigma^2(x) \mu^2}{16\pi^2} \left[\ln \left(\frac{\sigma^2(x)}{M^2} \right) - 1 \right] + \frac{3\mu}{256\pi \sigma(x)} \partial_\mu \sigma(x) \partial^\mu \sigma(x) + \ldots \right) \right]
\]

Elementary and dynamical scalar Feynman diagrams are identical when scalar is off-shell. Since there is no \(\int d^4 x J(x) \sigma(x) \) source term for \(\sigma(x) \), on-shell there are differences, such as the Higgs width.
10 Conformal Symmetry Challenges Supersymmetry

10.1 Cancellation of Infinities

Supersymmetry cancellations are perturbative.
Conformal invariance cancellations are non-perturbative.
In QED key infinities are Z_3 and $m_0 = m - \delta m$, with Z_1 and Z_2 being gauge dependent.
If $\beta(\alpha) = 0$ then Z_3 is finite.
And if $\gamma_\theta(\alpha) < 0$ then δm is finite.

\[
m_0 = m \left[1 + \frac{\gamma_\theta(\alpha)}{2} \ln \left(\frac{\Lambda^2}{m^2} \right) + \frac{\gamma^2_\theta(\alpha)}{8} \ln^2 \left(\frac{\Lambda^2}{m^2} \right) + \ldots \right]
= m \left(\frac{\Lambda^2}{m^2} \right)^{\gamma_\theta(\alpha)/2} \rightarrow 0. \quad (122)\]

If $\gamma_\theta = -1$ then $\bar{\epsilon} = \epsilon - m^2/2g$ is finite, as are the scalar and pseudoscalar $T_S(q^2)$, $T_P(q^2)$ channels in the fermion-antifermion scattering amplitude.
10.2 Supersymmetry Treatment of the Vacuum Energy Density

\[T_{\mu \nu}^M = i \hbar \bar{\psi} \gamma^\mu \partial^\nu \psi \]

(123)

\[\langle \Omega_0 | T_{\mu \nu}^M | \Omega_0 \rangle = -\frac{2 \hbar}{(2\pi)^3} \int_{-\infty}^{\infty} d^3 k \frac{k^\mu k^\nu}{\omega_k}. \]

(124)

\[\langle \Omega_0 | T_{\mu \nu}^M | \Omega_0 \rangle = (\rho_M + p_M) U^\mu U^\nu + p_\eta^{\mu \nu}, \]

(125)

\[\rho_M = \langle \Omega_0 | T_{\mu \nu}^{00} | \Omega_0 \rangle = -\frac{2 \hbar}{(2\pi)^3} \int_{-\infty}^{\infty} d^3 k \omega_k, \]

(126)

\[p_M = \langle \Omega_0 | T_{\mu \nu}^{11} | \Omega_0 \rangle = \langle \Omega_0 | T_{\mu \nu}^{22} | \Omega_0 \rangle = \langle \Omega_0 | T_{\mu \nu}^{33} | \Omega_0 \rangle = -\frac{2 \hbar}{3(2\pi)^3} \int_{-\infty}^{\infty} d^3 k \frac{k^2}{\omega_k}. \]

(127)

\[\eta_{\mu \nu} \langle \Omega_0 | T_{\mu \nu}^M | \Omega_0 \rangle = 3p_M - \rho_M = 0 \]

(128)

\[\rho_M = -\frac{\hbar K^4}{4\pi^2}, \quad p_M = -\frac{\hbar K^4}{12\pi^2}. \]

(129)

\[\rho_M = -\frac{\hbar K^4}{4\pi^2} - \frac{m^2 K^2}{4\pi^2 \hbar} + \frac{m^4}{16\pi^2 \hbar^3} \ln \left(\frac{4 \hbar^2 K^2}{m^2} \right) - \frac{m^4}{32\pi^2 \hbar^3 \omega_k}, \]

\[p_M = -\frac{\hbar K^4}{12\pi^2} + \frac{m^2 K^2}{12\pi^2 \hbar} - \frac{m^4}{16\pi^2 \hbar^3 \omega_k} \ln \left(\frac{4 \hbar^2 K^2}{m^2} \right) + \frac{7m^4}{96\pi^2 \hbar^3 \omega_k}. \]

(130)

Supersymmetry (i.e. add in boson loop with opposite overall sign) cancels the quartic divergence, but not the quadratic one unless superpartners are degenerate in mass, which they are known not to be.
10.3 Conformal Gravity Treatment of the Vacuum Energy Density

