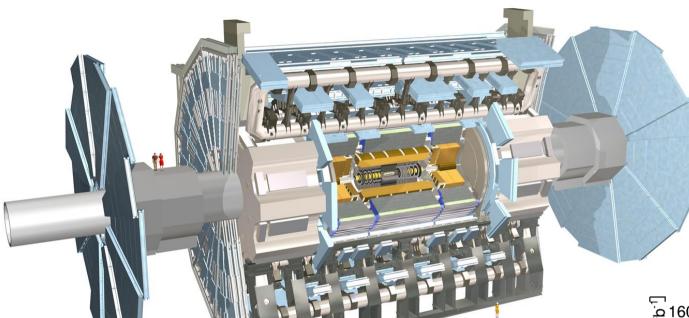

Tests of the EW sector with precision measurements and diboson final states at the ATLAS Experiment

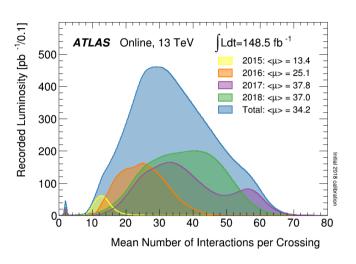
DISCRETE 2018

26-30 November 2018 Wien

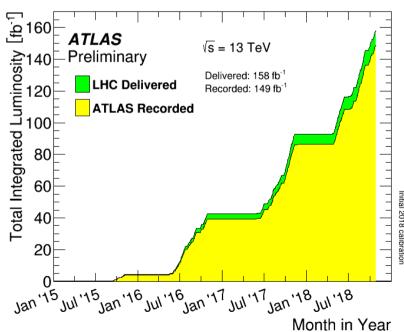
Laura Fabbri

INFN and University of Bologna on behalf of the ATLAS Collaboration

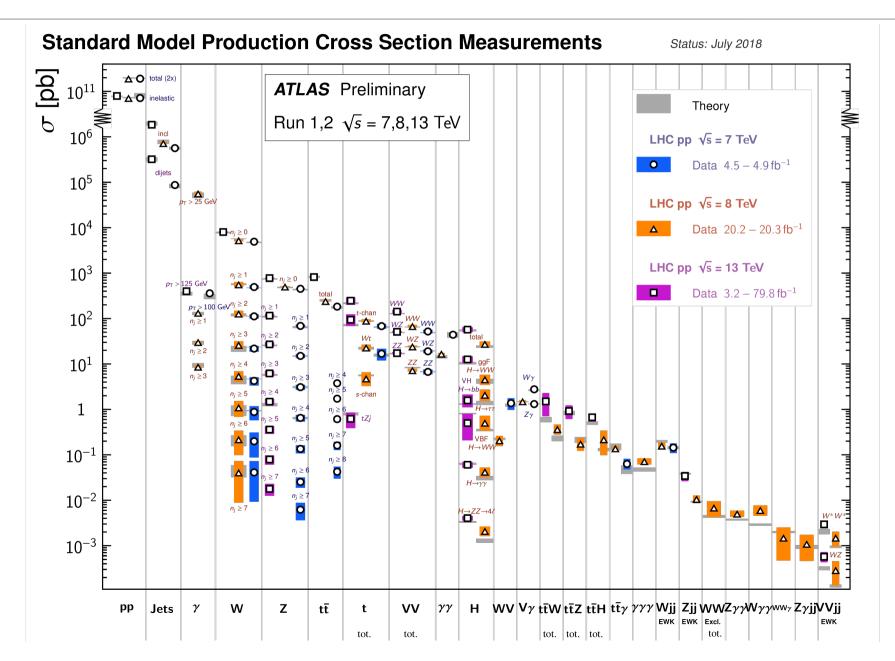




ATLAS Experimental Status



ATLAS has accumulated


- ~ 25 fb⁻¹ at 7/8 TeV
- ~ 150 fb⁻¹ at 13 TeV

Standard Model measurements

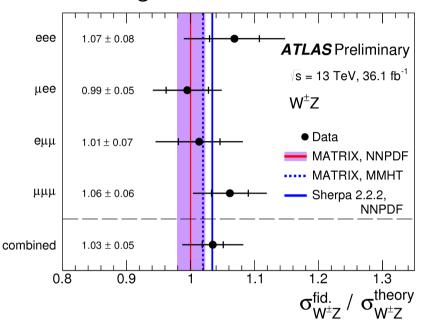
- Precision WZ measurement at 13 TeV <u>ATLAS-CONF-2018-034</u>
- Electroweak VVjj Vector Boson Scattering at 13 TeV
 - W±W± jj production
 ATLAS-CONF-2018-030
 - W±Zjj production
 ATLAS-CONF-2018-033
- Measurement of weak mixing angle at 8TeV ATLAS-CONF-2018-037

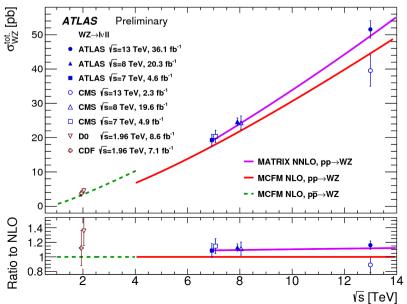
Precision WZ measurement at 13 TeV

ATLAS-CONF-2018-034

- 1. Integrated cross section:
 - -fiducial phase space: W±Z, W+Z, W-Z;
 - charge ratio W+Z/W-Z
 - -total phase space: W±Z
- 2. Differential cross sections: p_T^Z , p_T^W , m_T^{WZ} , p_{T^V} , $|y_Z y_{I,W}|$, $\Delta \phi(W,Z)$, N_{jets} , m_{jj} ,
- 3. First measurement of W and Z polarisation fractions in WZ events.

