Collider physics at the intensity and energy frontier

The HL-LHC and beyond

Federico Meloni (DESY), on behalf of the ATLAS and CMS collaborations

28 November 2018 DISCRETE 2018, Vienna

Standard Model shortcomings

Even with such a successful description of Nature, a few, but major, pieces are missing in the puzzle:

- Neutrino masses (and flavour oscillation) not predicted
- Matter-antimatter imbalance
- Unification of forces
- No gravity
- Missing dark matter/energy candidates
- Hierarchy problem

• ...

Where to look?

LHC (and future colliders) offer a unique place where to look directly for new particles.

Precision measurements of SM

 Each deviation could be an hint of new physics!

Direct BSM searches

 A plethora of kinematic regions and possible new resonances from heavy particles

Other focused experiments give alternative and fundamental opportunities!

Particle physics at colliders

Why?

Broad exploration potential

- target well justified BSM scenarios but also have sensitivity to the unknown Flexibility
- if (indirect) hints of NP arise somewhere, need to be able to re-direct efforts
 Guaranteed deliverables
- if not a discovery, precision measurements!

Physics at Colliders fulfils all the above conditions, so it's important to guarantee a continuous progression in this direction with sufficient complementarity

(Possible) future colliders

Options for the next 30+ years

proton proton -

electron - positron

proton electron

High Energy - LHC \sqrt{s} = 27 TeV, beyond 2038

FCC - hh \sqrt{s} = 100 TeV, beyond 2045 (after FCC-ee), up to 30/ab

ILC $\sqrt{s} \approx 500$ GeV with staging at 250 GeV

CLIC three stages √s ≈ 380 GeV, 1.5 TeV and 3 TeV for 500/fb, 1.5/ab and 3/ab respectively, data taking after HL-LHC for ~ 20 yrs

CepC >= two stages, $\sqrt{s} \approx 91$ and 240 GeV, data-taking 2030-2040 (upgradable to pp, with ep and HI options)

FCC - ee beyond 2045, 5 different stages and luminosities

LHeC $E_{e} = 60$ GeV, p from LHC, up to 1/ab, running at the same time as HL-LHC

FCC-eh $E_e = 60 \text{ GeV} \text{ vs } 50 \text{ TeV}, \text{ up to } 3/\text{ab}$

The HL-LHC and the 2018 Yellow Report

 \sqrt{s} = 14 TeV, up to 3000 or 4000 fb⁻¹ (300fb⁻¹ for LHCb)

The only facility approved so far, on which most studies have been made

- ATLAS, CMS and LHCb detectors upgrade well on-going
- Data taking: 2025-2038
- Yellow Report for EU strategy expected in December 2018 summarize studies and projections by experiments and theory community on SM&Top, Higgs, BSM, Heavy Flavor and Heavy Ions

ESPP update due for approval by CERN council in May 2020

Feedback gathered and discussed at the <u>HL-/HE-LHC Workshops</u>

Yellow report studies

Some commonalities

Three main approaches:

- Full simulation
- Analysis with parameterized detector performance (e.g. DELPHES with up-todate phase-2 detector performance)
- Projections using Run-2 signal and background samples scaled at 14 TeV

Harmonised treatment of detector and theory uncertainties evolution with time

- Agreement between experimental collaborations and theorists involved in the Yellow Report
- General "rule of thumb": detector and theory/modelling uncertainties will be halved, MC statistics are supposed to be infinite

Outline

I will discuss a personal (arbitrary/incomplete) selection of physics goals that we can achieve by the end of HL-LHC and complementarities with other facilities.

Start with indirect searches

- Precision measurements in the electro-weak sector
- Characterisation of the Higgs boson and its potential

Close with direct searches

- Supersymmetry
- New resonances
- Simplified dark matter models

DESY. | DISCRETE18 | Federico Meloni, 28/11/2018

Precision physics

Weak mixing angle

W boson mass

Vector boson scattering

Higgs boson properties

Measurement of the Weak Mixing Angle

Measure the leptonic effective weak mixing angle ($\sin^2\theta^{lept}$) in dilepton events.

- Tension of about 3σ between the two most precise measurements (LEP and SLD)
- Minimizing the χ^2 value between the simulated data and template $A_{\rm FB}$ distributions in 72 dilepton mass and rapidity bins
- The analysis is done at the generator level

CMS Phase-2 Simulation Preliminary

$$\cos \theta^* = \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{\sqrt{M^2(M^2 + P_1^2)}} \times \frac{P_z}{|P_z|}$$

$$A_{\rm FB} = \frac{N(\cos \theta^* > 0) - N(\cos \theta^* < 0)}{N(\cos \theta^* > 0) + N(\cos \theta^* < 0)}$$

