Dispersion theoretic calculation of the H \rightarrow Z+ γ amplitude

Helmut Eberl HEPHY Vienna

HEPHY Vienna

work done together with

E. Christova and I. Boradjiew

talk based on [1] - PRD 97 (2018) no.7, 073008 [arXiv:1711.07298]

Contents

- Motivation
- The Feynman diagrams
- Absorptive part of the amplitude
- Real part of the amplitude
- The decay width
- Some references
- Concluding remarks

Motivation

- H $\rightarrow \gamma \gamma$ decay rate, W-loop contribution has become a subject of a controversy.
- Is a loop induced process, total amplitude is finite.
- Individual amplitudes UV divergent, thus most authors use dimensional regularisation of the loop integrals (DimReg)
- Direct computation within the unitary gauge is also possible.
- DimReg and unitary gauge results differ in general!
- $H \rightarrow \gamma \gamma$ automatically included in $H \rightarrow Z \gamma$ calculation
- Working with dispersion integral no regularisation necessary
- SM has a broken SU(2) symmetry massive vector bosons have three polarisations

We consider:

- $H \rightarrow Z+\gamma$
- The W-loop contribution
- we use the dispersion method
- we compare to the commonly used DimReg

Our dispersion method in 2 steps:

- 1. We calculate Im(amplitude) in the unitary gauge
- 2. We calculate the amplitude by using the dispersion integral

The Feynman diagrams

in the unitary gauge

The inclined lines indicate the cuts.

These two selfenergy graphs do not contributed to the imaginary part of the amplitude.

The amplitude in the unitary gauge:

$$\mathcal{M} = \mathcal{M}_{\mu\nu}(k_1, k_2) \,\epsilon_1^{*\mu} \,\epsilon_2^{*\nu}$$

$$\mathcal{M}_{1\mu\nu} = \frac{-ieg^{2}\cos\theta_{W}M}{(2\pi)^{4}} \int d^{4}k \, \frac{V_{\mu\rho\beta}(-k_{1}, -P_{2}, P_{1}) \, V_{\nu\gamma\sigma}(-k_{2}, -P_{3}, P_{2})}{D_{1}D_{2}D_{3}} \times \qquad M \text{ is the W-mass}$$

$$\times \left(g_{\alpha}^{\beta} - \frac{P_{1\alpha}P_{1}^{\beta}}{M^{2}}\right) \left(g^{\rho\sigma} - \frac{P_{2}^{\rho}P_{2}^{\sigma}}{M^{2}}\right) \left(g^{\alpha\gamma} - \frac{P_{3}^{\alpha}P_{3}^{\gamma}}{M^{2}}\right) \qquad P_{1} = k + \frac{p}{2}, \qquad P_{2} = k - \frac{v}{2}, \qquad P_{3} = k - \frac{p}{2},$$

$$D_{i} = P_{i}^{2} - M^{2} + i\epsilon, \qquad (i = 1, 2, 3),$$

$$\mathcal{M}_{3\mu\nu}(k \to -k) = \mathcal{M}_{1\mu\nu} \qquad \tilde{P}_{2} = k + \frac{v}{2}, \qquad \tilde{D}_{2} = \tilde{P}_{2}^{2} - M^{2} + i\epsilon$$

$$p = k_{1} + k_{2}, \qquad v = k_{1} - k_{2}.$$

$$\mathcal{M}_{2\mu\nu} = \frac{ieg^{2}\cos\theta_{W}M}{(2\pi)^{4}} \int d^{4}k \frac{V_{\gamma\beta\mu\nu}}{D_{1}D_{3}} \left(g_{\alpha}^{\beta} - \frac{P_{1\alpha}P_{1}^{\beta}}{M^{2}}\right) \left(g^{\alpha\gamma} - \frac{P_{3}^{\alpha}P_{3}^{\gamma}}{M^{2}}\right)$$

 $\mathcal{M}_{\mu\nu} = 2\mathcal{M}_{1\mu\nu} + \mathcal{M}_{2\mu\nu}$

Absorptive part of the amplitude

Using Cutkosky rules - sets the momenta of the W's on-shell:

$$\frac{1}{p^2 - M^2 + i\epsilon} \longrightarrow (2\pi i) \,\theta(\pm p_0) \,\delta(p^2 - M^2) \,.$$

The invariant absorptive part \mathcal{A} of the amplitude is defined by

$$\Im m \mathcal{M}_{\mu\nu} = \frac{eg^2 \cos \theta_W}{8\pi M} \mathcal{A}(\tau) \mathcal{P}_{\mu\nu} \qquad \text{with} \qquad \mathcal{A}(\tau) \mathcal{P}_{\mu\nu} = \frac{M^2}{\pi} \int d^4k \,\mathcal{I}_{\mu\nu} \,\theta(P_{10}) \theta(-P_{30}) \delta(D_1) \delta(D_3),$$