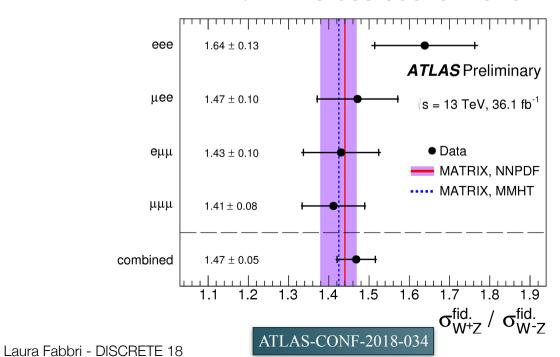
Event Selection: III + E_T^{miss} + nj


- Medium muons, p_T>15 GeV (except trigger), $|\eta_{\mu}|$ < 2.5
- Medium electrons, p_T>15 GeV (except trigger), $|\eta_e|<1.37 \& 1.52<|\eta_e|<2.47$
- Leptons originate from a Primary Vertex: $|d_0/\sigma_{d0}| < 3(5) \mu(e) |z0 \sin(\theta)| < 0.5 mm$
- Specific isolation cuts
- Jets: anti-k_T(R=0.4), p_T>25 GeV, |η_j| < 4.5
- |m_{II} -m_Z| < 10 GeV; m_T^W >30 GeV



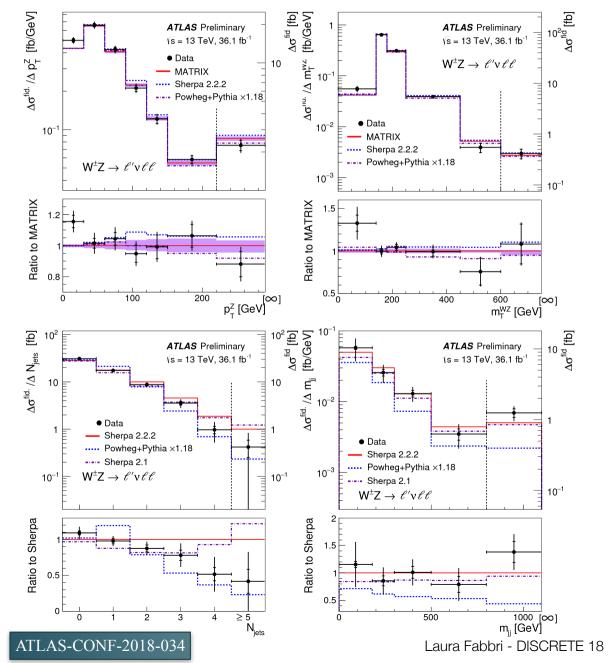
Cross section result in fiducial/total phase space

Integrated cross-section

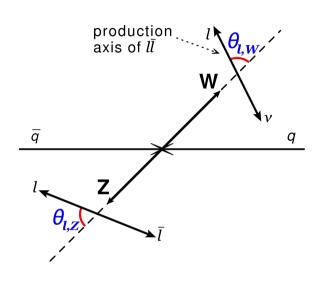


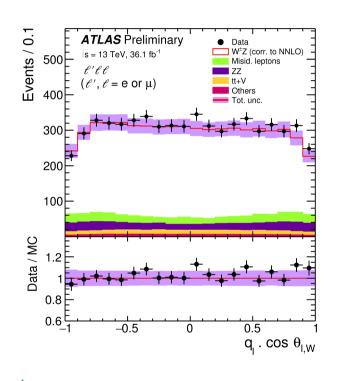
Good agreement with NNLO prediction by MATRIX

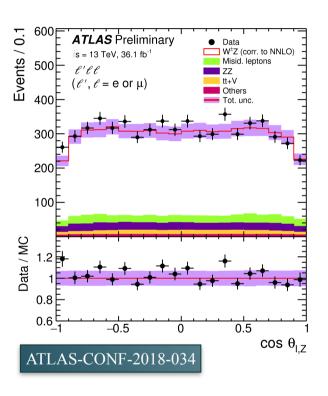
$$\sigma_{W^{\pm}Z}^{\text{tot.}} = 51.0 \pm 0.8 \, (\text{stat.}) \pm 1.8 \, (\text{sys.}) \pm 0.9 \, (\text{th.}) \pm 1.2 \, (\text{lumi.}) \, \text{pb},$$
MATRIX NNLO: $49.1_{-1.0}^{+1.1} \, (\text{scale}) \, \text{pb}$


W+Z/W-Z cross section ratio:

Differential cross sections


- Measure cross section as a function of: p_T^Z , p_T^W , m_T^{WZ} , $\Delta \varphi(W,Z)$, p_{T^V} , $|y_Z y_{I,W}|$, N_{jets} , m_{jj} ;
- Differential cross section results are compared to the NNLO QCD predictions from MATRIX
- p_T^Z and m_T^{WZ} are sensitive to aTGCs: no excess of data is observed
- Jets-related distributions are compared to the Sherpa 2.2.2 predictions, that contains up to one parton at NLO and up to three partons at LO


First measurement of boson polarisation



purely longitudinal, transverse-left and transverse-right helicity components

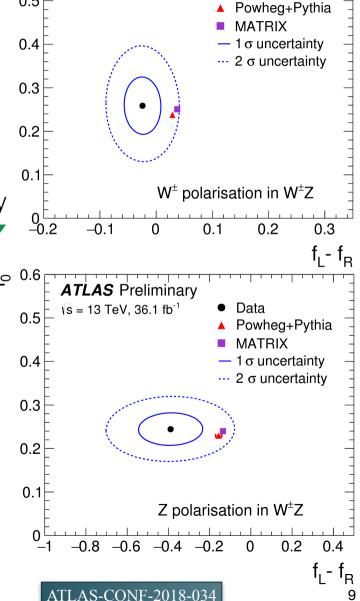
Fit angular distributions using analytical functions in total phase space to create templates with pure polarisation states.

Helicity fractions f_0 and f_L – f_R measured using a binned profile-likelihood fit.

$$f_0 + f_R + f_L = 1$$

Born level leptons

Polarisation results


		f_0	$f_L - f_R$		
	Data Prediction		Data	Prediction	
W^+ in W^+Z	0.26 ± 0.08	0.233 ± 0.004	-0.02 ± 0.04	0.083 ± 0.004	
W^- in W^-Z	0.32 ± 0.09	0.245 ± 0.005	-0.05 ± 0.05	-0.061 ± 0.006	
W^\pm in $W^\pm Z$	0.26 ± 0.06	0.2376 ± 0.0031	-0.024 ± 0.033	0.0249 ± 0.0022	
Z in W^+Z	0.27 ± 0.05	0.225 ± 0.004	-0.32 ± 0.21	-0.269 ± 0.021	
Z in W^-Z	0.21 ± 0.06	0.235 ± 0.005	-0.46 ± 0.25	0.034 ± 0.023	
Z in $W^\pm Z$	0.24 ± 0.04	0.2294 ± 0.0033	-0.39 ± 0.16	-0.147 ± 0.016	

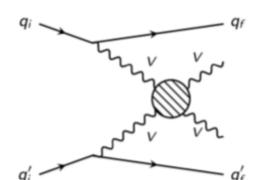
Precision of the measurement is limited by statistical uncertainty

First evidence of longitudinally polarised W bosons

(4.2 σ observed significance)

 $f_L - f_R$ also measured even if with a lower sensitivity. Agreement with the SM predictions is within 2 σ