Gravity couples to energy density and not to energy density difference. Hence in the presence of gravity one cannot normal order away any infinities such as zero point infinities. Must cancel them by counterterms (provided they can naturally be induced) or by gravity itself, provided it is consistent quantum-mechanically as it has zero-point energy density too.

\[
I_W = -\alpha g \int d^4x (-g)^{1/2} C_{\lambda \mu \nu \kappa} C^{\lambda \mu \nu \kappa} \equiv -2\alpha g \int d^4x (-g)^{1/2} \left[R_{\mu \kappa} R^{\mu \kappa} - \frac{1}{3} (R^\alpha_\alpha)^2 \right],
\]

\[
W^{\mu \nu} = \frac{1}{2} g^{\mu \nu} (R_\alpha^\alpha)^{;\beta + \beta} - R^{\mu \beta ;\beta} - R^{\nu \beta ;\beta} - 2R^{\mu \beta} R^{\nu}_\beta + \frac{1}{2} g^{\mu \nu} R_{\alpha \beta} R^{\alpha \beta} - \frac{2}{3} g^{\mu \nu} (R_\alpha^\alpha)^{;\beta}
+ \frac{2}{3} (R_\alpha^\alpha)^{;\mu ;\nu} + \frac{2}{3} R_{\alpha \beta} R^{\mu \nu} - \frac{1}{6} g^{\mu \nu} (R_\alpha^\alpha)^2,
\]

\[
-4\alpha g W^{\mu \nu} + T^{\mu \nu}_M = 0, \quad T^{\mu \nu}_{\text{UNIV}} = T^{\mu \nu}_{\text{GRAV}} + T^{\mu \nu}_M = 0,
\]

\[
\langle \Omega|T^{\mu \nu}_{\text{GRAV}}|\Omega_0 \rangle = \frac{2\hbar}{(2\pi)^3} \int_{-\infty}^{\infty} d^3k \frac{Z(k) k^\mu k^\nu}{\omega_k},
\]

Conformal gravity cancellation when fermion \(m = 0 \) if graviton \(Z(k) = 1 \).

Comparison with standard gravity.

\[
I_{\text{EH}} = -\frac{1}{16\pi G} \int d^4x (-g)^{1/2} R_\alpha^\alpha, \quad I_\Lambda = -\int d^4x (-g)^{1/2} \Lambda
\]

\[
-\frac{1}{8\pi G} \left(R^{\mu \nu} - \frac{1}{2} g^{\mu \nu} R_\alpha^\alpha \right) = T^{\mu \nu}_M. \quad \text{quantum} = \text{quantum? or classical} = \text{classical?}
\]

\[
-\frac{1}{8\pi G} \left(R^{\mu \nu} - \frac{1}{2} g^{\mu \nu} R_\alpha^\alpha \right)_{\text{CL}} = \langle \Omega|T^{\mu \nu}_M|\Omega \rangle. \quad \text{classical} = \text{matrix element of quantum}
\]
\[-\frac{1}{8\pi G} \left(R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R_\alpha^\alpha \right) \] = \langle \Omega | T^{\mu\nu}_M | \Omega \rangle_{\text{FIN}}. \quad \text{classical = finite matrix element of quantum} \quad (138)

\[\langle \Omega_M | T^{00}_{\text{GRAV}} | \Omega_M \rangle - \frac{\hbar K^4}{4\pi^2} - \frac{M^4}{16\pi^2 \hbar^3} = 0. \quad (139) \]

\(Z(k) \) readjusts if fermion is massive – gravity is quantized by its source and not quantized independently.

\[kZ(k) = \left(k^2 + \frac{iM^2}{\hbar^2} \right)^{1/2} - \frac{iM^2}{4\hbar^2 \left(k^2 + \frac{iM^2}{\hbar^2} \right)^{1/2}} + \left(k^2 - \frac{iM^2}{\hbar^2} \right)^{1/2} + \frac{iM^2}{4\hbar^2 \left(k^2 - \frac{iM^2}{\hbar^2} \right)^{1/2}}. \quad (140) \]

\[(T^{\mu\nu}_{\text{GRAV}})_{\text{DIV}} + (T^{\mu\nu}_M)_{\text{DIV}} = 0, \quad (T^{\mu\nu}_{\text{GRAV}})_{\text{FIN}} + (T^{\mu\nu}_M)_{\text{FIN}} = 0. \quad (141) \]
10.4 Conformal Invariance and the Metrication and Unification of the Fundamental Forces

