Roberto Aloisio
Gran Sasso Science Institute
INFN – Laboratori Nazionali del Gran Sasso

Ultra High Energy Cosmic Rays and the Highest Energies Universe

Discrete 2018
6th Symposium on Prospects in the Physics of Discrete Symmetries,
Outline of the talk

1. UHECR short recap of experimental evidences
2. Theoretical interpretations and possible sources
3. Cosmogenic neutrinos
4. UHECR and secondary gamma rays
5. Testing new physics with UHECR and neutrinos
6. Conclusions
Ultra High Energy Cosmic Rays – Spectrum

As always in Cosmic Rays physics we can study sources and production mechanisms of UHECRs only through three basic observables:

- ✓ Spectrum
- ✓ Mass Composition
- ✓ Anisotropy
Ultra High Energy Cosmic Rays – Composition

Auger Collaboration (2017)

Auger-TA working group (2015)

- **Auger**: Protons at low energy and heavier nuclei at high energy.
- **TA**: Protons only.
- **Strong uncertainties due to the hadronic interaction model.**
Ultra High Energy Cosmic Rays – Anisotropy

- Auger large scale anisotropy: dipole $E > 8 \text{ EeV} (5.2\sigma)$
- Extragalactic sources

![Auger large scale anisotropy map](image)

![Extragalactic sources](image)

- Auger: starburst galaxy M83, $E > 39 \text{ EeV} (4\sigma)$
- Auger: Centaurus A, $E > 60 \text{ EeV} (2.7\sigma)$

- TA: hotspot $E > 57 \text{ EeV} (3\sigma)$

![TA Collaboration 2017 hotspot](image)

![Auger Collaboration 2017 large scale anisotropy](image)

![Auger Collaboration 2018 hotspots](image)
Dip Model

Protons footprint

In the energy range $10^{18} - 5 \times 10^{19}$ eV the spectrum behavior is a signature of the pair production process of UHE protons on the CMB radiation field.

TA surface detector events compared with theoretical expectation of the dip model, with uniformly distributed sources and with sources distributed according to large scale structures (LSS).

Berezinsky et al (2002-2007)
Auger Collaboration (2014)

Mixed Composition

The hybrid events recorded by Auger enable the study of the correlation between depth of shower maximum and number of muons in the cascade. These correlations, in the energy range of the ankle log(E/eV)=18.5 – 19, seem to exclude a light composition made up of protons and helium nuclei.

Auger data at the ankle can be well explained only assuming a mixed composition with nuclei heavier than helium (A>4). The dip model seems disfavored by this analysis.
Caveats

Composition
It is impossible to observe at the Earth a pure heavy nuclei spectrum, even if sources inject only heavy nuclei of a fixed specie at the Earth we will observe all secondaries (protons too) produced by photo-disintegration.

Critical Lorentz factor
The critical Lorentz factor fixes the scale at which photo-disintegration becomes relevant, for heavy nuclei it is almost independent of the nuclei specie

\[
\beta^A_{e^+e^-}(\Gamma, t) + H_0(t) = \beta^\Gamma_{dis}(A, t)
\]

\[
E_{cut}(A) = Am_N \Gamma_c
\]

\[
\Gamma_c \simeq 2 \times 10^9
\]
Interaction vs maximum energy

The highest energy behavior of the fluxes is dominated by particles interaction with backgrounds (nuclei photo-disintegration or protons photo-pion) depending on the maximum acceleration energy at the sources.

Protons

\[E_{max}^p > E_{GZK} \simeq 10^{20} \text{eV} \]

Nuclei

\[E_{max}(A) = Z E_{max}^p \]
\[E_{max}(A) > E_{cut}(A) \]
\[E_{max}^p > \frac{A}{Z} m_N \Gamma_c \simeq 4 \times 10^{18} \text{eV} \]

Only under these conditions the high energy flux is shaped by the protons photo-pion production process (GZK) or by the nuclei photo-disintegration process.
Injection of nuclei flat vs steep

\[Q_A(\Gamma) = Q_0 e^{-\Gamma / \Gamma_{max}} \left(\frac{\Gamma}{\Gamma_0} \right)^{-\gamma_g} \]

\[\mathcal{L}_0 = n_{UHE} L_{UHE} = A m_N \int_1^{\Gamma_{max}} d\Gamma Q_A(\Gamma) \]

The combined effect of nuclei energy losses, mainly photo-disintegration, and injection implies that a steep injection increases the low energy weight of the mass composition.
What we can learn from Auger data

Auger chemical composition can be reproduced only assuming a very flat injection of primary nuclei

$$\gamma_g = 1.0 \div 1.5$$

$$\mathcal{L}_0 = n_{UHE} L_{UHE} \simeq 10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{y}}$$

with a certain level of degeneracy in terms of the nuclei species injected
An additional galactic component can fill the gap in the spectrum.