ATLAS Preliminary


 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

Data

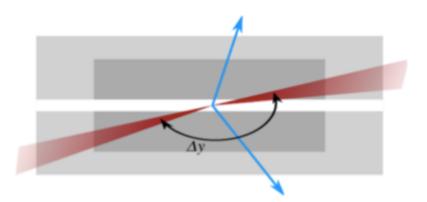
W±Z/W±W± jj final state

EW signal

= + + + + --

 α_{EW}^6

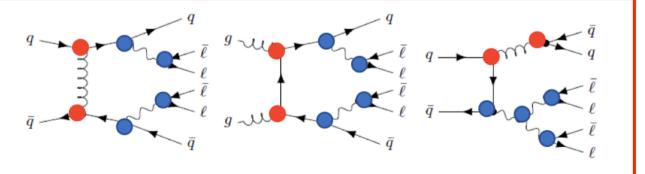
ATLAS-CONF-2018-030


ATLAS-CONF-2018-033

Motivation:

- → triple & quartic GC
- → Higgs, BSM

VBS VVjj production has a very characteristic kinematical signature


- Two high P_T forward jets
- W and Z products in the central region

Main Background

QCD WZ production in association with two jets

$$\alpha_S^2 \alpha_{EW}^4$$

W±W± jj final state

ATLAS-CONF-2018-030

Signal Extraction: SS 2I + 2j

- Two leptons $p_T > 27$ GeV, $|\eta_I| < 2.5$. (end-cap excluded in ee channel)
- Only W[±] → e/µ
- Two forward jets $p_T^j > 65/35$ GeV, $|\eta_i| < 4.5$
- $\Delta y_{jj} > 2.0$, $m_{jj} > 500$ GeV included in profile likelihood fit
- Additional kinematic cuts to remove tt+jets and WZ contributions (b-jet veto and 3rd lepton veto)

Signal categories: e[±]e[±], e[±]µ[±],µ[±]µ[±]

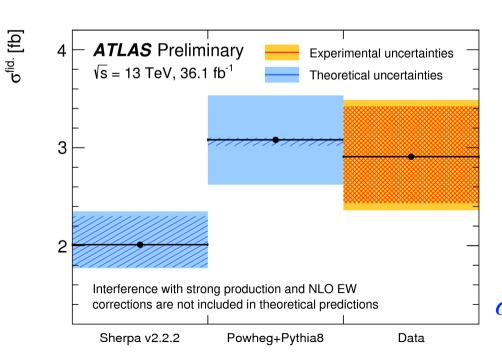
Major syst. unc.: jet energy scale

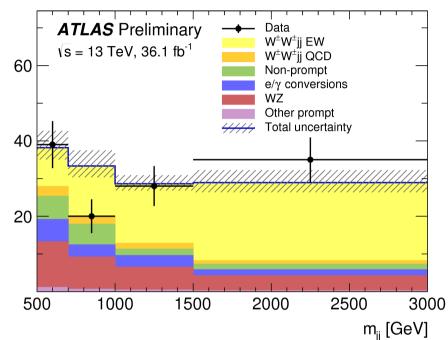
W [±] W [±] jj-EW	ee % Yield	$e\mu$ % Yield	$\mu\mu$ % Yield
Jet-related Uncertainties	2.28	2.22	2.28
b-tagging efficiency	1.81	1.76	1.74
Pile-up	0.48	0.97	2.42
Trigger efficiency	0.02	0.08	0.47
Lepton reconstruction and identification	1.45	1.14	1.83
MET reconstruction	0.26	0.17	0.21

ATLAS-CONF-2018-030

- W±W±jj processes involving strong interaction (**QCD processes**)
- processes with prompt same-charge leptons (W±Zjj, ZZjj, t¯tV)
 - → Estimated using MC simulation normalised in a CR
- processes with at least one non-prompt lepton (V γ, W+jets)
 - → the tight isolation requirements on leptons, the b-jet veto and the missing transverse energy selections
- processes with electron charge mis-identification (t⁻t,W±W[±]jj, Z/γ*jj)
 - → Z mass veto & b-jet veto

	e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	combined
\overline{WZ}	1.7 ± 0.6	1.2 ± 0.4	13 ± 4	8.1 ± 2.5	5.0 ± 1.6	3.3 ± 1.1	$\overline{32} \pm 9$
Non-prompt	4.1 ± 2.4	2.3 ± 1.8	9 ± 6	6 ± 4	0.57 ± 0.16	0.67 ± 0.26	23 ± 12
e/γ conversions	1.74 ± 0.31	1.8 ± 0.4	6.1 ± 2.4	3.7 ± 1.0	-	-	13.4 ± 3.5
Other prompt	0.17 ± 0.06	0.14 ± 0.05	0.90 ± 0.24	0.60 ± 0.25	0.36 ± 0.12	0.19 ± 0.07	2.4 ± 0.5
$W^{\pm}W^{\pm}$ jj strong	0.38 ± 0.13	0.16 ± 0.06	3.0 ± 1.0	1.2 ± 0.4	1.8 ± 0.6	0.76 ± 0.26	7.3 ± 2.5
Expected background	8.1 ± 2.4	5.6 ± 1.9	32 ± 7	20 ± 5	7.7 ± 1.7	4.9 ± 1.1	78 ± 15
$W^{\pm}W^{\pm}$ jj electroweak	3.80 ± 0.30	1.49 ± 0.13	16.5 ± 1.2	6.5 ± 0.5	9.1 ± 0.7	3.50 ± 0.29	40.9 ± 2.9
Data	10	4	44	28	25	11	122





An excess of data over backgrounds prediction is observed in most of the bins:

122 candidate events - 69±10 background exp

Observed significance: 6.9 σ (7.7 σ StatOnly) Expected 4.6 σ (5.3 σ StatOnly)

$$\sigma^{fid} = 2.91^{+0.51}_{-0.47}(\text{stat.}) \pm 0.27(\text{sys.})$$
fb

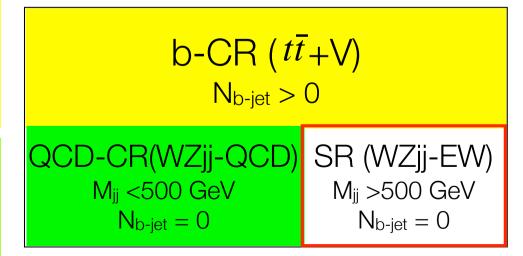
$$\sigma^{SHERPA} = 2.01^{+0.33}_{-0.23}$$
(sys.+stat.)fb

$$\sigma^{POWHEG+PYTHIA8} = 3.08^{+0.45}_{-0.46} (\text{sys.+stat.}) \text{fb}$$

WZjj final state - Signal and control regions

On top of the inherited WZ inclusive selection, a region dedicated to WZjj is defined:

