SUSY-Collider and Dark Matter searches

$\underline{\text{Miriam Lucio}}$, on behalf of the $\underline{\text{MasterCode collaboration}}$

November 27, 2018

SUSY-Collider and DM searches

.∃ ▶ . +

DQ P

Standard Model versus New Physics

The Standard Model fails to explain:

- Number of fermion families
- *Dark matter and dark energy
- *Mass of the Higgs boson
- *Inclusion of gravity
- *Unification of forces
- *Matter-antimatter imbalance
- Neutrino masses

ightarrow Supersymmetry could address points indicated with *

Quick reminder of SUSY

- Invariance under the transformations of fermions to bosons. \Rightarrow number of fermions = number of bosons
- R-parity conservation, $R = (-1)^{3B+L+2S}$.
 - B: baryonic number; L: leptonic number; S: spin

Minimal Supersymmetric Standard Model (MSSM)

- Minimal SUSY extension of the SM
- Supersymmetric partners of SM particles + 2 Higgs doublets
- R-parity conserved
- $\bullet\,$ Lightest Supersymmetric Particle stable \rightarrow good candidate for DM
- Dark matter and unification

DQ P

SUSY provides several Dark-Matter candidates:

- Sneutrino
 - Ruled out in the MSSM because of the current limits on the interaction cross section of dark matter particles with ordinary matter as measured by direct detection experiments
- Lightest neutralino:
 - Bino
 - Higgsino
 - Wino
 - Mixed states of the above
- Gravitino

Problem: MSSM has more than 100 free parameters.

The MSSM

Alternatives:

pMSSM11 (11 parameters)

Pure phenomenological approach (*) Reasonable assumptions based on current measurements

- squark mass parameters: $m_{\tilde{q}_1} = m_{\tilde{q}_2}$, $m_{\tilde{q}_3}$
- slepton mass parameters: $m_{\tilde{l}_{1,2}}$, $m_{\tilde{ au}}$
- gaugino masses: M_1 , M_2 , M_3
- \bullet trilinear coupling: A
- Higgs sector parameters: M_A , $\tan \beta$
- Higgs mixing parameter: μ

subGUT-CMSSM (5 parameters) Universality at an input scale:

 $M_{in} < M_{\rm GUT}$

- input scale: M_{in}
- gaugino mass: $m_{1/2}$
- soft SUSY-breaking scalar mass: m_0
- \bullet trilinear mixing parameter: A
- ratio of MSSM Higgs vevs: $\tan\beta$
- Higgs mixing parameter: $\mu > 0$

(*) pMSSM11 is only one of many possible selections. Results will depend on the choice of free parameters.

MasterCode framework

- Frequentist approach to BSM global fits
- Collaborative effort of theorists and experimentalists
- Codes interfaced through SUSY Les Houches Accord (SLHA)

```
SoftSusy : spectrum generator
FeynWZ : electroweak precision observables
FeynHiggs : Higgs sector and (g-2)_{\mu}
           SuFla ,SusyFlavor and SuperIso : B-physics observables
Tools:Micromegas and SSARD: dark matter relic density<br/>SSARD : spin-independent cross section, \sigma_p^{SI}<br/>SDECAY : sparticle branching ratios
           HiggsSignals and HiggsBounds: constraints on
           the Higgs sector
            + own LHC SUSY search implementation
```

Sampling ranges

pMSSM11

Parameter	Range
M_1	(-4,4)TeV
M_2	(0,4) TeV
M_3	(-4 , 4) TeV
$m_{ ilde q}$	(0,4) TeV
$m_{ ilde{q}_3}$	(0,4) ${ m TeV}$
$m_{ ilde{l}}$	(0,2) TeV
$m_{ ilde{ au}}$	(0,2) TeV
M_A	(0,4) TeV
A	(-5,5) TeV
μ	(-5 , 5) ${ m TeV}$
aneta	(1,60)

subGUT-CMSSM

Parameter	Range
M_{in}	(10 ³ ,10 ¹⁶) GeV
$m_{1/2}$	(0,6) TeV
m_0	(0,6) TeV
A_0	(-15,10) TeV
aneta	(1,60)

- With and without LHC13; with and without $(g-2)_{\mu}$
- Sampled a total of 2 \times 10 9 points (pMSSM11) & 112 \times 10 6 points (subGUT-CMSSM)

EPJ C78 3 256 (2018)

Best fit points

- First and second generation sleptons much lighter than third generation
- Heavy Higgses, squarks and gluinos relatively unconstrained
- Sleptons are at less than 1 TeV

- Heavier spectrum, with two generation squarks around 1 TeV
- Higgs bosons mainly decay to SM particles

EPJ C78 3 256 (2018)

Mass spectrum

- CL ranges for most particles overlap with ranges accessible for future LHC runs
- \bullet Larger freedom allows to fulfill the $(g-2)_\mu$ constraint without being in tension with the LHC searches
- Improved fit with respect to the GUT models (better p-value)
- Best prospects for future colliders: $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}$ + 1st and 2nd generation sleptons

M. Lucio Martínez

EPJ C78 3 256 (2018)

Mass spectrum without $(\mathbf{g}-\mathbf{2})_{\mu}$

- Heavier neutralino, lighter squarks.
- Reduced parameter range at 68% CL because of slightly improved fit of flavor observables.

