SModelS - development beyond Missing Energy

Suchita Kulkarni HEPHY, Vienna

🔰 @suchi_kulkarni

Der Wissenschaftsfonds.

STERREICHISCHE AKADEMIE DER /ISSENSCHAFTEN

- 1. Multiple examples of discrete symmetries in particle physics exist (within the Standard Model)
 - Charge
 - Parity
- 2. Many BSM scenarios employ discrete symmetries and are intimately tied to dark matter phenomenology
 - SUSY neutralino dark matter-> R -parity
 - Inert Doublet Model -> Z₂ symmetry
 - Self interacting dark matter -> e.g. Z₃ symmetry ...
- 3. Collider signatures are a result of the symmetries, mass spectrum and couplings of the theory
 - Result in classic missing energy searches
 - Can also lead to more exotic final states

Kulkarni et al. JHEP 1505 (2015) 142

- Results for Sneutrino LSP
- Caveat: left plot inverted also shows many points non-excluded (not shown here)
- Caveat: right plot also has dependence on LSP mass (not shown here)

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

- Apply efficiency maps given by experiments 'by hand' to single topologies (a la simplified models approach)
 - Constrains specific parts of parameter space but difficult to get global picture for full models

C.f. Evans et al JHEP 1604 (2016) 056, Belanger et al arXiv:1811.05478

Improve fast detector simulators such as Delphes (see: Delphes 3.4.1)

C.f. https://inspirehep.net/record/1667603/, LLP workshop talk

Classify signatures dynamically and confront them with experimental searches (SModelS)

C.f. Heisig et al. arXiv:1808.05229, Ambrogi et al. arXiv:1811.10624

http://smodels.hephy.at/

SModelS

A tool to confront arbitrary (incl. non-SUSY) theoretical models with LHC results via decomposing theory models into simplified models dynamically

C.f. Heisig et al. arXiv:1808.05229

- Assumptions:
 - Model obeys Z₂ symmetry (R-parity)
 - * Implications: applicable only to pair production of BSM particles (i.e. can't handle resonance searches at the moment)
 - All BSM particles decay to missing energy final states (SModelS v1.1.1)
 - Model can be approximated by sum over simplified models (i.e. long decay chains don't contribute to signal cross section significantly)
 - No dependence on nature of BSM particles (i.e. quantum numbers)
 - Most relevant quantities for confronting theory with experimental results are:
 - * masses of BSM particles
 - * SM final state particles
 - * cross sections X branching ratios

STERREICHISCHE AKADEMIE DER /ISSENSCHAFTEN

 95% CL UL is the maximum visible cross-section allowed for a specific decay chain and a mass combination

Is σ X BR (Mother mass, intermediate mass, LSP mass) of your model > the number on the plot? -- Yes, point excluded; No, point allowed

Kraml et al, arXív:1412.1745 Eur.Phys.J. C74 (2014) 2868

Given Spectra

Kraml et al, arXív:1412.1745 Decomposition Eur.Phys.J. C74 (2014) 2868 \mathcal{V} \mathcal{V} eauau $\tilde{\chi}^1_+$ $\tilde{\chi}^1_+$ \tilde{e}_R $ilde{ au}_R$ $ilde{ au}_R$ Given $\tilde{\chi}^1_+$ \tilde{e}_R $ilde{ au}_R$ \tilde{e}_R $\tilde{\chi}_2^0$ Spectra aueeν e μ μ μ \mathcal{V} au $\tilde{\chi}_1^+, \tilde{\chi}_2^0$ $ilde{\mu}_R$ $\tilde{\chi}^1_+$ $\tilde{\chi}_2^0$ $ilde{ au}_R$ $\tilde{\mu}_R$ $\tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R$ $\tilde{\mu}_R$ $\tilde{\mu}_R$ $\tilde{\mu}_R$ $\tilde{\chi}_2^0$ $\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$ μ μ μ μ μ \mathcal{V} auau $\tilde{\tau}_R$ $\tilde{\chi}^1_+$ $\tilde{\tau}_R$ $\tilde{ au}_R$ $\tilde{ au}_R$ $\tilde{\chi}_2^0$ auauau