- Exactly 3 leptons (only e/μ)
 - ▶ 2 of them: Z lepton selection (same flavour, oppositely charged, $|M_{\parallel}-M_{Z}|$ < 10 GeV, ...)
 - ▶ Remaining: W boson selection (m_TW > 30 GeV, ...)
- Two forward jets: $p_T^j > 40$ GeV, $|\eta_j| < 4.5$, $\eta_{j1} \cdot \eta_{j2} < 0$, $M_{jj} > 500$ GeV

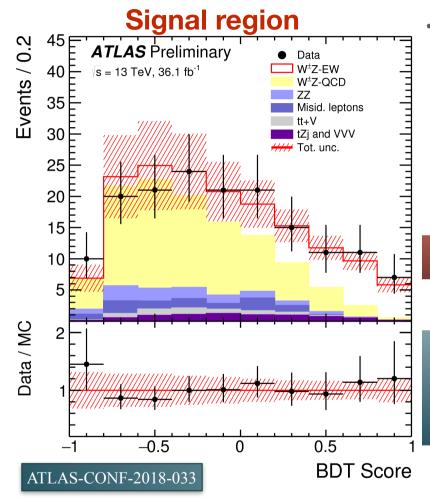

Then this region is separated into three orthogonal regions:

b-control region:

Used to normalise the second irriducibile background

QCD control region:

Used to normalise the main irriducibile background



Signal region:

Used for the cross-section measurement

MultiVariate Analysis:

- BDT discriminant based on 15 variables
- Cross training: train 2 BDTs and apply to each event the BDT for which it was not used

$$\mu_{EW} = 1.77 \pm 0.45$$

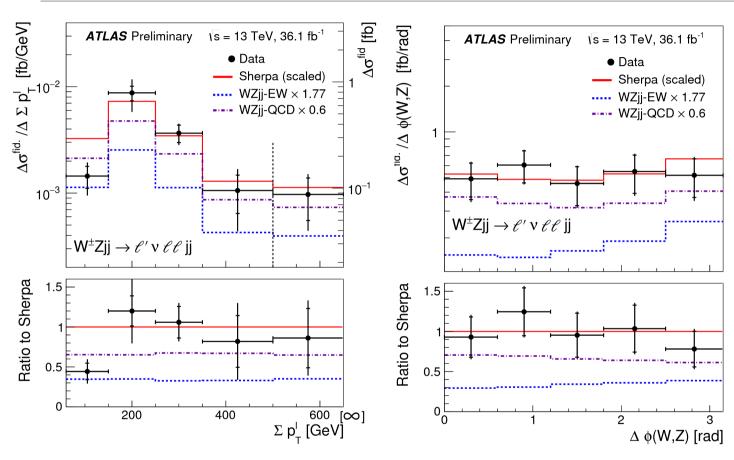
Observed significance: 5.6 σ (expected 3.3 σ)

$$\sigma_{EW}(W^{\pm}Zjj \rightarrow l'\nu lljj) =$$

$$= 0.57^{+0.14}_{-0.13}(\text{stat.})^{+0.05}_{-0.04}(\text{sys.})^{+0.04}_{-0.03}(\text{th.}) \text{ fb}$$

Predictions:

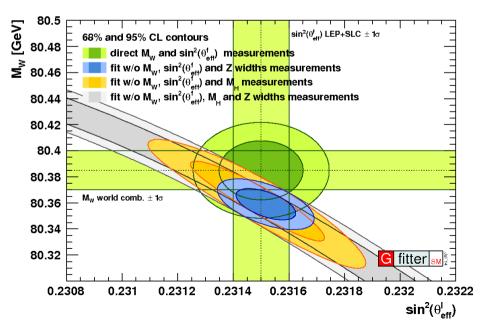
 $\sigma_{SHERPA} = 0.321 \pm 0.002 \text{(stat.)} \pm 0.005 \text{(PDF)}_{-0.023}^{+0.027} \text{(scale)} \text{ fb}$


SM LO w/o interference effects nor NLO EW corrections

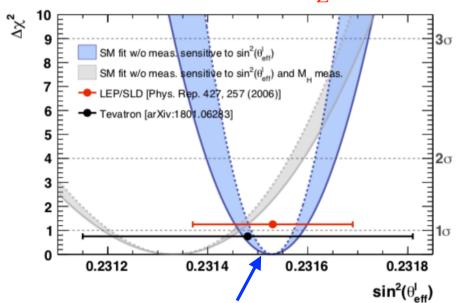
 $\sigma_{MadGraph} = 0.366 \pm 0.004 (\mathrm{stat.}) \; \mathrm{fb}$

Differential cross-section

- Kinematic distributions are unfolded as in the previous analysis
- Measure cross section as a function of: Σp^I_T,
 Δφ(W,Z), m_T^{WZ}, N_{jets},
 Δy_{II}, m_{jj}, N_{jets}^{gaps}, Δφ_{jj};
- Σp^I_T and Δφ(W,Z) are sensitive to aQGC
- WZjj-QCD and WZjj-EW SHERPA predictions are rescaled using μ_{EW} and μ_{WZ-QCD} obtained from the fit and combined in the SHERPA(scaled)


Good description of the measured cross sections

The weak mixing angle and the Standard Model


- sin²θw is a parameter of the SM representing the mixing of the EM and weak fields
- Within the SM, it relates the W- and Z-boson coupling constants $g_{W,Z}$, and therefore $m_{W,Z}$
- Radiative corrections modify this relation, yielding the fermion-flavor dependent effective weak mixing angle: sin²θ¹eff

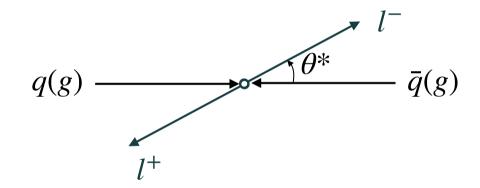
$$A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W$$

$$Z_{\mu} = -B_{\mu} \sin \theta_W + W_{\mu}^3 \cos \theta_W$$

$$\sin^2 \theta_W = 1 - \frac{g_W^2}{g_Z^2} = 1 - \frac{m_W^2}{m_Z^2}$$

$$\sin^2 \theta_{eff}^l = (1 - \frac{m_W^2}{m_Z^2})(1 + \Delta r^l)$$

SM prediction, from fit w/out direct measurements, ~6x10⁻⁵ precision


The weak mixing angle at hadron colliders

$q \bar{q} o Z/\gamma^* o ll$ differential cross section at LO:

$$\frac{d\sigma}{dy^{ll}dm^{ll}d\cos\theta} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dy^{ll}dm^{ll}} \left\{ (1 + \cos^2\theta) + A_4\cos\theta \right\}$$

