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Motivation

Motivation

The main motivation for this work arises from the following:

• It is a experimental fact that the universe is equipped with a
tiny but non-vanishing cosmological constant

• String theory comes with the promise of being a unified
quantum theory of all interactions

• In string theory the cosmological constant is a calculable
quantity

Is it possible to obtain a small but non-vanishing cosmological

constant within string theory?
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Motivation

Motivation for a vanishing cosmological constant

The cosmological constant Λ is very very tiny: 10−120 smaller than
its natural scale Λ ∼ m4P

This may be taken as an indication that the cosmological constant

should vanish perturbatively to all orders and only arises due to

non-perturbative effects

For this to be feasible at least the cosmological constant should

vanish at the one-loop level
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Motivation

Motivation for heterotic strings

All string theories are presumably related to each other by

dualities, so in principle any question can be investigated within

various string theoretical contexts

In heterotic strings both gravity, gauge interactions and chiral

particle spectra arise at the same stage in the construction

Perturbative heterotic string theory is a well-studied subject

Have lead to many candidates of MSSM-like models

e.g. Faraggi,Nanopoulos,Yuan’90; Braun,He,Ovrut,Pantev’05; Bouchard,Donagi’05;

Buchmuller,Hamaguchi,Lebedev,Ratz’05; Lebedev,Nilles,Ramos-Sanchez,Ratz,Vaudrevange’06
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Motivation

Motivation for non-supersymmetry strings

Given that

• so far there has been no experimental evidence for
supersymmetry

• and a positive cosmological constant seems inconsistent with
supersymmetry

this question should be investigated in the context of

non-supersymmetric string theory

One-loop vanishing cosmological constants have been obtained for

non-supersymmetric asymmetric orientifold constructions

Karchru,Silverstein’99; Blumenhagen,Gorlich’99; Satoh,Sugawara,Wada’15

There are also non-supersymmetric heterotic strings,

Dixon,Harvey’86; Alvarez-Gaume,Ginsparg,Moore,Vafa’86

on which Standard Model-like theories can be obtained

Faraggi and M. Tsulaia’07; Blaszczyk,SGN,Loukas,Ramos-Sanchez’14
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Motivation

Motivation for orbifolds

Since string theories (except the bosonic one) tend to live in 10D, a

compactification of 6D is necessary

As there are an infinite (over-countable) number of 6D manifolds,

the close to 29 million 6D toroidal orbifolds Opgenorth,Plesken,Schulz’98

provide a large but trackable testing ground

Strings on orbifolds can be exactly quantized Dixon,Harvey,Vafa,Witten’85
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Motivation

Overview
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Toroidal orbifolds

Ingredients of toroidal orbifolds

A toroidal orbifold T6/G is build as follows:

• A 6D lattice spanned by six basis vectors ei:

Γ = {em|m ∈ Z6}

• A torus T6 = R6/Γ defined by the periodicities:

X ∼ X + em , m ∈ Z6 ,

where the basis vectors ei are combined to the vielbein e = (ei)
• A finite orbifold group G generated by

twists: X ∼ Dv(θ) X θ 6= 1

roto-translations: X ∼ Dv(θ) X + e q , q ∈ Q6
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Toroidal orbifolds

Space group S description of orbifolds

The space group S combines the lattice and the orbifold group
elements, e.g.:

(1; em) ∈ S m ∈ Z6

(θ; e q) ∈ S θ 6= 1 , q ∈ Q6

The finite point group P is a projection of the space group S:
S→ P : (θ, e q) 7→ θ
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Toroidal orbifolds

Twist action on vectors and spinors

The action Dv(θ) associated to a given space group element
g = (θ, e q) can be diagonalized in a complex coordinate basis as

Dv(θ) =


e2πi v1g 0 0

0 e2πi v2g 0

0 0 e2πi v3g


in terms of a local twist vector vg =

(
0, v1g , v2g , v3g

)
Its action on eight-component 6D internal spinors is given by

Ds(θ) = e2πi v1g
σ
3

2 ⊗ e2πi v2g
σ
3

2 ⊗ e2πi v3g
σ
3

2
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Toroidal orbifolds

Double cover of Spin(6) over SO(6)

