

Modular S⁴ Models of Lepton Masses and Mixing

in collaboration with J. T. Penedo, S. T. Petcov and A. V. Titov [arXiv: 1811.04933]

Pavel Novichkov (SISSA & INFN, Trieste) November 29, 2018

The Flavour Puzzle

Number of parameters

- SM forces: 3 couplings to rule them all
- EW breaking: 2
- Flavour: **≥** 20: 10 (quarks) and **≥** 10 (leptons)

Adapted from [arXiv:1611.07770]

 \odot Successfully reproduces the mixing pattern

- Large number of flavons **⇒** loss of predictivity
- VEV alignment **⇒** elaborate potentials

Modular symmetry to the rescue! [arXiv:1706.08749]

Based on:

1. ${S_3, A_4, S_4, A_5} \subset { \big[\Gamma_N \big]}_{N}^{\infty}$ $\sum_{N=1}^{\infty}$ finite modular groups

2. Modular groups arise in string theory compactifications

1. [Modular symmetry: construction and systematic exploration](#page-4-0)

2. $\Gamma_4 \simeq S_4$ [seesaw models phenomenology](#page-8-0)

3. [The modulus potential and residual symmetries](#page-15-0)

[Modular symmetry: construction and](#page-4-0) [systematic exploration](#page-4-0)

Modular symmetry

Grid shape is encoded in the modulus $\tau \in \mathbb{C}$, Im $\tau > 0$

modular group

Modular transformation of fields

Assumption: ρ is "almost trivial"

- Infinite **(**N**) ⊂** : ρ**[(**N**)] =** 1
- ρ is a representation of $\Gamma_N \equiv \Gamma/\Gamma(N)$ discrete finite group
- Analogy: Z_N ≡ Z/NZ

Field couplings

$$
\begin{array}{c}\n\begin{array}{c}\n\gamma \quad \chi_1 \chi_2 \ldots \chi_n \\
\downarrow \quad \downarrow\n\end{array} \\
\hline\n(c\tau + d)^k \rho \quad (c\tau + d)^{-(k_1 + k_2 + \ldots + k_n)} \rho_1 \otimes \rho_2 \otimes \ldots \otimes \rho_n \quad \times \text{itself}\n\end{array}
$$

 $k = k_1 + k_2 + ... + k_n$ $\rho \otimes \rho_1 \otimes \rho_2 \otimes ... \otimes \rho_n \supset \mathbf{1}$

 $Y_i(\tau)$ modular forms of weight k and level N

form a linear space of finite dimension

 $\Gamma_4 \simeq S_4$ [seesaw models](#page-8-0) [phenomenology](#page-8-0)

1. Choose the field content: seesaw type I

 $E^c L H_d$ $N^c L H_u$ N $c_{N}c$

- 2. Choose $N = 4$: $\Gamma_4 \simeq S_4$ with irreps **1, 1['], 2, 3, 3[']**
- 3. Choose the field representations:

$$
H_d, H_u, E_1^c, E_2^c, E_3^c \sim \mathbf{1} \text{ or } \mathbf{1}' \qquad L, N^c \sim \mathbf{3} \text{ or } \mathbf{3}'
$$

- 4. Choose the modular weights for each possible coupling. Start with the lowest weights **⇒** less parameters
- 5. Construct all possible singlets **⇒** Lagrangian terms
- 6. Search for viable regions in the parameter space

Y N^cN^c

 $k = 0$ 2 Λ $\sqrt{ }$ \mathbf{L} 1 0 0 0 0 1 0 1 0 \setminus $\overline{1}$ $k = 2$ 2 Λ $\sqrt{ }$ \mathbf{L} 0 Y_1 Y_2 Y_1 Y_2 0 Y_2 0 Y_1 \setminus $\overline{}$ **2**

 $k = 4$ 2 Λ Г $\vert Y_1$ $\sqrt{ }$ \mathbf{L} 1 0 0 0 0 1 0 1 0 λ **+** Λ' Λ $\sqrt{ }$ L 0 Y_1 Y_2 Y_1 Y_2 0 Y_2 0 Y_1 λ $\overline{}$ **2 +** Λ ¹¹ Λ $\sqrt{ }$ L 2Y¹ **−**Y³ **−**Y² **−**Y³ 2Y² **−**Y¹ **−**Y² **−**Y¹ 2Y³ λ $\overline{}$ **3** ٦ \mathbf{I} • Parameters:

$$
\tau,\,\alpha,\,\beta,\,\gamma,\,g,\,g'/g,\,\Lambda'/\Lambda,\ldots
$$

• Scan to fit the current "knowns":

$$
m_e,\,m_\mu,\,m_\tau,\,\theta_{12},\,\theta_{13},\,\theta_{23},\,\delta m^2,\,\left|\Delta m^2\right|
$$

• Predict the "unknowns":

 m_{min} , δ, α_{21} , α_{31}

• Correlations

"All moduli are equal"

 $\tau \leftrightarrow \frac{a\tau + b}{\tau}$ cτ **+** d

The fundamental domain of Γ :

$$
|\text{Re}\tau|\leq \frac{1}{2}, |\tau|\geq 1
$$

- Minimal viable models have 8 real parameters
- Viable models come in pairs with $\pm \delta$, $\pm \alpha_{21}$, $\pm \alpha_{31}$
- 5 pairs of viable models: 3 with NO, 2 with IO
- Mass predictions:

$$
m_{\min} \sim 0.003 - 0.024 \text{ eV}
$$

$$
\sum_{i} m_{i} \sim 0.077 - 0.12 \text{ eV}
$$

$$
|\langle m \rangle| \sim 0.006 - 0.045 \text{ eV}
$$

• Phases and masses correlate with θ_{23}

[The modulus potential and residual](#page-15-0) [symmetries](#page-15-0)

The modulus potential

Top-down conjecture

All extrema of $V(\tau)$ lie on the boundary of the fundamental domain and on the imaginary axis.