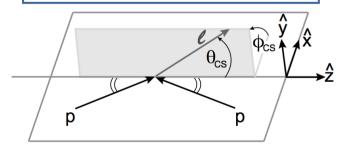
- In the di-lepton CM, lepton angle with respect to axis of quark/gluon momentum is sensitive to interference effects: vector with axial-vector Z couplings, Z with photon (or Z with new physics)
- The A₄ term odd in cosθ is very sensitive to the weak mixing angle when M = M_Z.
- The odd term coefficient A₄ can be obtained from an angular fit or computed from the forward-backward asymmetry

$$A_{FB} = \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma} = \frac{3}{8}A_4$$

A₄ measurement strategy

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}} \qquad \qquad \text{unpolarized cross-section}$$

$$\left\{ (1+\cos^{2}\theta) + \frac{1}{2}\overline{A_{0}}(1-3\cos^{2}\theta) + \overline{A_{1}}\sin2\theta\,\cos\phi + \frac{1}{2}\overline{A_{2}}\sin^{2}\theta\,\cos2\phi + \overline{A_{3}}\sin\theta\,\cos\phi + \overline{A_{4}}\cos\theta + \overline{A_{5}}\sin^{2}\theta\,\sin2\phi + \overline{A_{6}}\sin2\theta\,\sin\phi + \overline{A_{7}}\sin\theta\,\sin\phi \right\}$$


- Angular distributions parametrized by coefficients A_i(p_T^z, y^z, m^z)
 - ➤ Extracted from the shape of angular distributions
- Five-dimensional differential cross-section: 9
 harmonic polynomials P_i(cosθ,φ)

LO QCD: only $A_4\neq 0$ NLO QCD $O(\alpha_s)$: $+A_{1-3}\neq 0$

 A_0 - A_2 =0 due to spin-1 of gluon (Lam-Tung)

NNLO QCD $O(\alpha s^2)$: +A_{5,6,7}≠0

Collins-Soper Frame

- Rest frame of di-lepton system
- z-axis bisecting directions of incoming protons

Event selection and categorisation

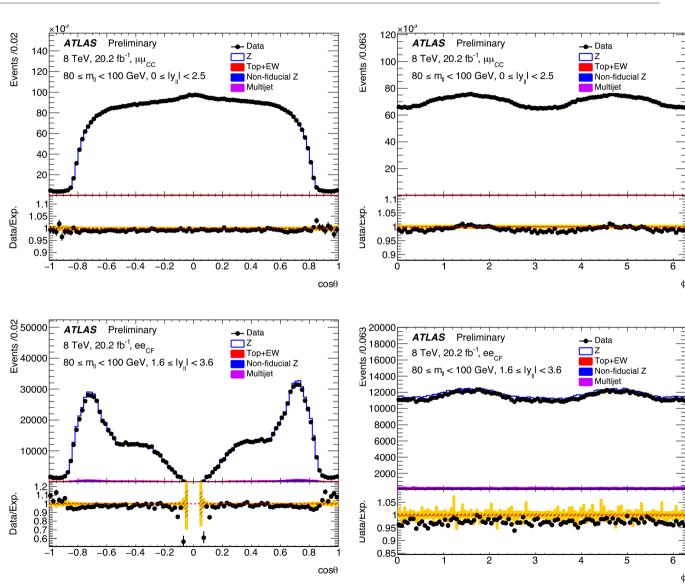
- eecc: two electrons in the central tracking and calorimetry ($|\eta|$ <2.4)
 - p_T>25 GeV
 - Exactly 2 opposite sign electrons
- µµcc: two muons in the central tracking and muon systems ($|\eta| < 2.4$)
 - p_T>25 GeV P_T
 - Exactly 2 opposite sign muons

- 3 bins in m_{II} $70 < m_{\rm H} < 80 {\rm GeV}$ $80 < m_{II} < 100 \text{ GeV}$ $100 < m_{II} < 125 \text{ GeV}$
- 3 bins in |y_{II}| $|y_{II}| < 0.8$ $0.8 < |y_{II}| < 1.6$ $1.6 < |y_{II}| < 2.5$

- eecf: one electron in central tracking/ calorimetry ($|\eta|$ <2.4), one in endcap/forward calorimetry (2.5 < $|\eta|$ < 4.9)
 - p_T > 25/20 GeV C/F
 - requirement with tighter ID than eecc

- 1 bin in $m_{\parallel} 80 < m_{ll} < 100 \text{ GeV}$
- 2 bins in $|y_{\parallel}|$ 2.5 < $|y_{ll}|$ < 3.6 $1.6 < |y_{II}| < 2.5$

	$80 < m_{ll} < 100 \text{ GeV}$						
$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z			
1.6-2.5	702 142	0.001	0.010	0.017			
2.5-3.6	441 104	0.001	0.011	0.013			


About 6-7M events each for CC categories 1M for CF

Angular distributions

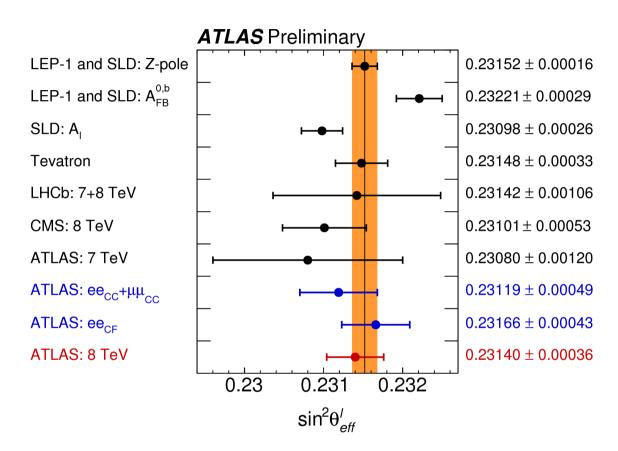
- Data/MC agreement for µµcc and eecf in the Z pole mass region for all y.
- Only a small raw
 AFB is visible for CC;
 a larger one
 emerges for CF, as
 expected.
- S/B at the Z pole is very high
- $\cos 2\phi$ modulation from A₂ can be clearly seen

Fit results and uncertainties

	Channel	ee_{CC}	$\mu\mu_{CC}$	ee_{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$			
	Total	65	59	42	48	34			
	Stat.		39	29	30	21			
	Syst.	45	44	31	37	27			
			Uncertainties in measurements						
	PDF (meas.)	7	7	7	7	4			
	p_{T}^{Z} modelling	< 1	< 1	1	< 1	< 1			
	Lepton scale	5	4	6	3	3			
	Lepton resolution	3	1	3	1	2			
	Lepton efficiency	1	1	1	1	1			
	Electron charge misidentification	< 1	0	< 1	< 1	< 1			
	Muon sagitta bias	0	4	0	2	1			
0	Background	1	1	1	1	1			
2	MC. stat.	25	22	18	16	12			
		Uncertainties in predictions							
1	PDF (predictions)	36	37	21	32	22			
	QCD scales	5	5	9	4	6			
	EW corrections	3	3	3	3	3			

 $\times 10^{-5}$

Consistent results for all three categories


assuming
$$\sin^2 \theta_W = 0.23152$$

- eecr is as powerful as eecc + μμcc
- All three categories systematics limited, predominantly by PDF uncertainty affecting relation between A₄ and mixing angle

Result: sin²θl_{eff}

- More than 2 times less precise than LEP/SLD
- Comparable to Tevatron final results
- Superior to CMS 8 TeV, which does not include ee_{CF} category.
- Superior to LHCb due to luminosity/statistics (LHCb has lower PDF unc.!)