Dv(θ) =


e2πi v1g 0 0

0 e2πi v2g 0

0 0 e2πi v3g



Ds(θ) = e2πi v1g
σ
3

2 ⊗ e2πi v2g
σ
3

2 ⊗ e2πi v3g
σ
3

2

The Spin(6) = SU(4) is the double cover of SO(6):

• Both Ds(θ) and −Ds(θ) are associated to Dv(θ)

• Dv(θ) are inert under vag 7→ vag + 1, while Ds(θ) changes sign

• −1 ∈ Spin(6) breaks all supersymmetries

It is often possible to make a choice per space group element

g = (θ, e q) such that Ds(θ) admits some Killing spinors
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Toroidal orbifolds

Existence of killing spinors

A space group element g = (θ; e q) admits a Killing spinor Ψinv., if

Ds(θ) Ψinv. = Ψinv.

has non-trivial solutions Ψinv. 6= 0

The possible eigenvalues of Ds(θ) are exp(±2πi ṽag ), a = 0,1,2,3,
where

ṽg =
1

2


v1g + v2g + v3g
−v1g + v2g + v3g
v1g − v2g + v3g
v1g + v2g − v3g


Hence, for a space group element g = (θ; e q) to admit at least
one Killing spinor, at least one of the entries of ṽg needs to
vanish modulo integers
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Vanishing one-loop partition function

One-loop cosmological constant

In heterotic string theory the one-loop cosmological constant is

computed via

Λ ∼
∫
F

d2τ
τ2
2

Zfull(τ, τ̄)

Given that the integral over the fundamental domain F can be very
complicated, we asked:

Can we construct non-supersymmetric heterotic orbifolds

which have a vanishing one-loop partition function?
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Vanishing one-loop partition function

Decomposition of the full partition function

The full partition function consists of

Zfull = Z4DMink.Z6D int. Z4DMink. =
1

τ2

∣∣∣ 1
η2

∣∣∣2 6= 0
On orbifolds the internal part Dixon,Harvey,Vafa,Witten’85

Z6D int. =
1

|P|
∑

[g,h]=0
ZX
[g
h
]
Zψ
[g
h
]
ZY
[g
h
]

is associated with

• the 6D internal coordinate fields X
• their worldsheet superpartners, the right-moving fermions ψ

• the 16D left-moving gauge degrees of freedom Y
and the sum over all commuting space group element g,h ∈ S
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Vanishing one-loop partition function

Vanishing right-moving fermionic partition functions

Contrary the other partition functions, the right-moving fermionic

partition function Antoniadis,Bachas,Kounnas’87, Kawai,Lewellen,Tye’87

Zψ
[g
h
]
(τ) =

1

2
e−πi vTg (vh−e4)

1∑
s,s′=0

(−)s
′s e−2πi

s′
2
eT
4
vg
θ4
[1−s
2

e4−vg
1−s′
2

e4−vh

]
η4

,

with e4 = (1,1,1,1) and θ4
[α
α′

]
=
∑
n∈Z4

e2πi
{

τ
2
(n+α)2+(n+α)Tα′

}
,

may vanish under certain circumstances
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Vanishing one-loop partition function

Orbifolds with vanishing partition functions

Using Riemann identities one can shows that:

Zψ
[g
h
]

= 0 ⇔ g,h ∈ S share at least one Killing spinor
Hence, all supersymmetric orbifolds have vanish partition functions

And so does any non-supersymmetric toroidal orbifold for which

i. a Killing spinor exists locally in every commuting (g,h)-sector

ii. but none globally

Do such orbifolds exist?
• One would say yes, since there are orbifold examples with
different local and global supersymmetry breakings
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Vanishing one-loop partition function