\[\Lambda_{\mu\nu}^\lambda = \frac{1}{2} g^{\lambda\alpha} (\partial_\mu g_{\nu\alpha} + \partial_\nu g_{\mu\alpha} - \partial_\alpha g_{\nu\mu}), \quad (142) \]

\[-\tilde{\omega}^a_b = -\omega^a_b + V^b_\lambda \delta \Gamma^\lambda_{\nu\mu} V^{a\nu}, \quad (143) \]

\[-\omega^a_b = V^b_\nu \partial_\mu V^{a\nu} + V^b_\lambda \Lambda_{\mu\nu}^\lambda V^{a\nu} = \omega^b_a. \quad (144) \]

\[I_D = \frac{1}{2} \int d^4x (-g)^{1/2} i \bar{\psi} \gamma^a V^\mu_a (\partial_\mu + \Sigma_{bc} \tilde{\omega}^{bc}_\mu) \psi + \text{H. c.}, \quad (145) \]

\[\delta \Gamma^\lambda_{\mu\nu} = -\frac{2i}{3} g^{\lambda\alpha} (g_{\nu\alpha} A_\mu + g_{\mu\alpha} A_\nu - g_{\nu\mu} A_\alpha) + \frac{1}{2} g^{\lambda\alpha} (Q_{\mu\nu\alpha} + Q_{\nu\mu\alpha} - Q_{\alpha\nu\mu}). \quad (146) \]

\[I_D = \int d^4x (-g)^{1/2} i \bar{\psi} \gamma^a V^\mu_a (\partial_\mu + \Sigma_{bc} \omega^{bc}_\mu - i A_\mu - i \gamma^5 S_\mu) \psi, \quad (147) \]

\[S^\mu = \frac{1}{8} (-g)^{-1/2} \epsilon^{\mu\alpha\beta\gamma} Q_{\alpha\beta\gamma}. \quad (148) \]

\[I_D = \int d^4x (-g)^{1/2} i \bar{\psi} \gamma^a V^\mu_a (\partial_\mu + \Sigma_{bc} \omega^{bc}_\mu - i g_V T^i A^i_\mu - i g_A \gamma^5 T^i S^i_\mu) \psi. \quad (149) \]
\[I_{\text{EFF}} = \int d^4x (-g)^{1/2} C \left[\frac{1}{20} \left(R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} (R^\alpha_\alpha)^2 \right) + \frac{1}{3} G^i_{\mu\nu} G^{\mu\nu}_i + \frac{1}{3} S^i_{\mu\nu} S^{\mu\nu}_i \right], \quad (150) \]

\[I_W + I_{\text{YM}} = \int d^4x (-g)^{1/2} \left[-2\alpha_g \left(R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} (R^\alpha_\alpha)^2 \right) - \frac{1}{4} G^i_{\mu\nu} G^{\mu\nu}_i - \frac{1}{4} S^i_{\mu\nu} S^{\mu\nu}_i \right], \quad (151) \]

\[I_{\text{FF}} = -\int d^4x (-g)^{1/2} g_{\text{FF}} \left[\bar{\psi} T^i \psi \bar{\psi} T^i \psi + \bar{\psi} i\gamma_5 T^i \psi \bar{\psi} i\gamma_5 T^i \psi \right], \quad (152) \]

\[I_{\text{UNIV}} = I_D + I_W + I_{\text{YM}} + I_{\text{FF}}. \quad (153) \]

\[I_{\text{MF}} = \int d^4x (-g)^{1/2} C \left[- M^4(x) + \frac{1}{6} M^2(x) R^\alpha_\alpha - (\partial_\mu + iA_\mu) M(x) (\partial^\mu - i A^\mu) M(x) \right]. \quad (154) \]

Potential theory of everything – string theory with extra dimensions and supersymmetry is a theory of more than everything.
A The Collective Higgs Mode when the Fermion is Massive – the Calculation