DQ P

EPJ C78 3 256 (2018)

- Experimental value of $(g-2)_{\mu}$ can be accommodated at 1.5 σ level
- Little difference between (not) using LHC13

- Value of $BR(B_{s,d} \rightarrow \mu^+ \mu^-)^{MSSM}$ close to the SM value is preferred if both constraints are applied
- $(g-2)_{\mu}$ dropped: larger range allowed
- Smaller value possible

pMSSM11

M. Lucio Martínez

SUSY-Collider and DM searches

November 27, 2018 13

5900

pMSSM11

November 27, 2018 14

nac

Spin-dependent scattering cross-section

- 95% and 68% CL below the upper limit from PICO
- IceCube constraints relevant only for a minority of points in the sample

DQ P

Spin-independent scattering cross-section

- bfp at the level of the projected sensitivities without $(g-2)_{\mu}$, higher with $(g-2)_{\mu}$
- No $(g-2)_{\mu}$: light higgs funnel/Z funnel/t-channel-stau regions appear at the 2σ and 3σ level

EPJ C78 3 256 (2018)

LSP composition

• Without $(g-2)_{\mu}$: all binary combinations allowed

- With $(g-2)_{\mu}$: small Wino fraction + unconstrained Bino and Higgsino
- Three-way mixtures disfavoured

DQ (P

EPJ C77 2 104 (2017)

• $M_{in} \simeq 4.2 \times 10^8 \text{ GeV}$ with LHC13 and $(g-2)_{\mu}$; $M_{in} \simeq 5.9 \times 10^5 \text{ GeV}$ without LHC13 = 0.0 GeV

M. Lucio Martínez

EPJ C77 2 104 (2017)

- Only a small contribution to $(g-2)_{\mu}$ possible with subGUT models
 - μ̃ mass more constrained that in GUT-scale CMSSM
- With and without LHC13 and $(g-2)_{\mu}$ similar

• Values of $BR(B_{s,d} \rightarrow \mu^+ \mu^-)^{MSSM}$ smaller than the SM favoured

Best fit points

- Heavy Higgs bosons decay predominantly to SM final states
- Squarks and gluino beyond the LHC reach
- ullet Sleptons beyond the e^+e^- collider reach
- Best prospects for $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$ @ CLIC

EPJ C77 2 104 (2017)

- Range of $\sigma_p^{\rm SI}$ close to the present limit
- 95% CL contour within the projected reaches
- Range of σ_p^{SD} below the present upper limit from PICO

LSP composition:

- Small Wino admixtures ; Bino and Higgsino fractions relatively unconstrained
- With $(g-2)_{\mu}$: ~ pure Bino; without $(g-2)_{\mu}$: ~ pure Higgsino

M. Lucio Martínez

November 27, 2018 21

Dark Matter Simplified Models (work in progress)

- Growing attention in simplified frameworks motivated by more generic experimental signatures
- **DMSM:** Mediator particle (Y) and its interactions with DM (χ) and SM particles explicitly in the lagrangian
- Bottom-up approach: mediator particle in the LHC mass range
 - Only s-channel mediators, spin-1
 - Dirac fermion
 - Leptophobic interactions
 - Parameters: m_Y , m_χ , $g_{\rm SM}$, $g_{\rm DM}$
- MasterCode framework to study correlations between parameters
 - MG5_aMC (N) LO: mediator properties and collider constraints (DMSIMP models)
 - micrOMEGAs: DM density and scattering calculations
 - Constraints: relic density (Planck) + monojet + dijet (CMS)

Dark Matter Simplified Models (work in progress)

Vector mediator

• Two regions where the DM constraint can be accommodated

Low-masses allowed for very small couplings

Axial-vector mediator

- Likelihood function varies less rapidly than before
- Low-masses allowed for very small couplings

- Supersymmetry is a good framework for explaining the origin of Dark Matter & other SM defficiencies
- \bullet Studied pMSSM11 and subGUT-CMSSM using $36 {\rm fb^{-1}}$ + DM constraints
 - Both pMSSM11 and subGUT-CMSSM have shown to provide good candidates for DM
- Studied the interplay between $(g-2)_{\mu}$ and flavor constraints
- Shown preliminary studies for DMSM from a global perspective
 - Plan to look at more complex models in the future

Stay tuned for more results!