 0.23140 ± 0.00021 (stat.) ± 0.00024 (PDF) ± 0.00016 (syst.)

Conclusions

 Precise measurement of SM quantities preformed both at 8 and 13 TeV by the ATLAS Collaboration:

★ 13 TeV

- Integrated and differential cross section of W±Z
- Cross section of W+Z/W-Z
- Measurement of boson polarisation: first evidence of W longitudinal polarisation
- Observation of W±W±jj and W±Zjj production via VBS

★ 8 TeV

- Precise polarisation study of Z boson
- Best LHC's measurement of sin²θ^leff

Conclusions

 Precise measurement of SM quantities preformed both at 8 and 13 TeV by the ATLAS Collaboration:

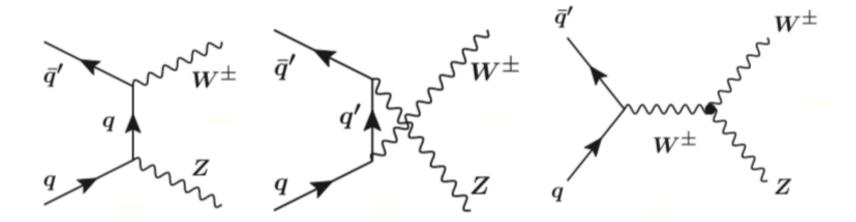
★ 13 TeV

- Integrated and differential cross section of W±Z
- Cross section of W+Z/W-Z
- Measurement of boson polarisation: first evidence of W longitudinal polarisation
- Observation of W±W±jj and W±Zjj production via VBS

★ 8 TeV

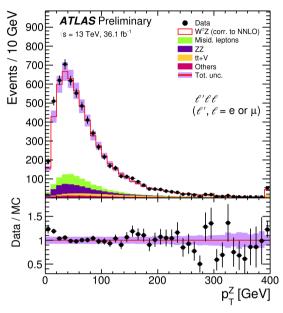
- Precise polarisation study of Z boson
- Best LHC's measurement of sin²θ|_{eff}

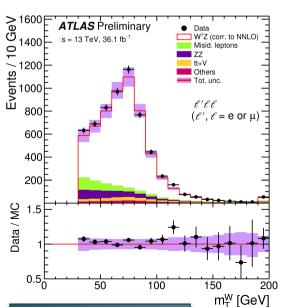
Thank you for your attention

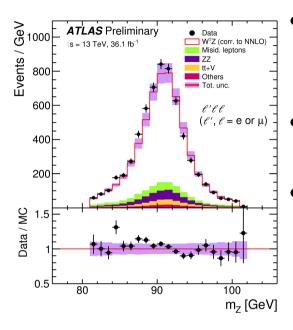

BACKUP

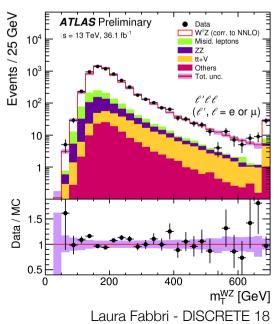
$W\pm Z\rightarrow IvII$ (I = e or μ) production

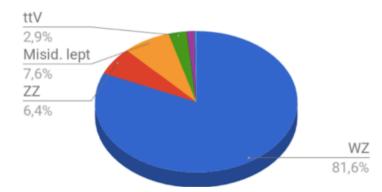
ATLAS-CONF-2018-034




- Diboson processes include vertices with gauge boson self-interactions
 - => sensitive to searches of anomalous triple gauge couplings
 - → The searches are based on precision measurements.
- Fully leptonic WZ production clean experimental signature:
 - → good signal-to-background ratio, objects systematics are well under control
- Important test of NNLO QCD calculations.
- Important background for many searches in ATLAS.

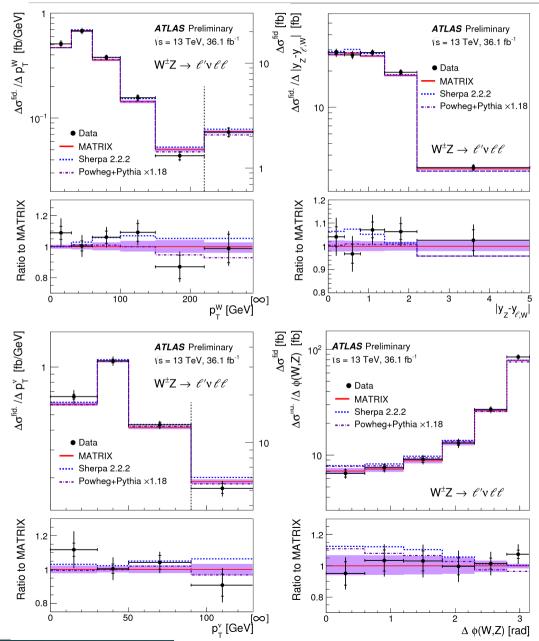

Kinematical distributions





ATLAS-CONF-2018-034

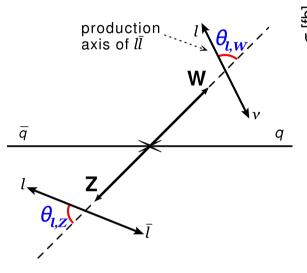
- Observed **6160** WZ data events, compared to an expectation of **5986** events
- WZ Monte Carlo prediction is scaled to NNLO cross-section
- Background estimated using data driven technics and MC simulation



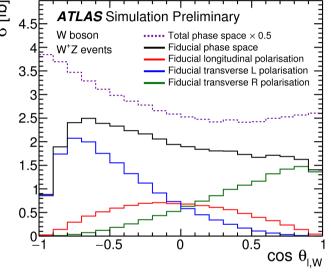
- Total uncertainty 4.6%
- Dominant sources of uncertainty:
 - data-driven background determination,
 - pileup,
 - lepton ID efficiencies.
- Measurement is not dominated any more by statistics.