A.1 The Basic Equations

\[I_{\text{cut}} = \frac{-4i\mu^2}{\pi^3} \int_0^1 d\sigma \sigma^2 \int_0^{1-\sigma} d\lambda \frac{N_{\text{cut}}}{D_{\text{cut}}}, \]

\[N_{\text{cut}} = -(\lambda^2 - \sigma^2 - 1)[(\lambda^2 - \sigma^2 + 1)^2 - 4\sigma^2]^{1/2}q_0^8, \]

\[D_{\text{cut}} = 256m^4\mu^4 + 32m^2\mu^2[(\lambda^2 - \sigma^2 + 1)^2 + 4\sigma^2]q_0^4 + [(\lambda^2 - \sigma^2 + 1)^2 - 4\sigma^2]q_0^8. \quad (A1) \]

\[N(q, p) = -(p_4^2 + p^2 + q_0^2/4) \times [(p^2 + p_4^2 - q_0^2/4)^2 + p_4^2q_0^2]^{1/2}, \]

\[D(q, p) = [(p^2 + p_4^2 - q_0^2/4)^2 + p_4^2q_0^2 - m^2\mu^2]^2 + 4m^2\mu^2(p^2 + p_4^2 - q_0^2/4)^2. \quad (A2) \]

\[I_{\text{Wick}} = \frac{2\mu^2}{\pi^3} \int_0^\infty dr r^3 \int_0^1 dz (1 - z^2)^{1/2} \times \left[\frac{N(q, r, z) + m^2\mu^2}{D(q, r, z)} \right], \]

\[N(q, r, z) = -(r^2 + q_0^2/4)[(r^2 - q_0^2/4)^2 + r^2z^2q_0^2]^{1/2}, \]

\[D(q, r, z) = [(r^2 - q_0^2/4)^2 + r^2z^2q_0^2 - m^2\mu^2]^2 + 4m^2\mu^2(r^2 - q_0^2/4)^2. \quad (A3) \]

\[\alpha = \frac{(r^2 - q_0^2/4)^2 - m^2\mu^2}{r^2q_0^2}, \]

\[\beta = \frac{(r^2 - q_0^2/4)^2 + m^2\mu^2}{r^2q_0^2}, \quad (A4) \]

\[N(q, r, z) = -(r^2 + q_0^2/4)rq_0(z^2 + \alpha/2 + \beta/2)^{1/2}, \]

\[D(q, r, z) = r^4q_0^4(z^4 + 2\alpha z^2 + \beta^2). \quad (A5) \]
\[z = \frac{y}{1 + y^2}^{1/2} \]

\[I_2 = \int_0^1 dz \frac{(1 - z^2)^{1/2}}{z^4 + 2\alpha z^2 + \beta^2} \]
\[= \int_0^\infty dy \frac{1}{\pi} \frac{1}{y^4(1 + 2\alpha + \beta^2) + 2y^2(\alpha + \beta^2) + \beta^2} \]
\[= \frac{\pi}{4\beta(\alpha^2 - \beta^2)^{1/2}} [((\alpha + \beta^2 + (\alpha^2 - \beta^2)^{1/2})^{1/2} - (\alpha + \beta^2 - (\alpha^2 - \beta^2)^{1/2})^{1/2}], \quad (A6) \]

\[I_1 = \int_0^1 dz \frac{(1 - z^2)^{1/2}(z^2 + \alpha/2 + \beta/2)^{1/2}}{z^4 + 2\alpha z^2 + \beta^2} \]
\[= \int_0^\infty dy \frac{1}{2^{1/2}(1 + y^2)^{1/2}} \times \frac{(2y^2 + (\alpha + \beta)(1 + y^2))^{1/2}}{y^4(1 + 2\alpha + \beta^2) + 2y^2(\alpha + \beta^2) + \beta^2} \]
\[= -\frac{i}{8^{1/2}2\beta^2(\alpha + \beta)(\alpha - \beta)^{1/2}} \times [((\alpha + \beta)(\alpha^2 - \beta^2)^{1/2}(F_- + F_+) + (\alpha^2 + \alpha\beta - 2\beta^2)(F_- - F_+)], (A7) \]

\[F_\pm = \int_0^\phi d\theta \frac{1}{(1 - j_\pm \sin^2 \theta)(1 - k \sin^2 \theta)^{1/2}} \]
\[j_\pm = \frac{1 + 2\alpha + \beta^2}{\alpha + \beta^2 \pm (\alpha^2 - \beta^2)^{1/2}}, \]
\[\phi = i \arcsinh(\infty), \quad k = \frac{2 + \alpha + \beta}{\alpha + \beta}. \quad (A9) \]
\[
\sin \theta = i \tan \nu
\]

\[
F_\pm = i \int_0^{\pi/2} d\nu \frac{1}{\cos \nu (1 + j_\pm \tan^2 \nu)(1 + k \tan^2 \nu)^{1/2}}
= -\frac{i}{j_\pm - 1} K(1 - k) + \frac{ij_\pm}{j_\pm - 1} E(1 - j_\pm, 1 - k),
\]