(Non-)local supersymmetry breaking on orbifolds

The space group S the DW(0–2) Z2 ×Z2 orbifold is generated by the
elements: gθ =

(
θ,0
)
, gω =

(
ω, 1
2
e5
)
, gi =

(
1, ei

)
Donagi,Wendland’08

gθ-fixed two-tori

gω-fixed two-tori

e3

e4

e5

e6

e1

e2

e5

e6

• These non-intersecting two-tori preserve different N = 2, but
combined only N = 1 supersymmetry

• Less supersymmetry is preserved globally than locally
Stefan Groot Nibbelink (Rotterdam) CC and non-SUSY heterotic orbifolds 17 / 30



Classification of orbifolds

Classification of toroidal orbifolds

Toroidal orbifolds in 6D have been classified: Opgenorth,Plesken,Schulz’98

• 7,103Q-classes:
Inequivalent point groups P

• 85,308 Z-classes:
Inequivalent lattices Γ on which these point groups can act

• 28,927,915 affine-classes:
Inequivalent space groups S (encoding roto-translations) that
act on these lattices (labeled uniquely by CARAT-indices)

Among these there are 520 toroidal orbifolds that preserve
N = 1 supersymmetry or more Fischer,Ratz,Torrado,Vaudrevange’12
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Classification of orbifolds

Local but no global Killing spinors

This classification can be used to identify toroidal orbifolds that

admit Killing spinors in all sectors locally but none globally:

#Q-classes Restriction
7,103 All inequivalent geometrical point groups P ⊂ O(6)

1,616 Orientable geometrical point groups P ⊂ SO(6)

106 No element from P rotates in a two-dimensional
plane only

63 Each element θ ∈ P admits a choice with some local
Killing spinors

60 Geometrical point group compatible with some

global Killing spinors

This leaves orbifolds with 3 candidateQ-classes
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Classification of orbifolds

Candidate orbifold geometries

Some properties of the three candidateQ-classes are:

CARAT- Point Generator Order Local twist
index group relations vectors
3375 Dic3 = θ4

1
= θ3

2
= 1 , 12

(
1

4
, 1
4
,−1

2

)
,

Z3 o Z4 θ2 θ1 θ2 = θ1
(
1

3
,−1

3
,0
)

5751 Q8 θ4
1

= 1, θ2
1

= θ2
2
, 8

(
1

4
, 1
4
,−1

2

)
θ1 θ2 θ1 = θ2

(
1

4
,−1

4
,0
)

6737 SL(2,3) θ3
1

= θ4
2

= 1 , 24
(
1

3
, 1
3
,−2

3

)
,

(θ2 θ1)2 = θ2
1
θ2

(
1

4
,−1

4
,0
)

The local twist vectors, obtained in two different bases,

separately indeed preserve some amount of supersymmetry
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Classification of orbifolds

Candidate orbifold geometries

For these candidate geometries all possible embedding of the

point group into spinor space were explicitly constructed:

In all cases either target-space supersymmetry is preserved globally
or there is at least one element that does not preserve any Killing

spinor

Hence, there does not exist any non-supersymmetric orbifoldfor which all point group elements separately preserve someKilling spinors

Stefan Groot Nibbelink (Rotterdam) CC and non-SUSY heterotic orbifolds 21 / 30



Nonexistence proof

No locally but not globally supersymmetry orbifolds

Two proofs of the nonexistence of locally but not globally

supersymmetric orbifolds:

1 Construct and analyze all spin representations associated to all

point groups P
2 Make use of representation theory of finite groups
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Nonexistence proof

Abstract point group

The 7,103Q-classes of 6D orbifolds provided by CARAT correspond

to only 1,594 different abstract point groups:

• For a given abstract group there can exist several inequivalent
realizations as integral 6× 6-matrices

The following two representations of an abstract point group P are
relevant:

Geometrical point group Abstract point group
Name Matrix repr. Repr. Character

Spinor Ds(θ) 4 χ4
Vector Dv(θ) 6 = [4]2 χ6
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Nonexistence proof