The transverse factor is $\mathcal{P}_{\mu\nu} = k_{2\mu}k_{1\nu} - (k_1 \cdot k_2) g_{\mu\nu}$ and

$$\begin{split} \mathcal{I}_{\mu\nu} &= \frac{8M_Z^2}{M^4 D_2} \, k^2 \left(k_\mu k_\nu + \frac{k_{2\mu} k_\nu}{2} - \frac{k_\mu k_{1\nu}}{2} - \frac{k_{2\mu} k_{1\nu}}{4} \right) + \frac{-2M_Z^2}{M^4} \, k^2 g_{\mu\nu} \\ &+ \frac{8M_Z^2}{M^2 D_2} \left[-k_\mu k_\nu - \frac{k_{2\mu} k_\nu}{2} + \frac{k_\mu k_{1\nu}}{2} - \frac{k_{2\mu} k_{1\nu}}{8} + \frac{1}{4} \, g_{\mu\nu} k_1 \cdot k_2 - \frac{1}{8} \, g_{\mu\nu} k \cdot (k_1 - k_2) \right] + \frac{M_Z^2}{M^2} \, g_{\mu\nu} \\ &+ \frac{2}{M^2 D_2} \left[4k_1 \cdot k_2 \, k_\mu k_\nu + 2k^2 k_{2\mu} k_{1\nu} - 4k \cdot k_1 \, k_{2\mu} k_\nu - 4k \cdot k_2 \, k_\mu k_{1\nu} \\ &+ g_{\mu\nu} \left(4k \cdot k_1 \, k \cdot k_2 - 2k^2 \, k_1 \cdot k_2 \right) \right] \\ &+ \frac{2}{D_2} \left[\left(-3k^2 + 3k \cdot k_1 - 3k \cdot k_2 - \frac{9}{2} \, k_1 \cdot k_2 + 3M^2 - \frac{3}{4} \, M_Z^2 \right) g_{\mu\nu} \\ &+ 12k_\mu k_\nu + 3k_{1\nu} k_{2\mu} - 6k_\mu k_{1\nu} + 6k_{2\mu} k_\nu \right]. \end{split}$$

 $\tau=\frac{p^2}{4M^2},\,a=\frac{M_Z^2}{4M^2},\,p$ - momentum of Higgs boson, $M=M_W$

Using the integrals given in Appendix B of [1] we get the non-zero result

$$\mathcal{A}(\tau) = \frac{a}{\tau - a} \left\{ \left[1 + \frac{1}{\tau - a} \left(\frac{3}{2} - 2a\tau \right) \right] \beta - \left[1 - \frac{1}{2(\tau - a)} \left(2a - \frac{3}{2\tau} \right) - \frac{3}{2a} \left(1 - \frac{1}{2\tau} \right) \right] \ln \left(\frac{1 + \beta}{1 - \beta} \right) \right\}, \qquad \tau > 1.$$

 $\beta = \sqrt{1 - \tau^{-1}}$

Real (dispersive) part of the amplitude

We define the full invariant amplitude $\mathcal{F}(\tau, a)$ by

$$\mathcal{M}_{\mu\nu} = -\frac{eg^2\cos\theta_W}{8\pi M}\,\mathcal{F}(\tau,a)\mathcal{P}_{\mu\nu}$$

The invariant unsubtracted amplitude $\mathcal{F}_{un}(\tau, a)$ is defined by the convergent dispersion integral

$$\mathcal{F}_{un}(\tau, a) = \frac{1}{\pi} \int_{1}^{\infty} \frac{\mathcal{A}(y)}{y - \tau} \, \mathrm{d}y, \qquad \tau < 1.$$

 $\mathcal{F}_{un}(\tau, a)$ defines the full amplitude $\mathcal{F}(\tau, a)$ up to an additive constant C(a):

$$2\pi \mathcal{F}(\tau, a) = 2\pi \mathcal{F}_{un}(\tau, a) + \mathcal{C}(a)$$

We fix $\mathcal{C}(a)$ through the Goldstone Boson equivalence theorem (GBET), which fixes the behaviour of the amplitude at $\tau \to \infty$.

Using the integrals given in Appendix C of [1] we get the result for $\mathcal{F}_{un}(\tau, a)$:

$$2\pi \mathcal{F}_{un}(\tau, a) = \frac{3 - 4a^2}{\tau - a} + \left(6 - 4a - \frac{3 - 4a^2}{\tau - a}\right) F(\tau, a) - 2a \left(2 + \frac{3 - 4a\tau}{\tau - a}\right) G(\tau, a),$$

F and G denote loop integrals and can be found in [1].