Composition issue. Mixture of 80% p and 20% He to reproduce Auger observations. Difficult to reconcile with galactic CR physics and anisotropy observations.
Different Classes of Extra Galactic Sources

✓ light component steep injection ($\gamma_g > 2.5$)

\[\mathcal{L}_0 = n_{UHE} L_{UHE} \simeq 10^{47} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}} \]

✓ heavy component flat injection ($\gamma_g < 1.5$)

\[\mathcal{L}_0 = n_{UHE} L_{UHE} \simeq 10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}} \]

The Kascade-Grande observations seem to confirm the presence of an extragalactic light component with a steep injection spectrum.

✓ active galactic nuclei

can easily provide steep injection and the correct emissivity.
Extragalactic pulsars with flat injection provide the observed spectrum and mass composition at energies > 3 EeV. A flat component from galactic pulsars fills the gap.

Problems with the mass composition and anisotropy of the galactic pulsars contribution.
Specific dynamic at the sources

Single class of EG sources: Mildly relativistic shocks in GRBs.

Problem: Galactic CR maximum energy larger than 10^{16} eV.

Photodisintegration at the source. Flat injection for nuclei ($\gamma \approx 1$) and steep for protons ($\gamma > 2$).

Agreement with Kascade-Grande.
Looking farther away

- The universe accessible in UHECRs (protons or nuclei) is not larger than redshift \(z \sim 1 \).

\[
p\gamma \rightarrow \pi^\pm \rightarrow e^\pm, \nu
\]

- Only the observation of secondary cosmogenic neutrinos can open up the far away universe (until the first stars redshift \(z \sim 10 \)) in the UHE window.

- Photo-hadronic interactions are less efficient in the case of nucleons bounded inside nuclei. The production of secondary cosmogenic neutrinos and gamma rays strongly tied to the mass composition of UHECR.
Dip model – ν spectra

✓ Photo-pion production

On EBL has a threshold of about 10^8 GeV, broadened by the energy distribution of EBL photons. The pion production by UHE protons on the EBL can account for the production of PeV neutrinos.

✓ Cosmological evolution

The result on the diffuse flux depends on the cosmological evolution assumed for the sources. The IceCube observations at PeV can be reproduced in the case of strong cosmological evolution (AGN like).
UHE nuclei suffer photo-pion production on CMB only for energies above \(\text{AE}_{\text{GZK}} \). The production of EeV neutrinos strongly depends on the nuclei maximum energy. UHE neutrino production by nuclei practically disappears in models with maximum nuclei acceleration energy \(E_{\text{max}} < 10^{21} \text{eV} \).

EeV neutrinos

UHE nuclei suffer photo-pion production on CMB only for energies above \(\text{AE}_{\text{GZK}} \). The production of EeV neutrinos strongly depends on the nuclei maximum energy. UHE neutrino production by nuclei practically disappears in models with maximum nuclei acceleration energy \(E_{\text{max}} < 10^{21} \text{eV} \).

PeV neutrinos

PeV neutrinos produced in the photo-pion production process of UHECR on the EBL radiation field The IceCube observations at PeV can be marginally reproduced in the case of strong cosmological evolution (AGN like).
Clusters of Galaxies and PeV ν

✓ Because of their magnetic fields (at several μG level) clusters of galaxies are “storage rooms” for cosmic rays till energies $\sim 10^6 \div 10^8$ GeV, depending on the magnetic field turbulence.

✓ Depending on the CR acceleration mechanism inside clusters, pp and pγ interactions can account for the observed IceCube neutrino flux at energies larger than 10^{12} eV.

Fang and Olinto (2016)

Berezinsky, Blasi and Ptuskin (1998)
Diffuse γ ray background

Cascade upper limit

$$ p\gamma \rightarrow e^\pm $$
$$ p\gamma \rightarrow \pi^0 \rightarrow \gamma $$
$$ p\gamma \rightarrow \pi^\pm \rightarrow e^\pm, \nu $$

Fermi-LAT data

$$ \omega_{\text{cas}}^{\text{max}} > \omega_{\text{cas}}^{\pi} > \frac{4\pi}{c} \int_{E}^{\infty} E' J_{\nu}(E') dE' > \frac{4\pi}{c} E_{\nu} J_{\nu}(> E) $$

The cascade limit can be expressed in terms of the energy densities of photons and e^+e^- initiated cascades

$$ E^2 J_{\nu}(E) \leq \frac{c}{4\pi} \ln(E_{\text{max}}/E_{\text{min}}) \frac{\omega_{\text{cas}}^{\text{max}}}{1 + \omega_{\text{cas}}^{e^+e^-}/\omega_{\text{cas}}^{\pi}} $$

The cascade upper limit constrains the source parameters: cosmological evolution, injection power law and maximum acceleration energy.

$$ Q(E) = Q_0 (1 + z)^m \left(\frac{E}{E_0} \right)^{\alpha_g} e^{-E/E_{\text{max}}} $$

Berezinsky, Gazizov, Kachelriess, Ostapchenko (2011)
Diffuse extragalactic gamma-ray flux at $E \sim 1$ TeV is a very powerful observable to constrain the fraction of protons in the UHECR spectrum.