Almost arbitrary four-dimensional representations

Now, consider an arbitrary 4-representations of P (in particular,
neither 4 nor 6 need to be irreducible) but:
1 The 4 needs to lie inside SU(4) = Spin(6):

On all conjugacy classes of P: χ[4]4 = 1

2 The 6 should be isomorphic to aQ-class:
There such be an integral 6× 6-matrix representation D̂v within
the CARAT Q-classes such that χ6 = χv = TrD̂v
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Nonexistence proof

Abstract counting of Killing spinors

G-invariant Killing spinors satisfy: D4(θ) Ψinv. = Ψinv. , ∀θ ∈ G ⊂ P
Consequently, the projector on the G-invariant subspace reads:

PG =
1

|G|
∑
θ′ ∈G

D4(θ′)

Hence, the number of G-invariant Killing spinors is counted by:
NG = Tr

(
PG) =

1

|G|
∑
θ′ ∈G

Tr
(
D4(θ′)) =

1

|G|
∑
θ′ ∈G

χ4(θ′) = 〈χ4, χ1〉G = nG1

where 1 denotes the trivial singlet representation with χ1 = 1

⇒ The number of G-invariant Killing spinors equals the number of
trivial singlet nG1 in the branching of a 4-representation of P
into irrepresentations of G
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Nonexistence proof

Abstract counting of Killing spinors

The number of local Killing spinors preserved by θ is given:

N 〈θ〉 = n〈θ〉1
since any element θ ∈ P of order Nθ generates a 〈θ〉 ∼= ZNθ

⊂ P
The number of global Killing spinors is given by:

N = nP1
e.g. how many trivial singlets the 4-representation contains
⇒We look for point groups P such that for all θ ∈ P: n〈θ〉1 > 0,
while nP1 = 0
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Nonexistence proof

Nonexistence proof by finite group theory

For each of the 1,594 different abstract groups P we considered all
faithful (but in general reducible) 4-representations and required
that they

• do not contain a trivial singlet representation to avoid global
Killing spinors

• yet satisfy the two conditions mentioned above

By constructing all ZN ⊂ P subgroups we showed, that for each
remaining 4, there is at least one cyclic subgroup, for which the 4
does not contain the trivial ZN-singlet representation

⇒ For all non-supersymmetric 6D toroidal orbifolds there isalways a sector without any local Killing spinor
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Conclusion

Conclusion

There are no non-supersymmetric toroidal orbifolds that preserve

some amount of supersymmetry in all sectors locally

This was proven by

1 explicit construction of all spin representations for all 7,103

Q-classes

2 exploiting representation theory of finite group applied to all

1,594 abstract point groups

This results shows that it is also in string theory very challenging to

obtain a very small yet non-zero cosmological constant
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Conclusion

Epilog: Is this result surprising?

The leading contribution in the one-loop partition function of any

heterotic string theory goes like

Z ∼ 1q

This corresponds to non-level-matched tachyons with right- and

left-moving-masses (0,−1) associated with the so-called Dienes’90,

Abel,Dienes,Mavroudi’16

• proto-gravitons: |pR〉R ⊗ |0〉L, pR ∈ V4
• proto-gravitinos: |pR〉R ⊗ |0〉L, pR ∈ S4

which form gravitons and gravitinos when hit by the αµ−1, resp.

In supersymmetric theories their contributions cancel, but

in non-supersymmetric theories they do not
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Conclusion

Epilog: A group theoretical conjecture

Conjecture:
There does not exist any finite group H that has a four-dimensional
representation D4 with the following three properties:
i D4 has a trivial determinant, i.e. det (D4(θ)) = 1 for all θ ∈ H
ii D4 does not contain the trivial singlet representation of H
iii but the branchings of D4 to all ZN ⊂ H subgroups always
contain the trivial ZN-singlet representation

We have checked this against the following finite group lists:

• all 1,594 different finite groups which originate from the 7,103
Q-classes of CARAT;

• all finite groups of order up to 500 from the SmallGroups
Library of GAP, amounting to O(100,000) finite groups
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