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Motivation

• H → γ γ decay rate, W-loop contribution has become a subject of a controversy.

• Is a loop induced process, total amplitude is finite.

• Individual amplitudes UV divergent, thus most authors use dimensional regularisation
of the loop integrals (DimReg) 

• Direct computation within the unitary gauge is also possible.

• DimReg and unitary gauge results differ in general!

• H → γ γ automatically included in H → Z γ calculation

• Working with dispersion integral – no regularisation necessary 

• SM has a broken SU(2) symmetry – massive vector bosons have three polarisations
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We consider:

• H → Z+γ
• The W-loop contribution

• we use the dispersion method
• we compare to the commonly used DimReg
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Our dispersion method in 2 steps:

1. We calculate Im(amplitude) – in the unitary gauge 
2. We calculate the amplitude by using the dispersion integral



6

The Feynman diagrams
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These two selfenergy graphs do not contributed to the imaginary part of the amplitude.

in the unitary gauge

The inclined lines indicate the cuts.
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Absorptive part of the amplitude
Using Cutkosky rules - sets the momenta of the W ’s on-shell:
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Using the integrals given in Appendix B of [1] we get the non-zero result
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Real (dispersive) part of the amplitude

Mµ⌫ = �eg2 cos ✓W
8⇡M

F(⌧, a)Pµ⌫

The invariant unsubtracted amplitude Fun(⌧, a) is defined by the convergent dispersion integral

Fun(⌧, a) =
1

⇡

Z 1
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A(y)
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dy, ⌧ < 1.

Fun(⌧, a) defines the full amplitude F(⌧, a) up to an additive constant C(a):

2⇡F(⌧, a) = 2⇡Fun(⌧, a) + C(a)

We fix C(a) through the Goldstone Boson equivalence theorem (GBET), which fixes the

behaviour of the amplitude at ⌧ ! 1.

Using the integrals given in Appendix C of [1] we get the result for Fun(⌧, a):
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F and G denote loop integrals and can be found in [1].

Fun(⌧, a) has the properties:

* is finite at threshold ⌧ = a
* it vanishes for ⌧ ! 1 with fixed a
* for a ! 0 we get the corresponding amplitude for H ! ��

We define the full invariant amplitude F(⌧, a) by
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C(a) from GBET
We determine the subtraction constant C(a) through the charged ghost contribution adopting the Goldstone

Boson Equivalence Theorem which implies that at MW ! 0, i.e. at ⌧ ! 1, the SU(2) ⇥ U(1) symmetry of

the SM is restored and the longitudinal components of the physical W±
-bosons are replaced by the physical

Goldstone bosons �±
. In the following M�

µ⌫ denotes the amplitude of H ! Z+� in which the W±
are replaced

by their Goldstone bosons �±
. The GBET implies
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M�

µ⌫(⌧, a) .

We calculate the charged ghost contribution in two di↵erent ways: through direct calculations and via the

dispersion integral. Both calculations lead to the same result.

Again, applying Cutkosky rules to the amplitude we get
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The inclined lines indicate the cuts.

These two selfenergy graphs do not contributed to the imaginary part of the amplitude.
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The Feynman diagrams, in Rξ gauge

24 genuine vertex graphs and 10 with Z � � selfenergy transitions in the R⇠ gauge.

+ 10 selfenergy graphs
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R⇠ gauge calculation done with the Mathematica Packages FeynArts and FormCalc.

⇠ independence of total amplitude checked.

Calculation in Rξ gauge

In the limit a ! 0 we get the result for H ! �� [2] J. Ellis, M. K. Gaillard, D. V. Nanopoulos (1976)

Here dimensional regularization (DimReg) is used.

[6] L. Bergström and G. Hulth (1985)The result FDimReg(⌧, a) coincides with the ”classical” one, see e.g.

We get the relation

We see that both calculations agree, obeying the GBET.

C(a)

2⇡FDimReg(⌧, a) = 2⇡Fun(⌧, a) + 2(1� 2a) = 2⇡F(⌧, a)
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The decay width
Approximating the total width by top and W-boson loop we get

�(H ! Z + �) =
M3

H

32⇡
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Ft(⌧t) stands for the sum of the t-quark one-loop diagrams and

FW (⌧) stands for the sum of the W -boson one-loop diagrams.

�(H ! Z + �) = 8.1KeV using FW (⌧) = F(⌧, a) = FDimReg(⌧, a)

correct result

�(H ! Z + �) = 6.6KeV using FW (⌧) = Fun(⌧, a)

wrong result, 20% smaller
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Working with 
regularisation:

Note, for �(H ! ��) even 52% reduction!
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Concluding remarks
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W -boson induced corrections to the decay H ! Z + � in the Standard Model calculated

in the unitary gauge using the dispersion-relation approach.

Decay H ! �� automatically included.

Subtraction constant fixed by using the Goldstone Boson Equivalence Theorem.

As a cross-check we also calculated the amplitude in the commonly used R⇠-gauge class

with dimensional regularization as regularization scheme. Same result as in the dispersion

method.

Plus: – Only finite quantities and thus does not involve any uncertainties related to regularization.
– simpler, working in the unitary gauge e↵ectively we deal with only 2 Feynman diagrams,
while in the R⇠-gauge one has 24 graphs.

Minus: The dispersion method determines the amplitude merely up to an additive subtraction constant..



Thank you!
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