With the available statistics, given the poor knowledge of the galactic diffuse foregrounds and EBL, it is impossible to exclude a pure proton composition at $(1 - 40)$ EeV.

The observation of the diffuse extragalactic gamma-ray background will be one of the important tasks for the future CTA observatory.
Extreme energies: Cosmology, DM, UHE γ & ν

The tensor-to-scalar ratio (r) in CMB fluctuations (investigated by BICEP/Keck experiments at South Pole) sets the scale for models where the dark matter is created at the inflationary epoch, the generically called super-heavy dark matter models. These scenarios can be constrained by ultrahigh energy cosmic ray, gamma ray and neutrino observations which set the limit on super-heavy dark matter particles lifetime. Super-heavy dark matter can be discovered by a precise measurement of r combined with future observations of ultra high energy cosmic rays, gamma rays and neutrinos.

$$V(\phi) = \frac{M^4_{\phi} - \beta}{\beta} \phi^\beta$$

$$V_* \simeq \frac{3\pi^2}{2} A_s r M^4_{Pl} \simeq M^4_{GUT} \left(\frac{r}{r_0} \right)$$

$$\epsilon(\phi) = \frac{M^2_{Pl}}{16\pi} \left[\frac{V'(\phi)}{V(\phi)} \right]^2 = \frac{r}{16}$$

$$\Omega_X(t_0) \simeq 10^{-3} \Omega_R \frac{8\pi}{3} \left(\frac{T_{RH}}{T_0} \right) \left(\frac{M_\phi}{M_{Pl}} \right)^2 \left(\frac{M_X}{M_\phi} \right)^{5/2} e^{-2M_X/M_\phi}$$

[Graphs showing the relationship between M_ϕ (GeV) and r, and M_X/M_ϕ and r.]
SHDM lifetime τ_X regulates the expected CR flux.

SHDM mass M_X fixed by cosmology (r).

Integrating over the whole sky (DM density profile).

Taking into account the whole universe.

Auger gamma ray limits are the most constraining observation for SHDM. With $M_X \sim 5 \times 10^{13}$ GeV

$$\tau_X \geq 2 \times 10^{22} \text{y}$$
The observation of astrophysical neutrinos at energies E > few PeV can be achieved only from space, through tau induced cascades of earth skimming neutrino events (see D. Fargion talk).

Only the observation of cosmogenic neutrinos (with E > PeV) can open up the far away universe in the UHE window (until the first stars redshift z~10).

At the highest energies (E > 50 EeV), the required statistics to point back UHECR sources can be achieved only from space, through the observation of fluorescence emissions in the atmosphere.
A pure proton composition (dip model) seems strongly disfavored by Auger while still possible according to TA data:

- Steep injection ($\gamma_g > 2.5$). High maximum acceleration energies ($\sim 10^{20}$ eV).
- AGNs are strong candidate as UHECR source.
- Huge production of cosmogenic neutrinos and gamma rays.

Mixed composition, with nuclei heavier than He, imply a rich phenomenology:

- Flat injection ($\gamma_g < 1.5$). Dynamics at the source, non-shock acceleration.
- Low maximum acceleration energies $E_{\text{max}}(Z) < 5Z \times 10^{18}$ eV.
- Reduced flux of secondary cosmogenic neutrinos and gamma rays.

Composition of UHECR is a fundamental observable:

- To identify possible astrophysical sources.
- To tag galactic-extragalactic transition.
- To quantify the expectations in terms of secondary cosmogenic neutrinos and gamma rays.
A simple thought: my personal view on the future

- The most important future achievements in order to make progresses in the physics of UHECRs are: univocal determination of mass composition (~ few g/cm² resolution), larger (> 1 order of magnitude) statistics at the highest energies.
- The observation of astrophysical neutrinos with energies larger than PeV is of paramount importance to open the high energy window on the faraway universe.
- To pursue these goals a step forward in the detection technologies is needed.
- To reach the required statistics on both UHECR and HE neutrinos observations from space can be the only option. Even if a substantial improvement in the detection techniques should be still achieved.

Thank you