Cvetic, Font, Ibanez, Lust, Quevedo, Nucl. Phys. B361 (1991) 194

The modulus potential

Top-down conjecture

Bottom-up phenomenology

All extrema of V**(**τ**)** lie on the boundary of the fundamental domain and on the imaginary axis.

Cvetic, Font, Ibanez, Lust, Quevedo, Nucl. Phys. B361 (1991) 194

Residual symmetries

$$
\tau = i \qquad \qquad \tau = \exp\left(\frac{2\pi i}{3}\right)
$$

$$
\tau \to -\frac{1}{\tau} \qquad \mathbb{Z}_2 \qquad \qquad \tau \to -\frac{1}{\tau+1} \qquad \mathbb{Z}_3
$$

Same symmetry for both mass matrices:

$$
\rho^{\dagger}_{L} M^{}_{e} M^{\dagger}_{e} \rho_{L} = M^{}_{e} M^{\dagger}_{e}
$$

$$
\rho^{\dagger}_{L} M^{\dagger}_{\nu} M^{}_{\nu} \rho_{L} = M^{\dagger}_{\nu} M^{}_{\nu}
$$

Residual symmetries

$$
\tau = i \qquad \qquad \tau = \exp\left(\frac{2\pi i}{3}\right)
$$

$$
\tau \to -\frac{1}{\tau} \qquad \mathbb{Z}_2 \qquad \qquad \tau \to -\frac{1}{\tau+1} \qquad \mathbb{Z}_3
$$

Same symmetry for both mass matrices:

$$
\rho^{\dagger}_{L} M^{}_{e} M^{\dagger}_{e} \rho_{L} = M^{}_{e} M^{\dagger}_{e}
$$

$$
\rho^{\dagger}_{L} M^{\dagger}_{\nu} M^{}_{\nu} \rho_{L} = M^{\dagger}_{\nu} M^{}_{\nu}
$$

PMNS matrix contains zeros

Residual symmetries

$$
\tau = i \qquad \qquad \tau = \exp\left(\frac{2\pi i}{3}\right)
$$

$$
\tau \to -\frac{1}{\tau} \qquad \mathbb{Z}_2 \qquad \qquad \tau \to -\frac{1}{\tau+1} \qquad \mathbb{Z}_3
$$

Same symmetry for both mass matrices:

$$
\rho^{\dagger}_{L}M^{}_{e}M^{\dagger}_{e}\rho_{L} = M^{}_{e}M^{\dagger}_{e}
$$

$$
\rho^{\dagger}_{L}M^{\dagger}_{V}M^{}_{V}\rho_{L} = M^{\dagger}_{V}M^{}_{V}
$$

PMNS matrix contains zeros

PMNS matrix contains even more zeros

Different residual symmetries

Assumption

- 1. M_e is diagonal: $\cdot \tau = \exp\left(\frac{2\pi i}{2}\right)$ 3 \setminus
	- flavon
- 2. M_v invariant under \mathbb{Z}_2 : $\tau = i$

Benchmark point found **∼** 1σ, NO:

$$
\sum_{i} m_{i} = 0.13 \text{ eV} \qquad |\langle m \rangle| = 0.023 \text{ eV}
$$

$$
\delta = 1.57 \pi \qquad \alpha_{21} = 1.38 \pi \qquad \alpha_{31} = 1.23 \pi
$$

- Modular symmetry is a string-derived realisation of discrete flavour symmetry
- Predictive models can be explored in a systematic way
- Constrain masses, mixing angles and phases
- Viable τ correspond to the conjectured potential minima
- Possible residual symmetries are \mathbb{Z}_2 and \mathbb{Z}_3
- Try different field contents, representations, N
- Include the quark sector (different τ ?)
- Account for corrections: running, SUSY breaking, Kähler

Thank you!

Neutrino and charged lepton Yukawa terms

Y N^cL

$$
k = 0
$$

\n
$$
g\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
$$

\n
$$
g\begin{bmatrix} 0 & Y_1 & Y_2 \\ Y_1 & Y_2 & 0 \\ Y_2 & 0 & Y_1 \end{bmatrix}_2 + \frac{g'}{g} \begin{bmatrix} 0 & Y_3 & -Y_2 \\ -Y_3 & 0 & Y_1 \\ Y_2 & -Y_1 & 0 \end{bmatrix}_3
$$

 $Y F^C I$

Weights (2, 4, 4) (minimal non-degenerate): α $\sqrt{ }$ \mathbf{L} Y_1 Y_3 Y_2 0 0 0 0 0 0 \setminus $\overline{1}$ **3**,2 **+** β $\sqrt{ }$ \mathbf{L} 0 0 0 Y_1 Y_3 Y_2 0 0 0 \setminus $\overline{1}$ **3**,4 **+** γ $\sqrt{ }$ \mathbf{L} 0 0 0 0 0 0 Y_1 Y_3 Y_2 \setminus $\overline{1}$ $3'$, 4