Measurement of the W boson mass

W boson mass measurement by ATLAS

- study potential of low pile-up data
- extended pseudo-rapidity range effect on decorrelation of PDF
- include PDF uncertainties from different sets

\sqrt{s} [TeV]	Lepton acceptance	Uncertainty in m_W
		CT10
14	$ \eta_\ell < 2.4$	$16.0 \ (10.6 \oplus 12.0)$
14	$ \eta_\ell < 4$	$11.9 \ (8.8 \oplus 8.0)$
27	$ \eta_{\ell} < 2.4$	$18.3 \ (10.2 \oplus 15.1)$
27	$ \eta_\ell < 4$	$12.3\ (7.5\oplus 9.8)$
14+27	$ \eta_\ell < 4$	$10.1~(6.3 \oplus 7.9)$

Vector boson scattering

Electroweak production of a Z boson pair plus two jets

VBS is crucial for probing the mechanism of electroweak symmetry breaking in the Standard Model.

 At the HL-LHC, evidence of the EW-ZZjj processes becomes possible

Four lepton channel: two high-energy jets in the back and forward regions, with two vector bosons.

Exploit the ZZ centrality

$$ZZ$$
 centrality =
$$\frac{|y_{ZZ} - (y_{j1} + y_{j2})/2|}{|y_{j1} - y_{j2}|}$$

Future colliders (FCC-ee)

- Z pole	Observable	Measurement	Current precision	FCC-ee stat .	FCC-ee syst.	Dominant exp. error
	m _Z (keV)	Z Lineshape	91187500 ± 2100	5	< 100	Beam energy
	$\Gamma_{\rm Z}$ (MeV)	Z Lineshape	2495200 ± 2300	8	< 100	Beam energy
	R ₁ (×10 ³)	Z Peak ($\Gamma_{ extsf{had}}/\Gamma_{ extsf{lep}}$)	20767 ± 25	0.06	0.2-1	Detector acceptance
	R _b (×10 ⁶)	Z Peak ($\Gamma_{ m bb}/\Gamma_{ m had}$)	216290 ± 660	0.3	< 60	g → bb
	N _v (×10 ³)	Z Peak (σ _{had})	2984 ± 8	0.005	1	Lumi measurement
	sin²θ _W eff (×10 ⁶)	Α _{FB} ^{μμ} (peak)	231480 ± 160	3	2-5	Beam energy
	$1/\alpha_{QED}(m_Z)$ (×10 ³)	A _{FB} ^{μμ} (off-peak)	128952 ± 14	4	<1	Beam energy
 	$\alpha_s(m_Z)$ (×10 ⁴)	R _I	1196 ± 30	0.1	0.4-1.6	Same as R _I
sh.	m _w (MeV)	WWThreshold scan	80385 ± 15	0.6	0.3	Beam energy
thresh. WW thresh.	Γ_{W} (MeV)	WW Threshold scan	2085 ± 42	1.5	0.3	Beam energy
	N _v (×10 ³)	$e^+e^- \rightarrow \gamma Z, Z \rightarrow \nu \nu, II$	2920 ± 50	8.0	small	?
	$\alpha_s(m_W)$ (×10 ⁴)	$B_I = (\Gamma_had/\Gamma_lep)_W$	1170 ± 420	2	small	CKM Matrix
	m _{top} (MeV)	Top Threshold scan	173340 ± 760 ± 500	17	< 40	QCD corr.
	$\Gamma_{top}\left(MeV\right)$	Top Threshold scan	?	45	< 40	QCD corr.
	λ_{top}	Top Threshold scan	μ = 1.28 ± 0.25	0.10	< 0.05	QCD corr.
'#	ttZ couplings	√s = 365 GeV	± 30%	0.5-1.5%	< 2%	QCD corr

Table credit: A. Blondel

Characterising the Higgs boson

Complementarity and availability of results

Based as much as possible on the knowledge gathered from most recent analyses

- projections from the coupling combination
- dedicated truth-smearing studies for key analyses

Collaboration with LHC Higgs cross section Working Group

- 14 TeV and 27 TeV
- evaluated theory systematics

	ATLAS	CMS
Couplings	\ \ \	///
Differential xsec	//	//
Width	√	
CPV	✓	√√
Rare decays	///	//
Di-Higgs	///	///
BSM	√√	√√

Legend: Past studies, 2017 TDRs, 2018 YR

Latest results: ATLAS CMS

Higgs to pairs of muons

Couplings to second-generation fermions

- Opposite-charge muons with $p_T > 15$ GeV and $|\eta| < 2.5$
- Leading muon $p_T > 25 \text{ GeV}$
- $110 < m_{\mu\mu} < 160 \text{ GeV}$

Split the selected sample in subsets with different signal-to-background ratios

- a maximum likelihood fit to the di-muon invariant mass
- Systematic uncertainties are incorporated as nuisance parameters in the final fit