 $\begin{aligned} \mathcal{F}_{un}(\tau, a) \text{ has the properties:} \\ * \text{ is finite at threshold } \tau &= a \\ * \text{ it vanishes for } \tau &\to \infty \text{ with fixed } a \\ * \text{ for } a \to 0 \text{ we get the corresponding amplitude for } H \to \gamma\gamma \end{aligned}$

C(a) from GBET

We determine the subtraction constant C(a) through the charged ghost contribution adopting the Goldstone Boson Equivalence Theorem which implies that at $M_W \to 0$, i.e. at $\tau \to \infty$, the $SU(2) \times U(1)$ symmetry of the SM is restored and the longitudinal components of the physical W^{\pm} -bosons are replaced by the physical Goldstone bosons ϕ^{\pm} . In the following $\mathcal{M}^{\phi}_{\mu\nu}$ denotes the amplitude of $H \to Z + \gamma$ in which the W^{\pm} are replaced by their Goldstone bosons ϕ^{\pm} . The GBET implies

$$\lim_{\tau \to \infty} \mathcal{M}_{\mu\nu}(\tau, a) = \lim_{\tau \to \infty} \mathcal{M}^{\phi}_{\mu\nu}(\tau, a) \,.$$

We calculate the charged ghost contribution in two different ways: through direct calculations and via the dispersion integral. Both calculations lead to the same result.

Again, applying Cutkosky rules to the amplitude we get

$$\Im m \,\mathcal{M}^{\phi}_{\mu\nu}(\tau,a) = -\frac{eg^2 \cos \theta_W}{8\pi M} \,\frac{M_H^2}{4M^2} \,\mathcal{A}^{\phi}(\tau,a) \,\mathcal{P}_{\mu\nu} \quad \text{with} \quad \mathcal{A}^{\phi}(\tau,a) = (1-2a) \,\frac{2a\beta - \ln \frac{1+\beta}{1-\beta}}{2\,(\tau-a)^2}.$$

The dispersion integral is

$$\mathcal{F}^{\phi}(\tau, a) = \frac{1}{\pi} \int_{1}^{\infty} \frac{\mathcal{A}^{\phi}(y, a)}{y - \tau} dy \quad \text{and we obtain} \quad \lim_{\tau \to \infty} \mathcal{F}^{\phi}(\tau, a) = \frac{2(1 - 2a)}{2\pi (\tau - a)}$$

$$\lim_{\tau \to \infty} 2\pi \mathcal{F}(\tau, a) = \lim_{\tau \to \infty} 2\pi \left[\tau \mathcal{F}^{\phi}(\tau, a) \right] = \mathcal{C}(a).$$
 Thus we determine $C(a) = 2(1 - 2a).$

Important note:

 M_H^2 in the coupling - large- τ behavior $\mathcal{F}^{\phi}(\tau, a) \sim \mathcal{O}(\tau^{-x})$ with $x \geq 1$. $\rightarrow (1/\pi) \int_{ARC} \mathrm{d}y \mathcal{F}^{\phi}(y, a)/(y - \tau)$ over the infinite arc in the complex y-plane, is zero. + no physics reason as GBET for $\mathcal{F}(\tau, a)$

The inclined lines indicate the cuts.

These two selfenergy graphs do not contributed to the imaginary part of the amplitude.

The Feynman diagrams, in R_{ξ} gauge

+ 10 selfenergy graphs

24 genuine vertex graphs and 10 with $Z - \gamma$ selfenergy transitions in the R_{ξ} gauge.

Calculation in R_{ξ} gauge

 R_{ξ} gauge calculation done with the Mathematica Packages FeynArts and FormCalc. ξ independence of total amplitude checked.

Here dimensional regularization (DimReg) is used.

The result $\mathcal{F}_{\text{DimReg}}(\tau, a)$ coincides with the "classical" one, see e.g. [6] L. Bergström and G. Hulth (1985)

In the limit $a \to 0$ we get the result for $H \to \gamma \gamma$ [2] J. Ellis, M. K. Gaillard, D. V. Nanopoulos (1976) We get the relation

$$2\pi \mathcal{F}_{\text{DimReg}}(\tau, a) = 2\pi \mathcal{F}_{un}(\tau, a) + 2(1 - 2a) = 2\pi \mathcal{F}(\tau, a)$$

We see that both calculations agree, obeying the GBET.