(A10)

\[
K(1 - k) = \int_0^{\pi/2} d\nu \frac{1}{(1 - (1 - k) \sin^2 \nu)^{1/2}}
\]

\[
E(1 - j_\pm, 1 - k) = \int_0^{\pi/2} d\nu \times \frac{1}{(1 - (1 - j_\pm) \sin^2 \nu)(1 - (1 - k) \sin^2 \nu)^{1/2}}.
\]

(A11)

\[
\Pi_S(q^2, m) = \frac{2\mu^2}{\pi^3} \int_0^\infty dr r^3 \left[-\frac{(r^2 + q_0^2/4) I_1}{r^3 q_0^3} + \frac{m^2 \mu^2 I_2}{r^4 q_0^4} \right].
\]

(A12)

\[
\hat{\Pi}_S(q^2, M) = \Pi_S(q^2, M) - g^{-1}.
\]

(A13)
A.2 The Discontinuity

\[r = q_R/2 + \Gamma e^{i\theta} \]

\[I_1 \rightarrow \int_0^\infty dy \frac{q_R^8 y}{(1 + y^2)^{1/2}(y^2(q_R^4 - 4M^2\mu^2) - 4M^2\mu^2)^2} \]

\[= \left(\frac{q_R^4 (1 + y^2)^{1/2}}{2(4M^2\mu^2 + (4M^2\mu^2 - q_R^4) y^2)} \right) \]

\[+ \frac{q_R^2}{4(q_R^4 - 4M^2\mu^2)^{1/2}} \times \ln \left(\frac{q_R^2 + (q_R^4 - 4M^2\mu^2)^{1/2}(1 + y^2)^{1/2}}{q_R^2 - (q_R^4 - 4M^2\mu^2)^{1/2}(1 + y^2)^{1/2}} \right) \bigg|_0^\infty \]

\[= \frac{i\pi q_R^2}{4(q_R^4 - 4M^2\mu^2)^{1/2}} - \frac{q_R^4}{8M^2\mu^2} - \frac{q_R^2}{4(q_R^4 - 4M^2\mu^2)^{1/2}} \times \ln \left(\frac{q_R^2 + (q_R^4 - 4M^2\mu^2)^{1/2}}{q_R^2 - (q_R^4 - 4M^2\mu^2)^{1/2}} \right). \] \hspace{1cm} (A14)

\[I_2 \rightarrow \int_0^\infty dy \frac{q_R^8}{y^2(q_R^4 - 4M^2\mu^2) - 4M^2\mu^2)^2} \]

\[= \left(\frac{q_R^8 y}{8M^2\mu^2(4M^2\mu^2 + (4M^2\mu^2 - q_R^4) y^2)} \right) \]

\[+ \frac{q_R^8}{32M^3\mu^3(q_R^4 - 4M^2\mu^2)^{1/2}} \times \ln \left(\frac{2M \mu + (q_R^4 - 4M^2\mu^2)^{1/2}y}{2M \mu - (q_R^4 - 4M^2\mu^2)^{1/2}y} \right) \bigg|_0^\infty \]

\[= \frac{i\pi q_R^8}{32M^3\mu^3(q_R^4 - 4M^2\mu^2)^{1/2}}. \] \hspace{1cm} (A15)
\[
\text{Re}[I_{\text{COM}}] = \frac{q_R^3 \Gamma}{4\pi^3 M^2} + \frac{\mu^2 q_R \Gamma}{2\pi^3 (q_R^4 - 4M^2 \mu^2)^{1/2}} \times \ln \left(\frac{q_R^2 + (q_R^4 - 4M^2 \mu^2)^{1/2}}{q_R^2 - (q_R^4 - 4M^2 \mu^2)^{1/2}} \right),
\]
\[\text{(A16)}\]

\[
\text{Im}[I_{\text{COM}}] = \frac{i\mu \Gamma q_R}{4\pi^2 M (q_R^2 + 2M\mu)^{1/2}}.
\]
\[\text{(A17)}\]