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

- Signatures depend on quantum numbers of the underlying particles
 - More things matter than just masses of BSM particles
 - Must keep track of the quantum numbers of the particles

See: talk by A. Escalante del Valle for experimental results

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

- \cdot A single production channel gives rise to many many final states
- \cdot Exact weight of final state depends on the width of the particle
- Survival probability: $F = exp(-\Gamma \frac{l}{\beta \gamma \hbar c})$

ERREICHISCHE KADEMIE DER SENSCHAFTEN

- \cdot A single production channel gives rise to many many final states
- \cdot Exact weight of final state depends on the width of the particle
- Survival probability: $F = exp(-\Gamma \frac{l}{\beta \gamma \hbar c})$

15

STERREICHISCHE AKADEMIE DER VISSENSCHAFTEN

Diagram for ATLAS by H. Russel

- In the first step either concentrate on prompt or stable fraction
- Discard everything else
- Reduces the number of diagrams
- \cdot Also need to think how to reinterpret all possible searches
- Even with this one can constrain large range of lifetimes if the cross sections are large -> not as limiting approach as it may look

STERREICHISCHE AKADEMIE DER VISSENSCHAFTEN

$$\mathcal{F}_{\text{prompt}} = 1 - \exp\left(-\frac{1}{c\tau} \left\langle \frac{\ell_{\text{inner}}}{\gamma\beta} \right\rangle_{\text{eff}}\right)$$

$$\mathcal{F}_{\text{long}} = \exp\left(-\frac{1}{c\tau} \left\langle \frac{\ell_{\text{outer}}}{\gamma\beta} \right\rangle_{\text{eff}}\right) \,.$$

- The cross section X branching ratio needs to be reweighted by the probabilities of BSM particles to decay promptly or outside the detector
- $\boldsymbol{\cdot}$ Reweight the theory cross section by this number

TERREICHISCHE KADEMIE DER SSENSCHAFTEN

Kulkarni et al. arXiv:1811.10624

- A version dealing with Heavy Stable Charged particles and R-hadron results is released
- Contains three analyses dealing with HSCP and R-Hadron searches
- Accounts for quantum numbers of particles in simple fashion: lists of quantum numbers
- Assumes constant boost for long lived particles
- Does not handle displaced vertices

STERREICHISCH

- Fraction of particles decaying at a given point depend on boost and lifetime
- $\cdot\,$ We discard everything in between prompt and stable particles
- We miss out on potentially powerful searches which constrain 'in between decays'

- An elegant way to handle exotic final states is to covert particles from strings to classes
- Basic particle properties well defined however mass, decay widths and decays are dynamically updated
- One of the crucial changes in the upcoming SModelS version
- Also very important for going beyond Z_2 symmetric models
- Triggers higher level changes as particles are basic entities in the code; converting particle type leads to readapting major parts of the code

SIVI example:	BSIVI example:
<pre>e = Particle(Z2parity='even', label='e-', pdg=11, mass=0.5*MeV, eCharge=-1, colordim=0, spin=1./2, totalwidth = 0.*GeV, decays=[])</pre>	<pre>gluino = Particle(Z2parity='odd', label='gluino', pdg=1000021, eCharge=0, colordim=8, spin=1./2)</pre>

STERREICHISCH

- Conversion of particle entities from simple string implementation to object oriented completed
- All higher level changes in the code taken care of
- Implementation of experimental searches and derivation of efficiency mops ongoing
- Validation (making sure that results are correct) ongoing
- Hope to start with some physics studies soon!

- Absence of any concrete positive signal for BSM physics necessitates exploring signatures beyond missing energy searches
- Exotic final states appear in many models besides supersymmetry
- Automatic classification of final states in arbitrary models will be useful
- Needs a comprehensive database of experimental results which can be easily used in order to confront theory with the experiments
- SModelS is making progress in this direction
- Recently released a version which can handle R-Hadrons and HSCP searches
- Current development aims at improving existing treatment and going well beyond extremely long lived particles