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The Flavour Puzzle

Number of parameters

• SM forces: 3 couplings to rule them all
• EW breaking: 2
• Flavour: ≥ 20: 10 (quarks) and ≥ 10 (leptons)

Mixing patterns
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Adapted from [arXiv:1611.07770]
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Discrete symmetry to explain lepton flavour

Successfully reproduces the mixing pattern

Large number of flavons⇒ loss of predictivity

VEV alignment⇒ elaborate potentials

Modular symmetry to the rescue! [arXiv:1706.08749]

Based on:

1. {S3, A4, S4, A5} ⊂ {N}∞N=1 finite modular groups
2. Modular groups arise in string theory compactifications
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Outline of my talk

1. Modular symmetry: construction and systematic exploration

2. 4 ' S4 seesaw models phenomenology

3. The modulus potential and residual symmetries
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Modular symmetry: construction and
systematic exploration



Modular symmetry

Torus compactification:

Grid shape is encoded in the modulus τ ∈ C, Imτ > 0

Redundancy: τ′ =
τ + b

cτ + d

 =

¨

�

 b

c d

�

,
, b, c, d ∈ Z,

d − bc = 1

«

modular group

5



Modular transformation of fields

τ→
τ + b

cτ + d
χ → (cτ + d)−k ρ

��

 b

c d

��

j

χj

Weight k prefactor
“charge”

Unitary representation of 
infinite, but we want finite!

Assumption: ρ is “almost trivial”
• Infinite (N) ⊂ : ρ[ (N) ] = 1

• ρ is a representation of N ≡ /(N)
discrete finite group

• Analogy: ZN ≡ Z/NZ

N N
2 S3
3 A4
4 S4
5 A5

N is fixed k depends on χ
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Field couplings

Y χ1 χ2 . . . χn

(cτ + d)kρ (cτ + d)−(k1+k2+...+kn)ρ1 ⊗ ρ2 ⊗ ... ⊗ ρn × itself

k = k1 + k2 + .. + kn ρ ⊗ ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn ⊃ 1

Y (τ)
modular forms

of weight k and level N

form a linear space
of finite dimension

N

k
0 2 4 6

2 (S3) 1 2 3 4
3 (A4) 1 3 5 7
4 (S4) 1 5 9 13
5 (A5) 1 11 21 31
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4 ' S4 seesaw models
phenomenology



Systematic exploration

1. Choose the field content: seesaw type I

EcLHd NcLH NcNc

2. Choose N = 4: 4 ' S4 with irreps 1,1′,2,3,3′

3. Choose the field representations:

Hd, H, E
c
1, E

c
2, E

c
3 ∼ 1 or 1

′ L, Nc ∼ 3 or 3′

4. Choose the modular weights for each possible coupling.
Start with the lowest weights⇒ less parameters

5. Construct all possible singlets⇒ Lagrangian terms
6. Search for viable regions in the parameter space
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Example: heavy neutrinos mass term

Y NcNc

k = 0

2 Λ





1 0 0
0 0 1
0 1 0





k = 2

2 Λ





0 Y1 Y2
Y1 Y2 0
Y2 0 Y1





2

k = 4

2 Λ



Y1





1 0 0
0 0 1
0 1 0



+
Λ′

Λ





0 Y1 Y2
Y1 Y2 0
Y2 0 Y1





2

+
Λ′′

Λ





2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3





3





9



Search for viable regions

• Parameters:

τ, α, β, γ, g, g′/g, Λ′/Λ, . . .

• Scan to fit the current “knowns”:

me, mμ, mτ, θ12, θ13, θ23, δm
2,
�

�Δm2
�

�

• Predict the “unknowns”:

mmin, δ, α21, α31

• Correlations
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The modulus scan range

“All moduli are equal”

τ↔
τ + b

cτ + d

The fundamental
domain of :

|Reτ| ≤
1

2
, |τ| ≥ 1
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Scan results

• Minimal viable models have 8 real parameters
• Viable models come in pairs with ±δ,±α21,±α31
• 5 pairs of viable models: 3 with NO, 2 with IO
• Mass predictions:

mmin ∼ 0.003 − 0.024 eV
∑


m ∼ 0.077 − 0.12 eV

|〈m〉| ∼ 0.006 − 0.045 eV

• Phases and masses correlate with θ23
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Correlations

� < 2σ �2 − 3σ �3 − 5σ
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The modulus potential and residual
symmetries



The modulus potential

Top-down conjecture

All extrema of V(τ) lie
on the boundary of the
fundamental domain
and on the imaginary

axis.

Cvetic, Font, Ibanez, Lust,

Quevedo, Nucl. Phys. B361

(1991) 194

Bottom-up phenomenology
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Residual symmetries

τ = 

τ→ −
1

τ
Z2

τ = exp
�

2π

3

�

τ→ −
1

τ + 1
Z3

Same symmetry for both mass matrices:

ρ†
L
M
e
M†
e
ρL = Me

M†
e

ρ†
L
M†
ν
M
ν
ρL = M†

ν
M
ν

PMNS matrix
contains zeros

PMNS matrix
contains even more zeros
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Different residual symmetries

Assumption

1. Me is diagonal:

• τ = exp
�

2π

3

�

• flavon

2. Mν invariant under Z2: τ = 

Benchmark point found ∼ 1σ, NO:
∑



m = 0.13 eV |〈m〉| = 0.023 eV

δ = 1.57π α21 = 1.38π α31 = 1.23π
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Conclusions

• Modular symmetry is a string-derived realisation of
discrete flavour symmetry

• Predictive models can be explored in a systematic way
• Constrain masses, mixing angles and phases
• Viable τ correspond to the conjectured potential minima
• Possible residual symmetries are Z2 and Z3
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Outlook

• Try different field contents, representations, N
• Include the quark sector (different τ?)
• Account for corrections: running, SUSY breaking, Kähler
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Thank you!



Neutrino and charged lepton Yukawa terms

Y NcL

k = 0

g





1 0 0
0 0 1
0 1 0





k = 2

g









0 Y1 Y2
Y1 Y2 0
Y2 0 Y1





2

+
g′

g





0 Y3 −Y2
−Y3 0 Y1
Y2 −Y1 0





3′





Y EcL

Weights (2, 4, 4) (minimal non-degenerate):

α





Y1 Y3 Y2
0 0 0
0 0 0





3,2

+ β





0 0 0
Y1 Y3 Y2
0 0 0





3,4

+ γ





0 0 0
0 0 0
Y1 Y3 Y2
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