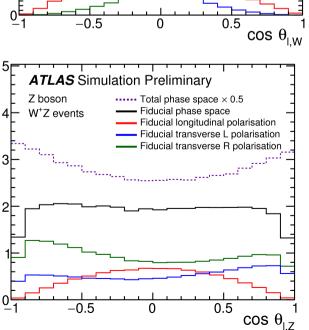
Differential cross sections

- Kinematic distributions are unfolded with a response matrix computed using a Powheg+Pythia MC using Bayesian iterative approach.
- Measure cross section as a function of: p_T^Z, p_T^W, m_T^{WZ},
 Δφ(W,Z), p_T^v, |y_Z y_{I,W}|, N_{jets}, m_{jj};
- Differential cross section results are compared to the NNLO QCD predictions from MATRIX

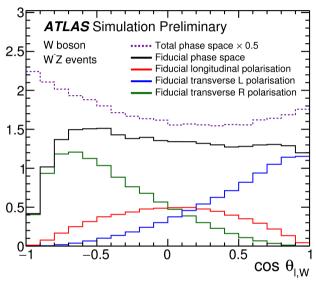


First measurement of boson polarisation

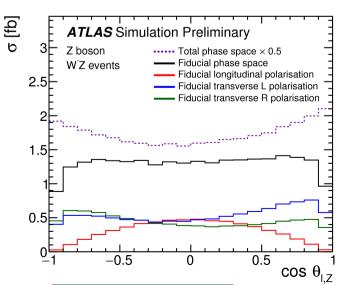



30

purely longitudinal, transverse-left and transverse-right helicity components



Fit angular distributions using analytical functions in total phase space to create templates with pure polarisation states.



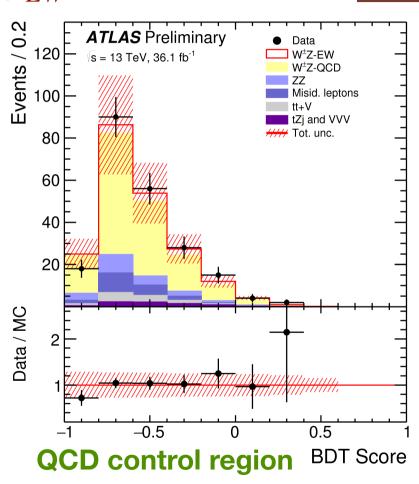
Laura Fabbri - DISCRETE 18

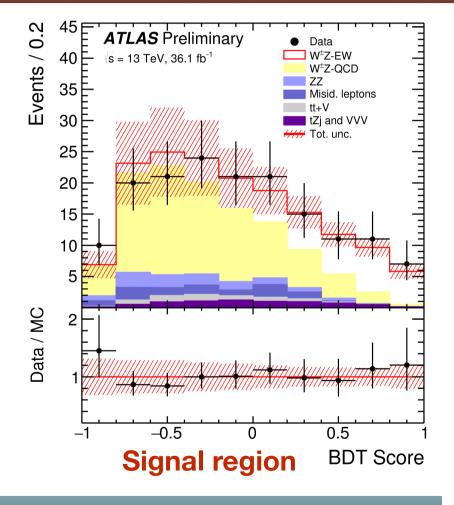
[fb]

ATLAS-CONF-2018-034

WZjj Signal extraction

	SR	QCD-CR	b-CR	ZZ-CR
Data	161	213	141	52
Total MC	199.2 ± 1.4	289.4 ± 1.9	159.2 ± 1.8	44.7 ± 6.4
WZjj-EW (signal)	24.93 ± 0.18	8.46 ± 0.10	1.36 ± 0.05	0.21 ± 0.12
WZjj-QCD	144.17 ± 0.85	231.2 ± 1.1	24.44 ± 0.29	1.43 ± 0.69
Misid. leptons	9.2 ± 1.1	17.7 ± 1.5	29.7 ± 1.6	0.50 ± 0.32
ZZ-QCD	8.10 ± 0.19	14.98 ± 0.34	1.96 ± 0.08	35.0 ± 5.9
tZ	6.46 ± 0.18	6.56 ± 0.19	36.19 ± 0.45	0.18 ± 0.09
$t\bar{t} + V$	4.21 ± 0.18	9.11 ± 0.23	65.36 ± 0.64	2.8 ± 1.3
ZZ-EW	1.50 ± 0.10	0.44 ± 0.05	0.10 ± 0.08	3.4 ± 1.6
VVV	0.59 ± 0.03	0.93 ± 0.04	0.13 ± 0.01	1.0 ± 1.0


Source	Uncertainty [%]
WZjj-EW theory modelling	5.0
WZjj-QCD theory modelling	2.3
WZjj-EW and $WZjj$ -QCD interference	1.9
Jets	6.7
Pileup	2.2
Electrons	1.6
Muons	0.7
b-tagging	0.3
MC statistics	2.1
Misid. lepton background	1.0
Other backgrounds	0.1
Luminosity	2.1

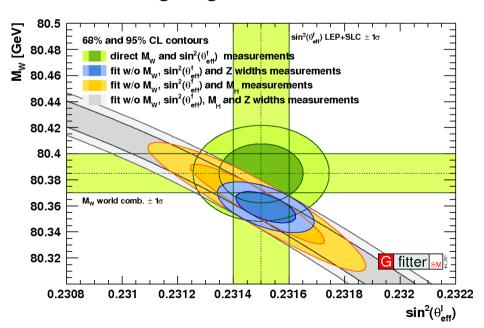


 $\mu_{EW} = 1.77 \pm 0.45$

Observed significance: 5.6 σ (expected 3.3 σ)

 $\sigma_{EW}(W^{\pm}Zjj \rightarrow l'\nu lljj) = 0.57^{+0.14}_{-0.13}(\text{stat.})^{+0.05}_{-0.04}(\text{sys.})^{+0.04}_{-0.03}(\text{th.})$

W±W± jj Selection


Electrons	p_{T}	$ \eta $	ID	Isolation	Author	$ z_0 \sin \theta $	$ d_0/\sigma_{d_0} $
Baseline	> 6 GeV	< 2.47	Loose+BLayer	-	_	< 0.5 mm	< 5
Analysis Level		ee: < 1.37	Tight	Gradient	= 1	\checkmark	✓
	> 27 GeV	others: < 2.47					
Anti-ID		crack veto	!Tight	!Gradient	_	✓	✓
Muons	p_{T}	$ \eta $	Quality	Isolation		$ z_0 \sin \theta $	$ d_0/\sigma_{d_0} $
Baseline	> 6 GeV	< 2.7	Loose	-		< 0.5 mm	10
Analysis Level	> 27 GeV	< 2.5	Medium	Gradient		\checkmark	< 3
Anti-ID	> 21 GeV	< 2.5	!Medium	!Gradient		\checkmark	\checkmark
Jets		<i>p</i> _T	$ \eta $	b-tag eff.		JVT	
Baseline	$>$ 25 GeV, $ \eta <$ 2.4		< 4.5	85 %	if p_{T}^{j}	€ (25 GeV, 60	GeV)
		eV, $ \eta <$ 4.5					
Analysis Level	$p_{ m T}^{j1(2)} > 65(35) { m GeV}$		✓	✓		✓	

