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e Identifying ultra-high energy neutrino sources
e Probing physics with UHE Neutrinos vs. Supernova Neutrinos
e Models we consider

® Results



The main idea

Astrophysical environments provide sources of high-energy neutrinos. What types of models
can we probe by detecting them?

To date, the only
(identified)
extragalactic neutrino
sources:

SN1987A,

TXS 0506+056

astrobites.org



Observing astrophysical neutrinos is great, but...
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Knowing the origin of a given neutrino provides extra handles: propagation distance,
what it traversed (galactic disk, magnetic fields, etc.)



SN1987A vs. TXS 0506+056

SN1987A: Neutrino energies ~10 MeV
Distance ~50 kpc

TXS 0506+056: Neutrino energy ~290 TeV
Distance ~1.3 Gpc

® 29,000,000 times higher energy,
26,000 times longer distance

Electric charge of the
neutrinos from SN1987A

Sir—The detection of nearly a dozen
neutrinos, of 7 to 35 MeV in energy.
coming presumably from the 1987 super-
nova in the Large Magellanic Cloud
(LMC), 50 kpc away, all within some ten
seconds', has been interpreted by several
people as a proof that electron anti-
neutrinos have a mass no larger than
about 10eV.

Here we want to point out that, even if
their mass is negligible, the bunching in
time of the neutrinos indicates that their
charge, g, is smaller than about 107" times
the charge of the electron. If g were larger
than this limit, the galactic magnetic field
would lengthen their paths, and neutrinos
of different energy could not arrive on the
Earth within a few seconds of each other,
even if emitted simultaneously by the
SUpPErnova.

G. Barbiellini, G. Cocconi, 1987
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ABSTRACT

We consider the possible emission of right-handed neutrinos i from
SN 1987a by neutrino magnetic moment interactions. By imposing &
bound on the vp-luminosity, we get a limit on the neutrino magnetic
moment, g, < (0.3 —1) 107! pp, depending on the core temperature.
A stronger bound, g, < (107 = 107"%) ., is obtained by considering
the number of high energy (E =~ 100-200 Mev) neutrino events that
should have been observed in the underground detectors, after vg — vg

rotation in the galactic magnetic field.

R. Barbieri, R. Mohapatra, 1988

While TXS 0506+056 is probing much longer distances, searches for these (and other) new
physics models actually suffer from the much larger energy!



Specific (contrasting) example: Neutrino Decay

Hypothesis: probe decay of heavier neutrinos during propagation from source to Earth.

Naive expectation: 26,000 times greater distance means commensurate sensitivity to
neutrino decay length.

But,
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Characterlstlcs of Ultra High Energ Cosmlc Neutrlnos
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Processes to think about: Blazars, Neutron Star Mergers, ...




First Scenario Considered

New particle (can be scalar, pseudoscalar, vector, or axial-vector) that couples

exclusively to neutrinos.
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High-energy neutrinos can scatter with relic Cosmic Neutrino Background neutrinos while travelling to Earth.



Lower Limit on Mean Free Path
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Previously Explored as “Secret Neutrino Interactions™

[Ng, Beacom 1404.2288]
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When mass is large, you probe a new four-fermion interaction. Current limits are probing much
stronger interactions than G.. Orange lines correspond to an optical depth of 1 for a propagation
length of one Hubble length.



Pileup of events
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For a continuous (over time) flux of neutrinos, this type of

absorption would lead to a re-emission of neutrinos at lower
energies.

However, we are interested in specific neutrino-producing events. A
typical scattering will give large enough deflections that the
neutrino will not appear to arrive coincident in time/direction with
its source.
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Enter TXS 0506+056
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After the first neutrino event detection (coincident with the
location of TXS 0506+056 and in time with a gamma ray burst
flare), the IceCube collaboration performed a historical analysis of
their data and found a time window with 13 £ 5 excess signal
events.

Neutrino fluence measured to be commensurate with gamma ray
flux (measured by Fermi-LAT).

E2Jy00 [107* TeV cm 2]

[IceCube Collaboration, 1807.08794]
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Perform Pseudoexperiments with IceCube Data

IceCube TXS 0506 + 056 Sensitivity (13 £ 5 excess evts.
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Perform Pseudoexperiments with IceCube Data

) [ceCube TXS 0506 4 056 Sensitivitf 13 + 5 excess evts.
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Caveat: Energy reconstruction is (far from) perfect
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Caveat: Energy reconstruction is (far from) perfect

0 [ceCube TXS 0506 + 056 Sensitivit 13 4+ 5 excess evts.
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Caveat: Energy reconstruction is (far from) perfect

[ceCube TXS 0506 + 056 Sensitivity (13 4+ 5 excess evts.
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Brief aside: Terrestrial Sensitivity to vSI
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Slightly different setup: scalar carries lepton

1072 1 Event per year number 2, can search for in DUNE near
— All DUNE Evts. detector by looking for events with large
----- pr > 0.5 GeV (visible) transverse momentum.
- pr > 1 GeV
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Other models to consider
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Lepton-Number-Charged Axions

X A

Neutrinophilic Dark Matter
(m,~ keV)
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Neutrinophilic DM

[ceCube TXS 0506 + 056 Sensitivity (13 + 5 excess evts.
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Fermionic y can serve as thermal relic

dark matter for masses near MeV
[KIK, Yue Zhang, Forthcoming]

Astrophysical probes provide an
alternative basis (flavor vs. mass vs.
combination) to probe new couplings
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Lepton-number-charged Axions
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Enough limits, how do we make a discovery?

This search strategy relies on observing events, recognizing that the neutrino flux
matches expectations, and setting limits on the mean free path.

Non-observation of neutrinos is more challenging: which interpretation is more
sensible, that the neutrino flux for a given astrophysical event is just lower, or that new
physics caused neutrinos to be absorbed?

To make a discovery, we need many observations across different progenitor distances
and neutrino energies -- then, the absence of events above some distance can point to

this type of effect.

22



Conclusions

e |dentifying sources of astrophysical neutrinos gives us additional handles.

o Specifically, the distance that the neutrinos travelled allows us to make statements regarding their
mean free path.

e Certain classes of new physics models can be probed better than ever by high
energy neutrinos travelling great distances.

e Detection of such new physics is a greater challenge, but with existing and
upcoming experiments, it could be possible.
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Thank you!

Questions?