The decay width

Approximating the total width by top and W-boson loop we get

$$\Gamma(H \to Z + \gamma) = \frac{M_H^3}{32\pi} \left(1 - \frac{M_Z^2}{M_H^2}\right)^3 \left[\frac{eg^2}{(4\pi)^2 M}\right]^2 \left|-\cos\theta_W [2\pi\mathcal{F}_W(\tau)] + \frac{2\left(3 - 8\sin^2\theta_W\right)}{3\cos\theta_W} \left[2\pi\mathcal{F}_t(\tau_t)\right]\right|^2$$

 $\mathcal{F}_t(\tau_t)$ stands for the sum of the *t*-quark one-loop diagrams and $\mathcal{F}_W(\tau)$ stands for the sum of the *W*-boson one-loop diagrams.

Working with regularisation:
$$I_{\mu\nu} = \int \frac{d^n k}{(2\pi)^n} \frac{4k_{\mu}k_{\nu} - k^2 g_{\mu\nu}}{(k^2 - M_W^2)^3}$$
 $I_{\mu\nu} = i\frac{\pi^2}{2}g_{\mu\nu} \text{ for } n = D$
 $I_{\mu\nu} = 0 \text{ for } n = 4$

Some references

[2] J. Ellis, M. K. Gaillard, D. V. Nanopoulos, $H \to \gamma \gamma$ A phenomenological profile of the Higgs boson, Nucl. Phys. B 106, 292-340 (1976). [3] M. Shifman, A. Vainstein, M. P. Voloshin, V. Zakharov, Low-energy theorems for Higgs decay into two photons, Yad. Fiz. 30, 1368-1378 (1979) (transl. Sov. J. Nucl. Phys. 30, 711 (1979)). [4] J. Horejsi, M. Stöhr, Higgs decay into two photons, dispersion relations and trace anomaly, Phys. Lett. B **379**, 159-162 (1996); arXiv:hep-ph/9603320. [5] R. Cahn, M. C. Chanowitz, and N. Fleishon, Higgs particle production by $Z \to H\gamma$, Phys. Lett. 82 B, 113 (1979). [6] L. Bergström, G. Hulth, $H \to Z\gamma$ Induced Higgs couplings to neutral bosons in e^+e^- collisions, Nucl. Phys. **259**, 137 (1985). [7] K. Melnikov, A. Vainshtein, Higgs boson decay to two photons and the dispersion relations, Phys. Rev. D 93, 053015 (2016); arXiv:1601.00406 [hep-ph].

> [8] F. Jegerlehner, Comment on $H \to \gamma \gamma$ and the role of the decoupling theorem and the equivalence theorem, arXiv:1110.0869v2 [hep-ph].

[9] A. Dedes and K. Suxho,Anatomy of the Higgs boson decay into two photons in the unitary gauge,Adv. High Energy Phys., 631841 (2013); arXiv:1210.0141 [hep-ph].

Some references, continued

[10] R. Gastmans, S. L. Wu, T. T. Wu, Higgs decay into two photons, revisited, arXiv:1108.5872 [hep-ph].

[11] R. Gastmans, S. L. Wu, T. T. Wu, Higgs decay $H \rightarrow \gamma \gamma$: New theoretical results and possible experimental implications, Int. J. Mod. Phys. A **30**, 1550 (2015).

[12] E. Christova, I. Todorov,
Once more on the W-loop contribution to the Higgs decay into two photons,
Bulg. J. Phys. 42, 296-304 (2015); arXiv:1410.7061v3 [hep-ph].

 $\begin{array}{ll} H \to \gamma \gamma & [13] \text{ Tai Tsau Wu, Sau Lan Wu,} \\ \text{and} & \text{Comparing the } R_{\xi} \text{ gauge and the unitary gauge for the standard model: An example,} \\ H \to Z \gamma & \text{Nucl. Phys. B914 421 (2017).} \end{array}$

Concluding remarks

W-boson induced corrections to the decay $H \rightarrow Z + \gamma$ in the Standard Model calculated in the unitary gauge using the dispersion-relation approach.

Decay $H \to \gamma \gamma$ automatically included.

Plus: – Only finite quantities and thus does not involve any uncertainties related to regularization. – simpler, working in the unitary gauge effectively we deal with only 2 Feynman diagrams, while in the R_{ξ} -gauge one has 24 graphs.

Minus: The dispersion method determines the amplitude merely up to an additive subtraction constant.

Subtraction constant fixed by using the Goldstone Boson Equivalence Theorem.

As a cross-check we also calculated the amplitude in the commonly used R_{ξ} -gauge class with dimensional regularization as regularization scheme. Same result as in the dispersion method.

Thank you!