Scoping Scenario	$\langle \mu \rangle$	Overall significance	$\Delta \mu$	$\Delta \mu$
			w/ syst. errors	w/o syst. errors
reference	200	9.5	±0.13	±0.12
middle	200	9.4	± 0.14	±0.12
low	200	9.2	±0.14	±0.13

Double Higgs production

Ultra-rare processes

Plan to perform a combination to probe the expected reach for di-Higgs

- Measure λ_{HHH} (and k_t)
- Combination with CMS crucial
- Exploit three decay channels: bbbb, bbγγ and bbττ

$$0.2 < \lambda_{HHH} / \lambda_{HHH}^{SM} < 6.9$$

- Limited sensitivity (~1σ)
- Expect improvements and channel combination for YR

Higgs boson couplings

HL-LHC and beyond

CMS prospects for measuring Higgs boson couplings.

- Extrapolated from Run-2 results with 36 fb⁻¹
- Identical detector performances
- Two systematic uncertainty scenarios (Run-2 and halved)

g _{Hxx}	FCC-ee	FCC-hh	FCC-eh
ZZ	0.15 %		
WW	0.20%		
Γ_{H}	1%		
γγ	1.5%	<1%	
Ζγ		1%	
tt	13%	1%	
bb	0.4%		0.5%
ττ	0.5%		
СС	0.7%		1.8%
μμ	6.2%	2%	
uu,dd	H → ργ?	H → ργ?	
SS	н→ фγ ?	н→ фү ?	
ee	ee → H		
нн	30%	~3%	20%
inv, exo	<0.45%	10 ⁻³	5%

Table credit: A. Blondel

Beyond the Standard Model

Supersymmetry

New resonances

Searches for dark matter

Image credit xkcd: https://xkcd.com/1621/

Supersymmetry

Theoretically sound, predictive framework

But where is SUSY?

- Barbieri-Giudice 3% naturalness
 - $m(\tilde{g}) \lesssim 1000 \text{ GeV}$
 - $m(\tilde{t}_1) \lesssim 500 \text{ GeV}$
- LHC limits severly constraining these models

Bino/Higgsino Mix Model: $\widetilde{t}, \widetilde{t}_{*}, \widetilde{b}_{*}, \widetilde{b}_{*}$ production, $\Delta m(\widetilde{\chi}_{*}^{0}, \widetilde{\chi}_{*}^{0}) = 20-50$ GeV, March 2018

Is SUSY unnatural? Is it dead? Not really...

- Considering the electroweak fine-tuning (Δ_{EW}), SUSY is natural (3-10%) with:
 - $m(\tilde{g}) \lesssim 5-6 \text{ TeV}$
 - $m(\tilde{t}_1) \lesssim 2-3 \text{ TeV}$
 - $m(\tilde{q}) \lesssim 10-20 \text{ TeV}$
- Need low μ ~ 100-300 GeV

Search for Higgsinos

One of the focuses of the HL-LHC programme

Exploit ISR jet + E_T^{miss} + soft leptons

 Challenging lepton identification

Gap that needs to be filled!

• Mono photon from FSR? VBF?

Disappearing tracks (long-lived charginos)

- New reconstruction options
 - Challenging tracking environment!

The hunt for the natural spectrum

Heavy W prime

Search in tb channel

Projection assumes narrow width approximation from early Run-2 analyses.

Studied dependency on uncertainty evolution

Heavy resonances at future colliders: the higher the energy, the better...

Dark Matter searches

Foreseen by full theories as SUSY but also searched with 'simplified models'

Simplified models with few free parameters:

 m_{med} , m_{DM} , med-quark coupling, med-DM coupling

Strategy: search for associated production with one of many SM tags:

jet, photon, Z, single/double top, bottom, Higgs

Four top quarks in 2HDM+a

Search in multi-lepton channel

2HDM+a models are considered

- type-II coupling structure
- the lightest CP-even state of the Higgs-sector, h, can be identified with the SM Higgs boson

Select at least two leptons with the same electric charge or at least three or more leptons

- Potential observations for a range of masses and mixings
- Adding the fully hadronic, semileptonic can further improve

Complementarity with Direct Detection

Recasting a dilepton search for **DM+top quark pairs**

- Search for scalar/pseu doscalar mediator decaying to invisible
- Yukawa-like interactions

Dark matter at the FCC-hh

Assume wino-like DM particles

- Extrapolation of mono-jet and disappearing track searches are expected to start covering the multi-TeV range
- Higgsino-like sensitivity just below the TeV

Summary

Several SM shortcomings require investigations that are expected to extend beyond the scope of the LHC.

I have presented some examples highlighting the reach of:

- Crucial SM precision measurements
- Direct searches for BSM phenomena

in the context of a variety of (possible) future collider facilities.

Other 50+ years of interesting physics lie ahead!

Thank you