A.3 Numerical Results

\[
\hat{I}_{\text{GGAP}} = \frac{2\mu^2 q_R^3 \Gamma}{\pi^2 (q_R^4 + 16M^2 \mu^2)}.
\]
\[\text{(A18)}\]

\[
\hat{\Pi}_S(q^2, M) = \hat{I}_{\text{WICK}}(\text{LOW}) + \hat{I}_{\text{WICK}}(\text{HIGH}) + \hat{I}_{\text{GGAP}} + \text{Re}[I_{\text{COM}}] + \text{Im}[I_{\text{COM}}] + I_{\text{CUT}}.
\]
\[\text{(A19)}\]

\[
q_R = 1.480(M\mu)^{1/2}, \quad \Gamma = 0.017i(M\mu)^{1/2}
\]
\[
q^2 = (2.189 - 0.051i)M\mu.
\]
\[\text{(A20)}\]

\[
\hat{\Pi}_S(q^2, M) = (q^2 - (q_R - i\Gamma)^2) \times (-0.021662 + 0.000484i),
\]
\[\text{(A21)}\]
\[T_s(q^2) = \frac{46.141 + 1.030i}{q^2 - 2.2189M\mu + 0.051iM\mu}. \] (A22)
The Weyl tensor $C_{\lambda\mu\nu\kappa}$

$$C_{\lambda\mu\nu\kappa} = R_{\lambda\mu\nu\kappa} - \frac{1}{2}(g_{\lambda\nu}R_{\mu\kappa} - g_{\lambda\kappa}R_{\mu\nu} - g_{\mu\nu}R_{\lambda\kappa} + g_{\mu\kappa}R_{\lambda\nu}) + \frac{1}{6}R_\alpha^\alpha (g_{\lambda\nu}g_{\mu\kappa} - g_{\lambda\kappa}g_{\mu\nu})$$ \hspace{1cm} (23)

obeys $g^{\lambda\nu}C_{\lambda\mu\nu\kappa} = 0$, and has the remarkable property that under a local conformal transformation $g_{\mu\nu} \rightarrow e^{2\beta(x)}g_{\mu\nu}(x)$, all derivatives of $\beta(x)$ drop out identically and $C_{\lambda\mu\nu\kappa} \rightarrow C_{\lambda\mu\nu\kappa}$. Analog to Maxwell tensor $F_{\mu\nu} \rightarrow F_{\mu\nu}$ under a gauge transformation and to $g^{\mu\nu}F_{\mu\nu} = 0$.

In terms of a dimensionless coupling constant α_g the action I_W

$$I_W = -\alpha_g \int d^4x (-g)^{1/2}C_{\lambda\mu\nu\kappa}C^{\lambda\mu\nu\kappa} = -\alpha_g \int d^4x (-g)^{1/2} \left[R_{\lambda\mu\nu\kappa}R^{\lambda\mu\nu\kappa} - 2R_{\mu\kappa}R^{\mu\kappa} + \frac{1}{3}(R^\alpha_\alpha)^2 \right]$$ \hspace{1cm} (24)

is the unique locally conformal invariant action for the gravitational sector (compare $F_{\mu\nu}F^{\mu\nu}$).

With $(-g)^{1/2} \left[R_{\lambda\mu\nu\kappa}R^{\lambda\mu\nu\kappa} - 4R_{\mu\kappa}R^{\mu\kappa} + (R^\alpha_\alpha)^2 \right]$ being a total divergence (Gauss-Bonnet theorem), the Weyl action can be written more compactly just as in (26):

$$I_W = -2\alpha_g \int d^4x (-g)^{1/2} \left[R_{\mu\kappa}R^{\mu\kappa} - \frac{1}{3}(R^\alpha_\alpha)^2 \right].$$ \hspace{1cm} (25)
THE TAKEAWAY

For Dirac action I_D path integration over the fermion fields is direct, and leads ('t Hooft) to

$$\int [D\psi][D\bar{\psi}] \exp(I_D) = \exp(iI_{\text{EFF}}),$$

$$I_{\text{EFF}} = \int d^4x (-g)^{1/2} C \left[R_{\mu\nu}R^{\mu\nu} - \frac{1}{3}(R^\alpha_\alpha)^2 \right] \quad (26)$$

with leading term with log divergent constant C. (Path integration is same as a one loop Feynman diagram.)
Harry J. Lipkin 1921 - 2015
My teacher, my colleague, and my friend. This talk is dedicated to his memory.

Talk presented at the 2003 Coral Gables conference in honor and appreciation of the work of Professor Behram Kursunoglu, general relativist extraordinaire and founder of the Coral Gables series of conferences, whose untimely death occurred shortly before the 2003 conference.

“The very first of the Coral Gables Conferences took place in 1964. This was an auspicious year for me personally as it was my first year in graduate school at the Weizmann Institute, and even now I can still recall the excitement of that
period when Professors Yuval Ne’eman, Harry Lipkin and (frequent Weizmann visitor and Coral Gables Conference Series co-founder) Sydney Meshkov would report on the Coral Gables conferences.”