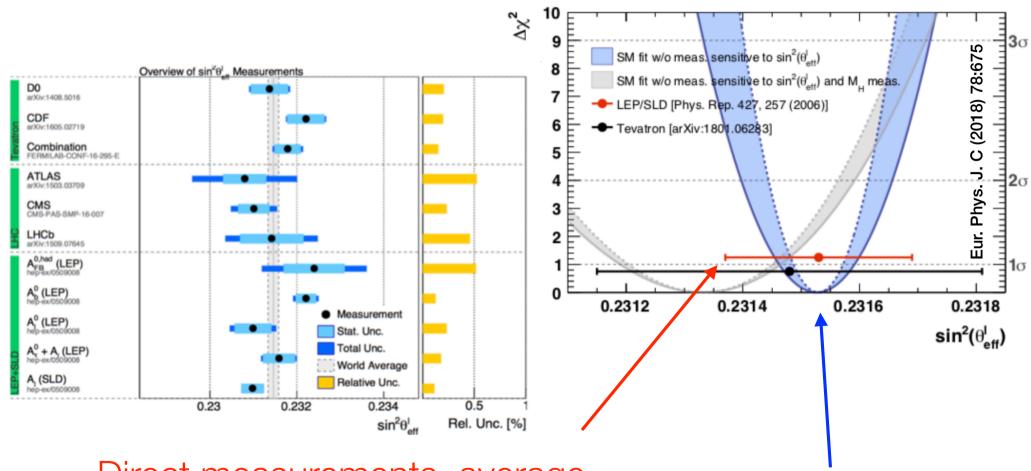
The weak mixing angle and the Standard Model

- sin²θw is a parameter of the SM representing the mixing of the EM and weak fields
- Within the SM, it relates the W- and Z-boson coupling constants $g_{W,Z}$, and therefore $m_{W,Z}$
- Radiative corrections modify this relation, yielding the fermion-flavor dependent effective weak mixing angle: sin²θ¹eff

$$A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W$$

$$Z_{\mu} = -B_{\mu} \sin \theta_W + W_{\mu}^3 \cos \theta_W$$

$$\sin^2 \theta_W = 1 - \frac{g_W^2}{g_Z^2} = 1 - \frac{m_W^2}{m_Z^2}$$


$$\sin^2 \theta_{eff}^l = (1 - \frac{m_W^2}{m_Z^2})(1 + \Delta r^l)$$

- Direct measurements of sin²θ^I_{eff} and m_W can indirectly predict each other
- → Precise measurements of both enable strict tests for the internal consistency of the SM as a probe of new physics

Previous measurements

Direct measurements, average ~16x10⁻⁵ precision

SM prediction, from fit w/ out direct measurements, ~6x10⁻⁵ precision

Likelihood fit design

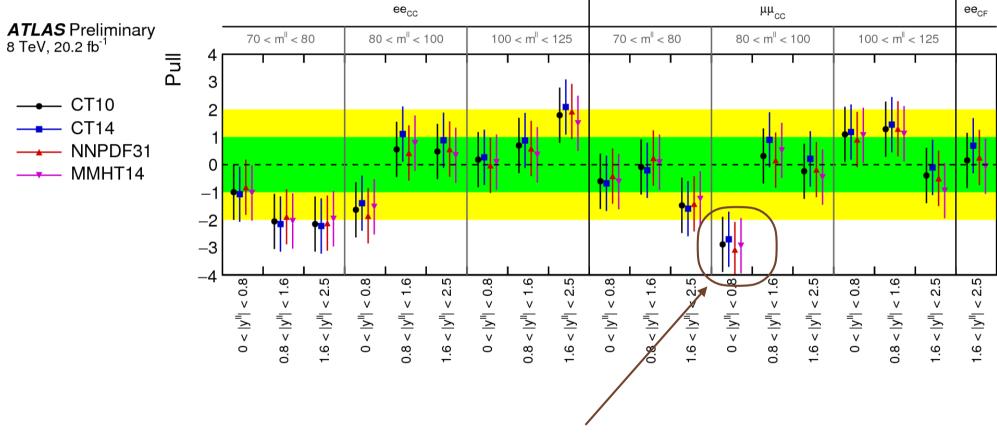
1280 bins in (m, y) x θ x ϕ = 20x8x8

$$\mathcal{L}(A, \sigma, \theta \mid N_{obs}) = \prod_{n=1}^{N_{bins}} \left\{ P(N_{obs}^{n} \mid N_{exp}^{n}(A, \sigma, \theta) P(N_{eff}^{n} \mid \gamma^{n} N_{eff}^{n}) \right\} \times \prod_{n=1}^{M} G(0 \mid \beta^{m}, 1)$$
Poisson probability
Foisson probability of template MC Neff

$$N_{exp}^{n}(A, \sigma, \theta) = \left\{ \sum_{j=0}^{N_{bins}} \sigma_{j} \times L \times \left[t_{8j}^{n}(\beta) + \sum_{i=0}^{7} A_{ij} \times t_{ij}^{n}(\beta) \right] \right\} \times \gamma^{n} + \sum_{B}^{bkgs} T_{B}^{n}(\beta)$$
Cross section
$$x \text{ lumi in bin j}$$
Ang. Coeff. i
in bin j
Backgrounds and their nuisance parameter
$$9 \text{ angular templates for bin j}$$
dependence

and their nuisance parameter dependence dependence

$$A_{4,j}(\sin^2\theta_{eff}^l,\theta) = a_j(\theta) \times \sin^2\theta_{eff}^l + b_j(\theta)$$


A4 mixing angle dependence (linear interpolation in each bin j, w/nuisances)

Internal consistency across categories

• Using ee_{CF} outermost bin as a reference, compute pulls of other categories

- Sensitivity is much lower than in the higher bins
- Dominated by statistics

 "Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector"

ATLAS-CONF-2018-030

- "Measurement of W \pm Z production cross sections and gauge boson polarisation in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector" ATLAS-CONF-2018-034
- "Measurement of the effective leptonic weak mixing angle using electron and muon pairs from Z-boson decay in the ATLAS experiment at $\sqrt{s} = 8$ TeV"

ATLAS-CONF-2018-037